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Abstract

We consider the feedback capacity of a class of symmetric finite-state Markov channels. Here,

symmetry (termed “quasi-symmetry”) is defined as a generalized version of the symmetry defined for

discrete memoryless channels. The symmetry yields the existence of a hidden Markov noise process

that depends on the channel’s state process and facilitatesthe channel description as a function of

input and noise, where the function satisfies a desirable invertibility property. We show that feedback

does not increase capacity for such class of finite-state channels and that both their non-feedback and

feedback capacities are achieved by an independent and uniformly distributed (i.u.d.) input. As a result,

the channel capacity is explicitly given as a difference of output and noise entropy rates, where the

output is driven by the i.u.d. input.

Index Terms

Channel capacity, channels with memory, finite-state Markov channels, dynamic programming,

feedback capacity.

I. INTRODUCTION AND L ITERATURE REVIEW

Although feedback does not increase the capacity of discrete memoryless channels (DMCs)

[1], it generally increases the capacity of channels with memory. In this work, we study the
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feedback capacity of a class of channels with memory and showthat feedback does not increase

their capacity. More explicitly, we consider finite-state Markov (FSM) channels [2], [3], [4]

which encompass symmetry in their channel transition matrices.

FSM channels have been widely used to effectively model wireless fading channels (e.g., cf.

[5], [6], [7], [8]). A definition of symmetric finite-state Markov channels is given in [9] and

[10] and capacity without feedback is calculated where it isshown that the capacity-achieving

distribution is uniform and that this distribution yields auniform output distribution. In [11], it

is shown that feedback does not increase the capacity of discrete channels with modulo additive

noise. It is also shown that for any channel with memory satisfying the symmetry conditions

defined in [12], feedback does not increase its capacity. Recently, it has been shown that feedback

does not increase the capacity of the compound Gilbert-Elliot channel [13], which is a family of

FSM channels. In a related work, the capacity of finite-stateindecomposable channels with side

information at the transmitter is investigated [14]. In particular, it is shown that the capacity of

finite-state indecomposable Markovian channels with (modulo) additive noise, where the noise

is a deterministic function of the state, is not increased with the availability of side information

at the transmitter. In a more recent work, it has been shown that it is possible to formulate the

computation of feedback capacity as a dynamic programming problem and therefore it can be

solved by using the value iteration algorithm under information stability conditions [15], [16].

In [17], finite-state channels with feedback, where feedback is a time-invariant deterministic

function of the output samples, is considered. It is shown that if the state of the channel is

known both at the encoder and the decoder then feedback does not increase capacity. In [18]

and [19], directed information is used to calculate the feedback capacity of some classes of FSM

channels. In particular, the channel state is assumed in [18] to be a deterministic function of

the previous state and input; whereas in [19] the channel state is assumed to be a deterministic

function of the output. In [20], time varying channels are modeled as FSM channels and their

capacity is studied as a function of the feedback delay assuming perfect channel state information

at the receiver. In addition to these results, it has also been shown that feedback does not increase

the capacity for a binary erasure channel with Markovian state [21]. Although not closely related

with our result, an important insight into the use of feedback in a real time causal coding context

is presented in [22]. In particular, it is shown that feedback is useful in general causal coding

problems of a Markov source over a noisy channel; however it is not useful if the channel is
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symmetric (as defined in [22]) and memoryless.

Considering the structure in typical communication channels and the results in the literature

that we presented above, it is worth to look for the most general notion of symmetry for channels

with memory under which feedback does not increase capacity. With this motivation, we study

the feedback capacity of a class of symmetric FSM channels, which we call “quasi-symmetric”

FSM channels, and prove that feedback does not help increasetheir capacity. This result is

shown by demonstrating that for an FSM channel satisfying the symmetry conditions defined

in the paper, its feedback capacity is achieved by an independent and uniformly distributed

(i.u.d.) input which implies that its non feedback capacityis also achieved by uniform input

distribution. Along this way, we first show the existence of ahidden Markov noise process, due

to the symmetry characteristics of the channel, which is conditionally independent of the input

given the sate. As a result, the FSM channel can be succinctlydescribed as a function of input

and noise, where the function is an invertible map between the noise and output alphabets for a

fixed input. With this fact, the feedback capacity problem reduces to the maximization of entropy

of the output process. In the second step, we show that this entropy is maximized by a uniform

input distribution. It should be noted that for quasi-symmetric FSM channels, uniform inputs do

not necessarily yield uniform outputs; this is a key symmetry property used in previous works

for showing that feedback does not increase capacity for symmetric channels with memory (e.g.,

[11], [12]). This second step is solved via a dynamic programming approach which shows that

it is possible to learn the channel via past feedback controlactions (input distributions) that

affect the future input actions by modifying the induced channel that the receiver observes. We

demonstrate that, when the FSM channel satisfies the condition that the column sums of its

channel transition matrices are invariant with respect to the state process, it is still possible to

learn the channel via past input actions; however, the optimal input distribution remains the same

even with this learning step. We also note that our result intersects with [11] and [12] when

the noise process in the latter works is restricted to being Markovian, stationary and irreducible.

Furthermore, a by-product contribution of this work is thatthe channel capacity is given as a

difference of the output and noise entropy rates, where the output is driven by the i.u.d. input and

is also hidden Markovian. Thus the capacity can be easily evaluated using existing algorithms

for the computation of entropy and information rates in hidden Markov channels (e.g., see [23]).

Finally, although our result covers a large class of discrete channels with memory, we believe
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that by adopting the approach of this work, it is possible to show a similar result for more

general classes of both symmetric channels and asymmetric channels whose feedback capacity

is achieved by an independent and identically distributed (i.i.d.) input process, both in the single

user and multiple user settings.

The paper is organized as follows. We first give the definitionof quasi-symmetricFSM

channels. This will be followed by a section on their capacity with feedback. Next, we present

examples of channels that satisfy the quasi-symmetry condition and hence conclude that their

capacity does not increase with feedback. Finally, we end the paper with concluding remarks.

Throughout the paper, we will use the following notations. Arandom variable will be denoted

by an upper case letterX and its particular realization by a lower case letterx. The sequence

of random variablesX1, X2, ..., Xn will be denoted byXn and so its realization will bexn. We

will represent a finite-state Markov source by a pair[S, P ], whereS is the state set andP is

the state transition probability matrix. We will also be assuming that the Markov processes in

the paper are stationary, aperiodic and irreducible (henceergodic).

II. QUASI-SYMMETRIC FINITE STATE MARKOV CHANNEL

A finite-state Markov (FSM) channel (e.g., [9], [10]) is defined by a pentad[X ,Y ,S, PS, C],

whereX is the input alphabet,Y is the output alphabet and the Markov process{Sn}
∞
n=1, Sn ∈ S

is represented by the pair[S, PS ] whereS is the state set andPS is the state transition probability

matrix. We assume that the setsX , Y andS are all finite. The setC is a collection of transition

probability distributions,pC(y|x, s), on Y for eachx ∈ X , s ∈ S. We consider the problem of

communicating messageW ∈ {1, 2, · · · , 2nR} over the FSM channel (without or with the use

of feedback) via a code of rateR and blocklengthn,1 whereW is uniformly distributed over

{1, 2, · · · , 2nR} and independent ofSn. We assume that the FSM channel satisfies the following

properties under both the absence and presence of feedback:

(I) Markov Property: For any integeri ≥ 1.

P (si|s
i−1, yi−1, xi−1, w) = P (si|si−1). (1)

1Both feedback and non-feedback codes of rateR and blocklengthn, which yield up to2nR codewordsXn ∈ Xn for

transmission over the channel, are explicitly defined in Section III in terms of a pair of encoding and decoding functions.
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(II) For any integeri ≥ 1,

P (yi|si, xi, s
i−1, xi−1, yi−1, w) = pC(yi|si, xi) (2)

When the channel is without feedback, we also assume that theFSM channel satisfies:

(II.b) For any integeri ≥ 1,

P (yi−1|xi, si) = P (yi−1|xi−1, si−1) (3)

wherepC(.|., .) is defined byC. Note that properties (II) and (II.b) imply thatP (yn|xn, sn) =
∏n

i=1 pC(yi|si, xi) when the channel is without feedback. Furthermore, the non-feedback code-

wordsXn at the channel input are only a function ofW (which is independent ofSn); hence,

in the non-feedback scenario, the channel input{Xi} is also independent ofSn.

In this paper, we are interested in a subclass of FSM channelswhere the channel transition

matrices,Qs△=[pC(y|s, x)]xy, s ∈ S, carry some notion of symmetry which is similar to the

symmetry defined for DMCs as in the following.

Definition 1: A DMC with input alphabetX , output alphabetY and channel transition matrix

Q = [pC(y|x)]xy is symmetricif the rows ofQ are permutations of each other and the columns

are permutations of each other [24].

Definition 2: A DMC with input alphabetX , output alphabetY and channel transition matrix

Q = [pC(y|x)]xy is weakly-symmetricif the rows ofQ are permutations of each other and all

the column sums
∑

x pC(y|x) are identically equal to a constant [24].

Definition 3: A DMC with input alphabetX , output alphabetY and channel transition matrix

Q = [pC(y|x)]xy is quasi-symmetricif Q can be partitioned along its columns intoweakly-

symmetricsub-arrays,Q̃1, Q̃2, . . . , Q̃m, with eachQ̃i having size|X | × |Yi|, whereY1 ∪ · · · ∪

Ym = Y andYi ∩ Yj = ∅, ∀i 6= j [25]. A weakly-symmetricsub-array is a matrix whose rows

are permutations of each other and whose column sums are all identically equal to a constant.

Note that for a quasi-symmetric DMC, the rows of its entire transition matrix,Q, are also

permutations of each other. It is also worth pointing out that the above quasi-symmetry1 notion

for DMCs encompasses Gallager’s symmetry definition [2, p.94]. 2A simple example of a quasi-

symmetric DMC can be given by the following (stochastic, i.e., with row sums equal to1)

2The capacity of a quasi-symmetric DMC is achieved by a uniform input distribution and it can be expressed via a simple

closed-form formula [25]:C =
Pm

i=1 αiCi whereαi
△
=

P

y∈Yi
P (y|x) = sum of any row inQ̃i, i = 1, · · · , m, and Ci =

log2 |Yi| − H
“

any row in the matrix1
αi

Q̃i

”

, i = 1, · · · , m.
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transition matrix,Q, for which a1 +a2 = 2a3 anda4 +a5 = 2a6, and it can be partitioned along

its columns into two weakly-symmetric sub-arrays

Q =










a1 a2 a3 a4 a5 a6

a3 a2 a1 a6 a5 a4

a2 a1 a3 a5 a4 a6

a3 a1 a2 a6 a4 a5










, Q̃1 =










a1 a2 a3

a3 a2 a1

a2 a1 a3

a3 a1 a2










, and Q̃2 =










a4 a5 a6

a6 a5 a4

a5 a4 a6

a6 a4 a5










.

We can now define similar notions of symmetry for FSM channels.

Definition 4: (e.g., [9], [10])An FSM channel is symmetricif for each states ∈ S, the rows

of Qs are permutations of each other such that the row permutationpattern is identical for all

states, and similarly, if for eachs ∈ S the columns ofQs are permutations of each other with

an identical column permutation pattern across all states.

Definition 5: An FSM channel is weakly-symmetricif for each states ∈ S, Qs is weakly-

symmetric and the row permutation pattern is identical for all states.

Definition 6: An FSM channel is quasi-symmetricif for each states ∈ S, Qs is quasi-

symmetric and the row permutation pattern is identical for all states.

To illustrate these definitions, let us consider the following conditional probability matrices

of a two-state quasi-symmetric FSM channel withX = {1, 2, 3, 4}, Y = {1, 2, 3, 4, 5, 6} and

S = {1, 2}:

Q1 =










a1 a2 a3 a4 a5 a6

a3 a2 a1 a6 a5 a4

a2 a1 a3 a5 a4 a6

a3 a1 a2 a6 a4 a5










, Q2 =










a′1 a′2 a′3 a′4 a′5 a′6

a′3 a′2 a′1 a′6 a′5 a′4

a′2 a′1 a′3 a′5 a′4 a′6

a′3 a′1 a′2 a′6 a′4 a′5










, (4)

whereQ1 andQ2 are stochastic matrices. As it can be seen,Q1 andQ2 have the same row

permutation pattern and are both quasi-symmetric.

It directly follows by definition that symmetric and weakly symmetric FSM channels are

special cases of quasi-symmetric FSM channels. Therefore,we focus on quasi-symmetric FSM

channels for the sake of generality.

Let us defineZ (which will serve as a noise alphabet) such that|Y| = |Z|, whereY is

the output alphabet. Then for each states, since the rows ofQs are permutations of each

other (the FSM channel being quasi-symmetric), we can find functionsfs(.) : Z → [0, 1] and
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Φs(., .) : X × Y → Z that are onto givenx (i.e., for eachx ∈ X , Φs(x, .) : Y → Z is onto),

such that

fs(Φs(x, y)) = pC(y|x, s). (5)

Note that since each functionΦs(x, .) : Y → Z is onto givenx and since|Y| = |Z|, then it is

also one-to-one givenx; i.e.,Φs(x, y) = Φs(x, y
′) ⇒ y = y′. ThusΦs(x, .) : Y → Z is invertible

for eachx ∈ X .

For the sake of completeness, we herein provide an explicit construction for the functions

fs(.) and Φs(., .). The construction is basically as follows: for each(x, y) pair having iden-

tical channel conditional probabilitypC(y|x, s) under states, Φs(x, y) returns the same value

z with fs(z) set to equalpC(y|x, s). More explicitly, let X = {x(1), x(2), · · · , x(k)}, Y =

{y(1), y(2), · · · , y(|Y|)}, Z = {z(1), z(2), · · · , z(|Y|)}, I = {1, 2, · · · , k} and J = {1, 2, · · · , |Y|}.

For s ∈ S, let qsi,j
△
=pC(y(j)|x(i), s), i ∈ I and j ∈ J , be the entries ofQs. SinceQs is quasi-

symmetric, then for eachi = 1, 2, · · · , k, there exists a permutationπsi : J → J on the column

indices of the entries of theith row of Qs such that the first row ofQs is a permutation of

every other row.3 Then, fs(.) and Φs(., .) are given as follows:Φs(x(i), y(j)) = z(πs
i (j)) and

fs(z(j)) = qs1,j, i ∈ I, j ∈ J .

Lemma 1:The functionΦs(., .), as defined above together withfs(.) to satisfy (5), is invariant

with s.

Proof: It directly follows from the above construction thatΦs(x(i), y(j)) = z(πs
i (j)) =

z(πs̃
i (j)) = Φs̃(x(i), y(j)), ∀s, s̃ ∈ S and ∀x(i) ∈ X , y(j) ∈ Y since by Definition 6,πsi (j) is

identical for all states.

Therefore, for a quasi-symmetric FSM channel, there existsa functionΦ(., .) : X ×Y → Z that

is invertible givenx (i.e., for eachx ∈ X , Φ(x, .) : Y → Z is invertible) such that the random

3The row permutations are as follows. The first permutationπ1 is set as the identity function:πs
1(j) = j for all j ∈ J . The

remaining permutations fori = 2, · · · , k, are given byπs
i (1) = k wherek is the smallest integer inJ for which qs

1,k = qs
i,1,

and forj = 2, · · · , |Y|, πs
i (j) = k′ wherek′ is the smallest available (not yet assigned for values1, 2, . . . , j − 1) integer inJ

for which qs
1,k′ = qs

i,j . This assignment rule is valid whether or not the rows ofQs contain identical entries. Specifically, if the

ith row of Qs (i ≥ 2) hasd identical entriesqs
i,j1

= qs
i,j2

= · · · = qs
i,jd

with j1 < j2 < · · · < jd in J , then (by the channel’s

row symmetry) there exist integersl1 < l2 < · · · < ld in J with qs
i,j1

= qs
i,j2

= · · · = qs
i,jd

= qs
1,l1

= qs
1,l2

= · · · = qs
1,ld

. In

this case we set:πs
i (jt) = lt for t = 1, 2, . . . , d, andπs

i (j) = k̃ where k̃ is theunique integer inJ for which qs

1,k̃
= qs

i,j for

j ∈ J \ {j1, j2, · · · , jd}.
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variableZ = Φ(X, Y ) has the conditional distribution

P (z|x, s) =
P (z, x, s)

P (x, s)
=
P (y, z, x, s)

P (x, s)

=
P (z|x, y, s)pC(y|x, s)P (x, s)

P (x, s)

(a)
= pC(y|x, s) = fs(z). (6)

wherey = ν(x, z) andν(., .) : X×Z → Y is the inverse ofΦ in the sense thatν(x, ·) = Φ(x, ·)−1

for eachx ∈ X , and(a) is due to the fact thatp(z|x, y, s) = 1. This important observation first

given in [9], reduces the set of conditional probability distributions which identifies the quasi-

symmetric FSM channel to an|S| × |Z| matrix T defined by

T [s, z] = fs(z). (7)

Therefore, for quasi-symmetric FSM channels, we have that for anyn,

P (zn|xn, sn) = P (zn|sn) = T [sn, zn] . (8)

To make this statement explicit, let us consider the FSM channel given in (4). For this channel,

we can derive the functionsz = Φ(x, y) and fs(z), as explicitly shown above; for e.g., we

haveΦ(1, 1) = Φ(2, 3) = Φ(3, 2) = Φ(4, 2) = 1 and f1(1) = a1 and f2(1) = a′1. Therefore,

the channel conditional probabilities for each state can now be defined byΦ and the matrixT ,

where

T =




a1 a2 a3 a4 a5 a6

a′1 a′2 a′3 a′4 a′5 a′6



 .

Hence, the fundamental property for quasi-symmetric FSM channels is the existence of a noise

process{Zn} given byZn = Φ(Xn, Yn) such thatZn is independent ofXn givenSn. The class

of FSM channels having this property, when there is no feedback, are termed variable noise

channels [10].

The features that we have developed so far are valid for any quasi-symmetric FSM channel.

However, while discussing the feedback capacity of these channels we assume that the channels

also satisfy the following assumption.

Assumption 1:We assume that for a fixedy ∈ Y , the column sum
∑

x fs(Φs(x, y)) is invariant

with s ∈ S:
∑

x fs(Φs(x, y)) =
∑

x fs′(Φs′(x, y)) ∀s, s′ ∈ S, wherefs(Φs(x, y)) = pC(y|x, s).
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In other words, the assumption requires that for each outputvalue y, the |S| column sums

corresponding to outputy in the channel transition matrices are all identical; i.e.,

∑

x∈X

pC(y|x, s1) =
∑

x∈X

pC(y|x, s2) = · · · =
∑

x∈X

pC(y|x, s|S|), ∀y ∈ Y .

However, for a fixeds ∈ S,
∑

x pC(y|x, s) is not necessarily invariant withy ∈ Y , and as such,

a uniform input does not yield a uniform output in general. This requirement will be needed in

our dynamic programming approach which we use to determine the optimal feedback control

action (as will be seen in the next section).4

III. FEEDBACK CAPACITY OF QUASI-SYMMETRIC FSM CHANNELS

In this section, we will show that feedback does not increasethe capacity of quasi-symmetric

FSM channels defined in the previous section. By feedback, wemean that there exists a channel

from the receiver to the transmitter which is noiseless and delayless. Thus at any given time, all

previously received outputs are unambiguously known by thetransmitter and can be used for

encoding the message into the next code symbol.

A feedback code with blocklengthn and rateR consists of a sequence of mappings

ψi : {1, 2, ..., 2nR} × Y i−1 → X

for i = 1, 2, ...n and an associated decoding function

Υ : Yn → {1, 2, ..., 2nR}.

Thus, when the transmitter wants to send messageW ∈ W = {1, 2, ..., 2nR}, whereW

is uniformly distributed overW and is independent ofSn, it sends the codewordXn, where

X1 = ψ1(W ) andXi = ψi(W,Y
i−1), for i = 2, · · · , n. In the case when there is no feedback, the

codewordXn, whereX1 = ψ1(W ) andXi = ψi(W ), for i = 2, · · · , n is transmitted; and thus a

non-feedback code is a special case of a feedback code. For a receivedY n at the channel output,

the receiver uses the decoding function to estimate the transmitted message aŝW = Υ(Y n). A

4Note for our main results to hold, we require the FSM channel as defined via properties (I) and (II) to be quasi-symmetric,

in addition to satisfying Assumption 1.
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decoding error is made when̂W 6= W . The probability of error is given by

P (n)
e =

1

2nR

2nR
∑

k=1

P {Υ(Y n) 6= W |W = k} .

It should also be observed that when communicating with feedback, property (II.b) does not

hold, sinceXi is a function ofY i−1 (in addition toW ); alsoXn andSn are no longer independent

asXi causally depends onZ i−1 and henceSi−1, for i = 1, 2, · · · , n.

The capacity with feedback,CFB, is the supremum of all admissible rates; i.e., rates for which

there exists sequences of feedback codes with asymptotically vanishing probability of error. The

(classical) non-feedback capacity,CNFB, is defined similarly (by replacing feedback codes with

non-feedback codes). Since a non-feedback code is a specialcase of a feedback code, we always

haveCFB ≥ CNFB.

The main result of this work is as follows.

Theorem 1:The feedback capacity of a quasi-symmetric FSM channel[X ,Y ,S, PS, Z, T,Φ]

satisfying Assumption 1 is given by

CFB = H(Ỹ ) −H(Z)

whereH(Ỹ ) is the entropy rate of the output process{Ỹi} driven by an i.u.d. input andH(Z)

is the entropy rate of the channel’s noise (hidden Markovian) process{Zi}∞i=1.

We devote the remainder of the section to prove this theorem and deduce that feedback does

not help increasing the capacity of quasi-symmetric FSM channels satisfying Assumption 1.

From Fano’s inequality, we have

H(W |Yn) ≤ hb(Pe
(n)) + Pe

(n) log2(2
nR − 1)

≤ 1 + Pe
(n)nR

where the first inequality holds sincehb(P
(n)
e ) ≤ 1, wherehb(·) is the binary entropy function.

SinceW is uniformly distributed,

nR = H(W )

= H(W |Y n) + I(W ;Y n)

≤ 1 + Pe
(n)nR + I(W ;Y n)
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whereR is any admissible rate. Dividing both sides byn and taking thelim inf yields

CFB ≤ lim inf
n→∞

sup
{ψi}

n
i=1

1

n
I(W ;Y n). (9)

For every coding policy with feedback{ψi, 1 ≤ i ≤ n}, there are induced maps{ηi, 1 ≤ i ≤ n}

such that

ηi : X i−1 ×Y i−1 → P(X ),

with

ηi(x
i−1, yi−1) =

(
βi(x(1)), βi(x(2)), · · · , βi(x(k))

)

and

βi(x(j)) =
∑

w∈W

P (w|xi−1, yi−1)1{x(j)=ψi(w,yi−1)}

for j = 1, 2, · · · , k, whereX = {x(1), x(2), · · · , x(k)} with k = |X |, 1{·} denotes the indicator

function andP(X ) denotes the space of probability distributions onX . Every ηi can also be

identified by the collection of control actions at timei:

Di
△
= {P (xi|x

i−1, yi−1) : xi−1 ∈ X i−1, yi−1 ∈ Y i−1}.

In view of this discussion, following [15] (see also [16], [26]), we have

lim inf
n→∞

sup
{ψi}

n
i=1

1

n
I(W ;Y n) = lim inf

n→∞
sup

{ψi}
n
i=1

1

n

n∑

i=1

[
H(Yi|Y

i−1) −H(Yi|W,Y
i−1)

]

= lim inf
n→∞

sup
{ψi}

n
i=1

1

n

n∑

i=1

[
H(Yi|Y

i−1) −H(Yi|W,Y
i−1, X i)

]

= lim inf
n→∞

sup
{ψi}

n
i=1

1

n

n∑

i=1

[
H(Yi|Y

i−1) −H(Yi|Y
i−1, X i)

]
(10)

≤ lim inf
n→∞

sup
{Di}

n
i=1

1

n

n∑

i=1

[
H(Yi|Y

i−1) −H(Yi|Y
i−1, X i)

]
(11)

where (10) is shown in Appendix I. Note that the right-hand side of (11) is the directed

information whose supremum has been shown to be the feedbackcapacity under information

stability conditions [15].

Now, let us consider the following equation

sup
{Di}

n
i=1

1

n

n∑

i=1

[
H(Yi|Y

i−1) −H(Yi|Y
i−1, X i)

]
. (12)
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We next establish three Lemmas in order to prove the main contribution of the paper. In the

first Lemma, we show that the termH(Yi|X
i, Y i−1) is equal toH(Zi|Z

i−1), and in the other

two Lemmas we show that
∑n

i=1H(Yi|Y
i−1) is maximized by uniform feedback control actions

{P (xi|x
i−1, yi−1)}ni=1.

Lemma 2:The quasi-symmetric FSM channel satisfies

H(Yi|X
i, Y i−1) = H(Zi|Z

i−1), ∀i = 1, · · · , n.

The proof of the above lemma is given in Appendix II.

We next show that all of the conditional output entropiesH(Yi|Y
i−1) in (12) are maximized

by uniform feedback control actions. We solve this problem using dynamic programming [27].

Specifically, we recast the problem of maximizing the sum of conditional output entropies over

all feedback control actions, using dynamic programming. The optimization problem can be

written as:

max
{D1,··· ,Dn}

{H(Yn|Y
n−1) +H(Yn−1|Y

n−2) + · · ·+H(Y1)}. (13)

Let

Vi
(
P (yi−1),D1, · · · ,Di−1

)
= max

Di

[
H(Yi|Y

i−1) + Vi+1

(
P (yi),D1, · · · ,Di

) ]
,

whereVn+1 (P (yn),D1, · · · ,Dn) = 0 and theVi (P (yi−1),D1, · · · ,Di−1) terms are explicitly

given for i = 1, · · · , n as follows:

Vn
(
P (yn−1),D1, · · · ,Dn−1

)
= max

Dn

H(Yn|Y
n−1)

Vn−1

(
P (yn−2),D1, · · · ,Dn−2

)
= max

Dn−1

{

H(Yn−1|Y
n−2) + max

Dn

{
H(Yn|Y

n−1)
}
}

Vn−2

(
P (yn−3),D1, · · · ,Dn−3

)
= max

Dn−2

{

H(Yn−2|Y
n−3) + max

Dn−1

{
H(Yn−1|Y

n−2)

+ max
Dn

{
H(Yn|Y

n−1)
}
}}

...

V1 = max
D1

{

H(Y1) + · · ·+ max
Dn−1

{
H(Yn−1|Y

n−2)

+ max
Dn

{
H(Yn|Y

n−1)
}
· · ·

}}

.(14)

Here,Vi+1 (P (yi),D1, · · · ,Di) denotes the reward-to-go at timei, which is the future reward

generated by the control action at timei.
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Thus (13) is given byV1 in (14), which indicates that the optimization problem is nested and

dynamic. It is nested since the actions and the action outcomes, that is the realizations of the

channel inputs and outputs, are available in future time stages. It is dynamic, since the control

actions applied at timek affects the future reward value realizations at time stagesi > k. Thus

an optimal selection of the actions, should maximize both the current rewardH(Yi|Y
i−1) and

the reward-to-goVi+1 (P (yi),D1, · · · ,Di) (see (14)).

Therefore, the optimization problem turns out to be finding the best induced policies{ηi, 1 ≤

i ≤ n}; that is the best collection of functions used to generate the set of control actions

{Di, 1 ≤ i ≤ n} which achieveV1. We next show that the optimal set of control actions

achievingV1 is composed of uniform input distributions fori = 1, · · · , n. Toward this goal,

we find a condition such that the control actions taken at times (i− 1), · · · , 1 do not affect the

reward value attained at timei, when the control action at timei is uniform. Specifically, we find

that a sufficient condition to manage this problem is requiring
∑

x fs(Φs(x, y)) to be invariant

with s ∈ S, i.e., Assumption 1 . This will be explicitly shown in Lemma 4. We first have the

following.

Lemma 3:For the quasi-symmetric FSM channel, each conditional output entropyH(Yi|Y
i−1),

i = 1, · · · , n in (12), given the past sets of control actionsD1,D2, · · · ,Di−1, is maximized by

uniform feedback control actions:

D⋆
i

△
= argmax

Di

H(Yi|Y
i−1)

=

{

P (xi|x
i−1, yi−1) =

1

|X |
, ∀xi−1 ∈ X i−1, ∀yi−1 ∈ Y i−1

}

(15)

for all xi ∈ X and for all i = 1, · · · , n.

The proof of the above lemma is provided in Appendix III. Withthis Lemma, we have shown

that for eachi, H(Yi|Y
i−1) is maximized by the uniform input distribution. However, this is

not sufficient to conclude that the optimal set of control actions attainingV1, i.e., the optimal

set of control actions maximizing
∑n

i=1H(Yi|Y
i−1), consists of a sequence of uniform input

distributions fori = 1, · · · , n. This is because Lemma 3 only maximizes the current conditional

entropy via a uniform input (that is it is optimal in a myopic sense); however, it is still possible

that a non-uniform input might result in a higher value function through the rewards-to-go. Let

us now look atP (yi|y
i−1) when we apply a uniform distribution at timei (current time). We
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obtain using (23) that

P (yi|y
i−1) =

∑

xi,xi−1

∑

si,si−1

pC(yi|xi, si)P (xi|x
i−1, yi−1)P (si|s

i−1)P (xi−1, si−1|yi−1)

(i)
=

1

|X |

∑

xi,xi−1

∑

si,si−1

pC(yi|xi, si)P (si|s
i−1)P (xi−1, si−1|yi−1)

=
1

|X |

∑

xi

∑

si

∑

si−1

pC(yi|xi, si)P (si|s
i−1)

∑

xi−1

P (xi−1, si−1|yi−1)

=
1

|X |

∑

xi

∑

si

∑

si−1

pC(yi|xi, si)P (si|s
i−1)P (si−1|yi−1)

=
1

|X |

∑

xi

∑

si

pC(yi|xi, si)P (si|y
i−1)

where (i) is valid sinceP (xi|x
i−1, yi−1) is uniform. Note that the dependency on past input

control actions comes throughP (si|y
i−1) which includes transition probabilities between states,

on which we have no control.

Lemma 4:Assume that the feedback control actionP (xi|x
i−1, yi−1), at (current) timei, is

uniform. Then the value of the conditional entropyH(Yi|Y
i−1), at timei, is independent of past

feedback control actions at times(i− 1), · · · , 1 if
∑

x fs(Φs(x, y)) is invariant withs ∈ S (i.e.,

if Assumption 1 holds).

Proof: We have the following:

P (yi|y
i−1) =

1

|X |

∑

xi

∑

si

pC(yi|xi, si)P (si|y
i−1)

=
1

|X |

∑

si

P (si|y
i−1)

∑

xi

pC(yi|xi, si)

=
1

|X |

∑

si

P (si|y
i−1)

∑

xi

fs(Φ(xi, yi)).

︸ ︷︷ ︸

Since the underbraced term is invariant withs, the proof is complete as the final sum will be
1
|X |

∑

xi
fs(Φ(xi, yi)).

We have so far shown thatH(Yi|X
i, Y i−1) = H(Zi|Z

i−1) and that
∑n

i=1H(Yi|Y
i−1) is

maximized by uniform input distributions. With these results in hand, we have thus shown

the following upperbound for the feedback capacity

CFB ≤ lim inf
n→∞

1

n
[H(Ỹ n) −H(Zn)] (16)
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whereH(Ỹ n) is the output entropy when the input is uniform.

Let us now define a Hidden Markov Process (HMP) [28] which we will use while discussing

the ergodicity of the noise and output processes. An HMP is denoted by a quadruple[S, P,Z, T ]

in which [S, P ] is a Markov process andT is the observation matrix defined by (7). The non-

Markov process{Zi}∞i=1 with alphabetZ is called HMP and it is the noisy version of the state

process observed through a DMC determined byT .

Lemma 5:For the quasi-symmetric FSM channel with feedback, the noise process is an HMP

with parameters[S, P,Z, T ].

Proof: To show this result, it suffices to show that

P (zi|si, z
i−1) = P (zi|si).

Since{Si}∞i=1 is Markovian, it directly implies thatP (si|si−1, z
i−1) = P (si|si−1).

Note that

P (zi|si, z
i−1) =

∑

xi−1

∑

{(xi,yi):zi=Φ(xi,yi)}

P (yi, xi, x
i−1|si, z

i−1)

(i)
=

∑

xi−1

P (xi−1|si, z
i−1)

∑

{(xi,yi):zi=Φ(xi,yi)}

pC(yi|xi, si)P (xi|x
i−1, si, z

i−1)

(ii)
=

∑

xi−1

P (xi−1|si, z
i−1)

∑

{(xi,yi):zi=Φ(xi,yi)}

fsi
(Φ(xi, yi))P (xi|x

i−1, zi−1)

=
∑

xi−1

P (xi−1|si, z
i−1)fsi

(zi)




∑

{(xi,yi):zi=Φ(xi,yi)}

P (xi|x
i−1, zi−1)





(iii)
= fsi

(zi)
(iv)
= P (zi|si) (17)

where (i) follows from (2) of property (II) and the fact thatyi−1 = ν(xi−1, zi−1) is one-to-

one with zi−1 given xi−1, (ii) is valid by (5) and by the fact that feedback input depends on

(xi−1, zi−1), (iii) is valid since eachzi is satisfied by|X | number of(xi, yi) pairs where each

xi is different and(iv) follows from (5), (6) and (8).

It should also be noted that, the output process,{Ỹi}
∞
i=1, for an i.u.d. input{Xi}

∞
i=1 is also an
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HMP since

P (ỹi|si, ỹ
i−1) =

∑

xi

P (ỹi, xi|si, ỹ
i−1)

(a)
=

∑

xi

pC(ỹi|xi, si)P (xi|si, ỹ
i−1)

(b)
=

∑

xi

pC(ỹi|xi, si)P (xi|si) = P (ỹi|si)

where(a) is due to (2) and(b) is due to the fact thatXi is uniformly distributed. The channel

associated with the HMP is memoryless and as such it is stationary. Therefore, since the state

process is stationary and ergodic both the output and noise processes are stationary and ergodic;

this is stated in the following lemma.

Lemma 6:For the quasi-symmetric FSM channel[X ,Y ,S, PS, Z, T,Φ], the noise process is

stationary ergodic. Also the output process is stationary ergodic under an i.u.d. input.

We can now complete the proof of Theorem 1 and conclude that feedback does not increase

capacity for the class of quasi-symmetric FSM channels satisfying Assumption 1.

Proof of Theorem 1: With (16) we already have a converse for the feedback capacity. We

need to show that this bound is achievable. We first note that by Lemma 6 the noise and output

processes are stationary which imply that

CFB ≤ lim inf
n→∞

sup
{P (xi|xi−1,yi−1)}n

i=1

1

n

n∑

i=1

H(Yi|Y
i−1) −H(Yi|Y

i−1, X i)

= lim inf
n→∞

1

n
[H(Ỹ n) −H(Zn)]

= lim
n→∞

1

n
[H(Ỹ n) −H(Zn)] = H(Ỹ ) −H(Z). (18)

It is sufficient to show that the bound in (18) is achievable. We now remark that there exists

a coding policy which achieves this bound. Note that since the noise process is stationary and

ergodic, it can be shown thatH(Ỹ ) − H(Z) is an admissible rate (e.g. see [15, Theorem 5.3]

and [29, Theorem 2]). Thus,

CFB ≥ lim
n→∞

1

n
[H(Ỹ n) −H(Zn)] = H(Ỹ ) −H(Z)

and this completes the proof.

Corollary 1: Feedback does not increase capacity of quasi-symmetric FSMchannels satisfying

Assumption 1 (i.e., for which
∑

x fs(Φs(x, y)) is invariant withs ∈ S).
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Proof: The result follows by noting that a non-feedback code is a special case of a feedback

code and that the non-feedback capacity is also achieved by uniform input distributions. This

can be shown more explicitly as follows

CFB = lim
n→∞

1

n
H(Ỹ n) − lim

n→∞

1

n
H(Zn)

(i)
= lim

n→∞

1

n
H(Y n)

∣
∣
∣
∣
P (xn)= 1

|X|n

− lim
n→∞

1

n
H(Zn)

≤ lim
n→∞

1

n
sup
P (xn)

I(Xn;Y n) = CNFB

whereCNFB is the non-feedback capacity and(i) is valid since the input process is i.u.d. Finally,

sinceCFB ≥ CNFB, we obtain thatCFB = CNFB.

IV. EXAMPLES OF QUASI-SYMMETRIC FINITE STATE MARKOV CHANNELS

In this section, we present examples of quasi-symmetric FSMchannels which satisfy As-

sumption 1 and hence have identical feedback and non-feedback capacities. We also provide

their feedback capacity expression which, when not given insingle-letter form, can be computed

using existing algorithms (e.g., see [23]) for the computation of entropy rates of HMPs.

A. Gilbert-Elliot Channel (e.g., [3]): One of the widely used FSM channels is the Gilbert-

Elliot channel denoted by[X ,Y ,S,P, C], whereX = Y = S = {0, 1}. The two states are called

”bad” state and ”good” state, respectively, and the state transition matrix is given by:

P =




1 − g g

b 1 − b



 ,

where0 < g < 1, 0 < b < 1 and in either of these two states, the channel is a binary symmetric

channel (BSC) with the following transition matrixes for statess = 0 ands = 1, respectively:

Q0 =




1 − pG pG

pG 1 − pG



 , Q1 =




1 − pB pB

pB 1 − pB



 .

From the above channel transition matrixes, it can be observed that the Gilbert-Elliot channel is

a symmetric FSM channel by Definition 4. Then, there exists a random variableZ = Φ(X, Y )

with alphabetZ = {0, 1} and a functionfs(z) such that,f0(0) = 1 − pG and f0(1) = pG,
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f1(0) = 1 − pB and f0(1) = pB. Therefore, one can define theT [s, z] matrix for this channel

as

T =




1 − pG pG

1 − pB pB



 ,

and we obtain thatΦ(X, Y ) = X⊕Y , where⊕ represents modulo-2 addition, andT [s, z] defined

above. By Corollary 1, feedback does not increase the capacity of the Gilbert-Elliot channel and

it should be noted that this result is a special case of [11] and [13]. Since|X | = 2, the feedback

capacity of the Gilbert-Elliot channel can be found as

CFB = CNFB = 1 −H(Z),

whereH(Z) is the entropy rate of the HMP{Zi}∞i=1 and can be computed as shown in [3]

or [23].

B. Discrete Modulo Additive Channel with Markovian Noise: Consider the discrete channel

with a common alphabetA = {0, 1, . . . , q − 1} for the input, output and noise processes. The

channel is described by the modulo-q additive equationYn = Xn ⊕Zn, for n = 1, 2, 3, . . . , and

Yn, Xn andZn denotes the output, input and noise processes respectively. The noise process,

{Zn}
n=∞
n=1 , is Markovian and it is independent of the input process. It is straightforward to see

that the channel transition matrix for this channel is symmetric for each state, where the state is

given by the previous noise variable:Si = Zi−1. For simplicity, let us assume thatq = 3. Then,

the channel transition matrix at statesi, Qsi, will be as follows:

Qsi =








P (Zi = 0|Zi−1 = si) P (Zi = 1|Zi−1 = si) P (Zi = 2|Zi−1 = si)

P (Zi = 2|Zi−1 = si) P (Zi = 0|Zi−1 = si) P (Zi = 1|Zi−1 = si)

P (Zi = 1|Zi−1 = si) P (Zi = 2|Zi−1 = si) P (Zi = 0|Zi−1 = si)







.

For each state, the channel transition matrix will still be symmetric with the same row permutation

order. Furthermore, it also satisfies Assumption 1 since column sums are always one. Therefore,

the discrete modulo additive channel is a symmetric FSM channel with A = {0, 1, 2} and

Φ(X, Y ) = X ⊕ Y . Hence, by Corollary 1, feedback does not increase the capacity of the

discrete modulo additive channel with Markovian noise. Note that for this channel uniform

input gives uniform output and therefore, feedback capacity of this channel isCFB = CNFB =

log 3−H(Z) = H(Z2|Z1) whereH(Z) = H(Z2|Z1) is the entropy rate of Markov noise{Zi}∞i=1.
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This example can be readily extended for the case ofM th order Markovian noise; in that case the

stateSi is given bySi = (Zi−1, · · · , Zi−M) and the noise entropy rate isH(Z) = H(ZM+1|Z
M).

This result is a special case of [11]. It has been recently extended to finite-state multiple

access channels in [30].

C. A Symmetric Discrete Channel with Markovian Noise: Consider a discrete, not necessarily

additive, channel with Markovian noise [12]. More precisely, consider the channel given by

Yi = f(Xi, Zi) for i = 1, 2, · · · whereXi, Zi and Yi are the input, noise and output of the

channel, respectively, andf : X ×Z → Y is a given function. Assume also that{Xi} and{Zi}

are independent from each other and the channel satisfies thefollowing properties.5

1. |X | = |Y| = |Z| = q.

2. Given the inputx, f(x, .) is one-to-one; i.e.,∀x ∈ X f(x, z) = f(x, z̄) ⇒ z = z̄.

3. f−1 exists such thatz = f−1(x, y) and giveny, f−1(., y) is one-to-one; i.e.,∀y ∈ Y f−1(x, y) =

f−1(x̄, y) ⇒ x = x̄.

We note that a channel satisfying these conditions has a symmetric channel transition matrix

for each state, where the state is given by the previous noisevariable:Si = Zi−1. Therefore,

this channel is a symmetric FSM channel with the same permutation order determined by the

functionf . It also satisfies Assumption 1 as the column sums are one for each state. Therefore, by

Corollary 1, feedback does not increase the capacity of these channels. This result is first shown

in [12], where the noise process may be non-Markovian and non-ergodic in general. Similar

to the previous example, uniform input yields uniform output for this channel and therefore,

feedback capacity of this channel isCFB = CNFB = log q −H(Z) = log q −H(Z2|Z1). As in

the previous example, this example can be extended for the case ofM th order Markov noise.

We next present two different channels which illustrate theresult of the paper when the column

sums for each state are different than one.

D. Binary Channel with Erasures, Errors and Markovian State: Consider the two-state

channel given byX = {0, 1}, S = {s1, s2}, where{Si} is Markovian,Y = {0, E, 1} with the

5In [12], it is stated that|X | = |Z| = q. However, following the proof, it can be evidently seen that|Y| = q is also assumed.
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following channel transition matrices

Qs1 =




1 − ε− ξ ξ ε

ε ξ 1 − ε− ξ



 , Qs2 =




1 − ε′ − ξ′ ξ′ ε′

ε′ ξ′ 1 − ε′ − ξ′





where0 < ε, ξ, ε′, ξ′ < 1 are fixed. We first note that this channel is a two-state quasi-symmetric

FSM channel, since we can partitionQs1 andQs2 in two symmetric sub-arrays given by

Q̃s1
Y1

=




1 − ε− ξ ε

ε 1 − ε− ξ



 , Q̃s1
Y2

=




ξ

ξ





and

Q̃s2
Y1

=




1 − ε′ − ξ′ ε′

ε′ 1 − ε′ − ξ′



 , Q̃s2
Y2

=




ξ′

ξ′





respectively, whereY1 = {0, 1} andY1 = {E} with identical permutation order between states.

For this channel, if we setξ = ξ′, then we automatically satisfy Assumption 1 since the column

sums in bothQs1 andQs2 will be 1 − ξ, 2ξ and 1 − ξ respectively. In other words, although

the error probabilities are different across the states (ǫ 6= ǫ′ in general), we still have identical

column sums. Therefore, by Corollary 1, feedback does not increase the capacity of this channel.

Furthermore, since both the output and noise process are HMPs the value of feedback capacity

can be computed using [23].

E. Non-Binary Noise Discrete Channel with Markovian Noise: We now present a binary-

input 2q-ary output communication channel with memory which was recently introduced in [31]

(in the absence of feedback) with the objective of capturingboth the statistical memory and

the soft-decision information of time-correlated fading channels modulated via binary phase-

shift keying (BPSK) and coherently demodulated with an output quantizer of resolutionq. This

channel, which we refer to as the non-binary noise channel (NBNDC), has a straightforward

structure and useful properties and it can help in the designof coding/decoding schemes for

soft-decision demodulated channels with memory that result in superior performance over coding

systems that ignore the channel’s memory (via interleaving) and/or soft-decision information (via

hard demodulation) [31]. The NBNDC model is explicitly described by the following equation

Yk = (2q − 1)Xk + (−1)XkZk (19)

for k = 1, 2, · · · , whereXk ∈ X = {0, 1} is the input,Yk, Zk ∈ Z = Y = {0, 1, · · · , 2q−1} is the

output and the noise processes, respectively. The noise andinput processes are independent from
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each other and we assume that the noise process is Markovian (anM th order Markov process

can also be considered as examined in [31] for modeling the underlying fading channel). For the

sake of simplicity, we consider the NBNDC channel withq = 2. Let Λ = [λsi,j]i=1,··· ,4;j=1,··· ,4,

whereλsi,j
△
=P (Zi = j|Zi−1 = si), denotes the transition probability matrix of the noise process.

Then, with the stateSi = Zi−1, the channel transition matrix at statesi, Qsi, is given by

Qsi =




λsi,0 λsi,1 λsi,2 λsi,3

λsi,3 λsi,2 λsi,1 λsi,0



 .

Note that NBNDC is a quasi-symmetric FSM channel but it does not necessarily satisfy As-

sumption 1 . However, it can be easily shown that for anyΛ satisfying that both
∑

j=0,3 λi,j

and
∑

j=1,2 λi,j do not change with differenti values, Assumption 1 is satisfied; therefore,

by Corollary 1, feedback does not increase capacity of such NBNDC channels. Furthermore,

the non-feedback capacity of NBNDC is given in [31] asCNFB = 1 + H(W ) − H(Z2|Z1),

whereH(W ) is the entropy rate of the process{Wk} which is defined on the alphabetW =

{0, 1, · · · , 2q−1 − 1} with Wk = min{Zk, 2
q − 1 − Zk}. Therefore, ifΛ satisfies the condition

that both
∑

j=0,3 λi,j and
∑

j=1,2 λi,j do not change with differenti values, we then have

CFB = CNFB = 1 + H(W ) − H(Z2|Z1). Note that{Wk} is an HMP and as suchH(W )

can be computed as shown in [23].

There is one more quasi-symmetric FSM channel that needs further attention. We now in-

vestigate how its channel properties directly satisfy the condition that the previous feedback

control actions do not affect the current value of the conditional output entropy. In other words,

the example below satisfies Lemma 4 without having the condition that the column sums are

identical among different states, (i.e., it does not satisfy Assumption 1).

F. Simplified Binary Erasure Channel with Markovian State: Consider the following binary

erasure channel [21], which is a simplified (special) case ofthe erasure channel of Example

D and has been used to model packet losses in a packet communication network, such as the

Internet. The channel has binary input and ternary output;X = {0, 1},Y = {0, E, 1}. Let Si

denote the state of the erasure channel when the packeti arrives such that whenSi = 1, the

packet is erased, and whenSi = 0, the packet gets through. For a given input, the channel output

is identical to the input if there is no erasure, and it is equal to the erasure symbol (E) if an
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erasure occurs. Therefore, the channel transition matrices at states0, 1 will be as follows

Q0 =




1 0 0

0 0 1



 and Q1 =




0 1 0

0 1 0



 .

This channel can be considered as a special case of deletion channel in which the erased packet

is assumed to be known by the decoder. Therefore, in an erasure channel, the receiver has also

the side information about the state. In [21], this channel is considered as a finite buffer queue,

which can be viewed as an FSM channel, and the state of the finite buffer channel is determined

by the state of the buffer and it is shown that feedback does not increase the capacity of this

channel. We herein note that the approach presented in the paper gives the same result.

Proposition 1: Feedback does not increase capacity of simplified binary erasure channel with

Markovian state and the feedback capacity is achieved by an i.u.d. input.

Proof: We first note that since the channel is quasi-symmetric for each state, the conditional

output entropy is maximized by uniform input distributions. What we further need to show is the

independence of the value attained byH(Yi|Y
i−1 = yi−1) from previous input control actions.

In particular, we need to show thatP (si|y
i−1) is independent of past input control actions (see

Lemma 4). It should be noted that

P (si|y
i−1) =

∑

si−1

P (si|si−1)P (si−1|y
i−1).

Thus, givenyi−1, si−1 is deterministic and independent ofxi−1. Integrating this fact in our

approach proves the desired result.

It has been shown that [21, Proposition 3.1] the capacity of this channel, with and without

feedback, is given byCFB = CNFB = (1 − pe) wherepe is the erasure probability.

This particular example has the benefit of learning the statedeterministically by only observing

the output. We should remark that availability of both the state information and output feedback

has also been considered within different setups in some other works and the situations for which

feedback does not help increasing capacity are determined (see [17, Theorem 19] and [20]).

V. CONCLUSION

In this work, we presented a class of symmetric channels which encapsulates a variety of

discrete channels with memory. Motivated by several results in the literature, we established a

class of symmetric finite-state Markovian channels for which feedback does not increase their
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capacity. We showed this result by first reformulating the optimization problem in terms of

dynamic programming and then proving that, under feedback,the capacity achieving distribution

is uniform. An important observation should be highlightedagain: when feedback exists, one can

learn the channel via the past control actions and as such mayapply a nonuniform distribution

which will result in a higher output entropy and capacity. Wepresent a sufficient condition,

Assumption 1, under which it is still possible to learn the channel via these past control actions;

however, this learning does not affect the optimal distribution. It is also worth observing that even

though we have emphasized finite-state channels with Markovian state (i.e., FSM channels) due

to their wide use in the literature, our result also holds when the state process is not Markovian

but still stationary ergodic.6 Finally, although this result covers a large class of discrete channels

with memory, we believe that by adopting the approach of thiswork, it is possible to show

a similar result for a further general class of both symmetric and asymmetric channels whose

feedback capacity is achieved by an i.i.d. input, both in thesingle user and multiple user settings.
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APPENDIX I

PROOF OFEQUATION (10)

Proof: We need to show thatP (yi|w, x
i, yi−1) = P (yi|x

i, yi−1) for i = 1, 2, · · · , n. Note

that

P (yi|w, xi, x
i−1, yi−1)

(a)
=

∑

si

pC(yi|xi, si)
P (xi|x

i−1, yi−1)P (si, w, x
i−1, yi−1)

P (xi|xi−1, yi−1)P (w, xi−1, yi−1)

=
∑

si

pC(yi|xi, si)P (si|w, x
i−1, yi−1)

(b)
=

∑

si

pC(yi|xi, si)P (si|x
i−1, yi−1)

= P (yi|x
i, yi−1)

where(a) follows from property (II), and(b) is valid since

P (si|w, x
i−1, yi−1)

(i)
=

∑

si−1

P (si|si−1)P (si−1|w, x
i−1, yi−1)

(ii)
=

∑

si−1

P (si|si−1)P (si−1|x
i−1, yi−1)

= P (si|x
i−1, yi−1)

where(i) holds by the channel Markovian property (I). Furthermore,(ii) can be shown recur-

sively as follows:

P (s1|w, x1, y1) =
P (s1, w, x1, y1)

∑

s1
P (s1, w, x1, y1)

=
P (y1|x1, s1)P (x1, s1, w)

∑

s1
P (y1|x1, s1)P (x1, s1, w)

(iii)
=

P (y1|x1, s1)P (s1)P (x1, w)
∑

s1
P (y1|x1, s1)P (s1)P (x1, w)

=
P (y1|x1, s1)P (s1|x1)

∑

s1
P (y1|x1, s1)P (s1|x1)

= P (s1|x1, y1) (20)
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where(iii) is valid sinces1 is independent ofw andx1 (asx1 is only a function ofw). Similarly,

P (s2|w, x
2, y2) =

P (s2, w, x
2, y2)

∑

s2
P (s2, w, x2, y2)

=
P (y2|x2, s2)P (x1, x2, y1, s2, w)

∑

s2
P (y2|x2, s2)P (x1, x2, y1, s2, w)

(iv)
=

P (y2|x2, s2)P (x2|x1, y1, w)P (s2, x1, y1, w)
∑

s2
P (y2|x2, s2)P (x2|x1, y1, w)P (s2, x1, y1, w)

=
P (y2|x2, s2)P (s2|x1, y1, w)P (x1, y1, w)

∑

s2
P (y2|x2, s2)P (s2|x1, y1, w)P (x1, y1, w)

(v)
=

P (y2|x2, s2)
∑

s1
P (s2|s1)P (s1|x1, y1)

∑

s2
P (y2|x2, s2)

∑

s1
P (s2|s1)P (s1|x1, y1)

= P (s2|x
2, y2)

where(iv) is valid sincex2 is a function ofx1, y1 andw and (v) is due to (20). Using these

steps recursively fori = 1, 2, · · · , n yields (ii) and completes the proof.

APPENDIX II

PROOF OFLEMMA 2

Proof: The proof is composed of two steps. In the first step we show that H(Yi|X
i, Y i−1) =

H(Zi|Z
i−1, X i). Following this, we show thatZi → Z i−1 → X i form a Markov chain. Observe

that

P (yi|x
i, yi−1)

(i)
= P (zi|x

i, yi−1)
(ii)
= P (zi|x

i, yi−1, zi−1)
(iii)
= P (zi|x

i, zi−1)

where (i) and (ii) is valid sincezi = Φ(xi, yi) and (iii) is valid sinceyi = ν(xi, zi) where

ν(x, ·) = Φ−1(x, ·). This completes the first step. We next show thatZi → Z i−1 → X i form a

Markov chain. Note that

P (zi|x
i, zi−1) =

P (zi, x
i, zi−1)

P (xi, zi−1)

(iv)
=

P (xi|x
i−1, zi−1)P (xi−1, zi, z

i−1)

P (xi|xi−1, zi−1)P (xi−1, zi−1)
= P (zi|x

i−1, zi−1)

where(iv) is valid since the feedback input depends (causally) only on(xi−1, yi−1), or equiva-

lently on (xi−1, zi−1) . Similarly, we get

P (zi|x
i−1, zi−1) =

P (xi−1|x
i−2, zi−2)P (xi−2, zi, z

i−1)

P (xi−1|xi−2, zi−2)P (xi−2, zi−1)
= P (zi|x

i−2, zi−1).
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Using these steps recursively, we get

P (zi|x
i−2, zi−1) =

P (zi, x
i−2, zi−1)

P (xi−2, zi−1)

(v)
=

P (xi−2|x
i−3, zi−3)P (zi, x

i−3, zi−1)

P (xi−2|xi−3, zi−3)P (xi−3, zi−1)

...

(vi)
=

P (x2|x1, z1)P (zi, x1, z
i−1)

P (x2|x1, z1)P (x1, zi−1)

(vii)
=

P (x1)P (zi, z
i−1)

P (x1)P (zi−1)
= P (zi|z

i−1)

where(v), (vi) and (vii) are valid due to the same reasoning above.

APPENDIX III

PROOF OFLEMMA 3

Proof: Let us first write the conditional output entropyH(Yi|Y
i−1) as

H(Yi|Y
i−1) =

∑

yi−1

P (yi−1)H(Yi|Y
i−1 = yi−1) (21)

where

H(Yi|Y
i−1 = yi−1) = −

∑

yi

P (yi|y
i−1) logP (yi|y

i−1). (22)

To show thatH(Yi|Y
i−1) in (21) is maximized by a uniform input distribution, it is enough to

show that such a uniform distribution maximizes each of theH(Yi|Y
i−1 = yi−1) terms.

We now expandP (yi|y
i−1) as follows

P (yi|y
i−1) =

∑

xi

∑

xi−1

∑

si

∑

si−1

P (yi, xi, si, x
i−1, si−1|yi−1)

=
∑

xi,xi−1

∑

si,si−1

P (yi|xi, si, x
i−1, si−1, yi−1)P (xi, si, x

i−1, si−1|yi−1)

(i)
=

∑

xi,xi−1

∑

si,si−1

pC(yi|xi, si)P (xi, si, x
i−1, si−1|yi−1)

=
∑

xi,xi−1

∑

si,si−1

pC(yi|xi, si)P (xi, x
i−1, si−1|yi−1)P (si|xi, x

i−1, si−1, yi−1)

(ii)
=

∑

xi,xi−1

∑

si,si−1

pC(yi|xi, si)P (si|s
i−1)P (xi|x

i−1, si−1, yi−1)P (xi−1, si−1|yi−1)

(iii)
=

∑

xi,xi−1

∑

si,si−1

pC(yi|xi, si)P (xi|x
i−1, yi−1)P (si|s

i−1)P (xi−1, si−1|yi−1) (23)
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where(i) follows by (2), (ii) is valid due to the property (I) and finally(iii) is due to the fact

that the feedback input depends only on(xi−1, yi−1).

The key observation in equation (23) is the existence of an equivalent channel. More specifi-

cally,
∑

si
P (yi|xi, si)P (si|s

i−1) actually represents a quasi-symmetric channel transitionmatrix

such that its entries are determined by the entries of the channel transition matrices of each state

and the transition distribution of state probabilities. Tocontinue, by (5),

P (yi|y
i−1) =

∑

xi,xi−1

∑

si,si−1

fsi
(Φsi

(xi, yi))P (si|s
i−1)P (xi|x

i−1, yi−1)P (xi−1, si−1|yi−1).(24)

By definition of quasi-symmetry, there existsm weakly symmetric sub-arrays in the channel

transition matrix at each statesi. Among these sub-arrays, let us pick̃Qsi

j of size |X | × |Yj|.

(We assume that the partition ofY is identical across all states.) Letyjt, for t = 1, . . . , |Yj|,

denote the output values in sub-arrayj. Therefore, we obtain

P (yjt|y
i−1) =

∑

xi,xi−1,si,si−1

fsi
(Φsi

(xi, yjt))P (si|s
i−1)P (xi|x

i−1, yi−1)P (xi−1, si−1|yi−1). (25)

We desire to maximize (21) over the feedback control actionsP (Xi|X
i−1, Y i−1). To be more

precise in the following lines of equations, forX = {x(1), . . . , x(k)} with k = |X |, let κ(i−1) =

P (si|s
i−1), χ(i− 1) = P (xi−1, si−1|yi−1) and denote the feedback control actions by

P (Xi = x(l)|x
i−1, yi−1) = ϕi(x(l)), for l = 1, . . . , k. (26)

Then, fort = 1, . . . , |Yj| we can write

P (yj1|y
i−1) =

∑

si−1,xi−1

χ(i− 1)
∑

si

κ(i− 1)
{
ϕi(x(1))fsi

(Φsi
(x(1), yj1)) + · · · + ϕi(x(k))fsi

(Φsi
(x(k), yj1))

}
.

P (yj2|y
i−1) =

∑

si−1,xi−1

χ(i− 1)
∑

si

κ(i− 1)
{
ϕi(x(1))fsi

(Φsi
(x(1), yj2)) + · · ·+ ϕi(x(k))fsi

(Φsi
(x(k), yj2))

}

P (yj|Yj|
|yi−1) =

∑

si−1,xi−1

χ(i− 1)
∑

si

κ(i− 1)
{

ϕi(x(1))fsi
(Φsi

(x(1), yj|Yj|
)) + · · ·+ ϕi(x(k))fsi

(Φsi
(x(k), yj|Yj|

))
}

.
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It should be noted that, eachfsi
(Φsi

(x(l), yjt)) in the equations above corresponds to an entry

in the channel transition matrix̃Qsi at statesi. We also know that, the rows of the sub-array

Q̃si

j are permutations of each other. In other words, eachfsi
(Φsi

(x(l), yjt)) value appears exactly

k times (once in each row) in the sub-arrayQsi

j . Thus, the feedback control actionϕi(x(l)) is

multiplied by a differentfsi
(Φsi

(x(l), yjt)) value for eacht = 1, . . . , |Yj| in theP (yjt|y
i−1) given

above. Therefore,
∑|Yj |

t=1 P (Yi = yjt|y
i−1) is equal to

|Yj |∑

t=1

P (Yi = yjt|y
i−1) =

∑

si−1,xi−1

χ(i− 1)
∑

si

κ(i− 1)
k∑

l=1

ϕi(x(l))

|Yj |∑

t=1

fsi
(Φsi

(x(l), yjt))

=
∑

si−1,xi−1

χ(i− 1)
∑

si

κ(i− 1)
k∑

l=1

ϕi(x(l))

|Yj |∑

t=1

pc(yjt|x(l), si) (27)

=
∑

si−1,xi−1

χ(i− 1)
∑

si

κ(i− 1)

|Yj |∑

t=1

pc(yjt|x(l), si) (28)

where (27) follows sincefs(Φs(x, y)) = pC(y|x, s) and (28) is valid since each rows in the

channel transition matrix are permutations of each other and as such
∑|Yj |

t=1 pc(yjt|x(l), si) is

identical for eachx(l), and finally noting that
∑k

l=1 ϕi(x(l)) = 1 verifies (28). The critical

observation is that the value attained by (28) is independent of the feedback control actions.

Similarly, for all the otherm− 1 sub-arrays, their conditional output sums will be independent

of the feedback control actions. Let us denote these sums byΩ1, . . . ,Ωm. More specifically

for sub-arrayj, let Ωj =
∑|Yj |

t=1 P (Yi = yit|y
i−1). Then the maximization of equation (22) now

becomes,

argmax
Ωj,t

−
m∑

j=1

|Yj |∑

t=1

Ωj,t log Ωj,t (29)

where
∑m

j=1

∑|Yj |
t=1 Ωj,t = 1 and Ωj,t = P (Yi = yjt|y

i−1), t = 1, . . . , |Yj|, j = 1, . . . , m. For

each sub-arrayj, we need to find theΩj,t values that maximize
∑|Yj |

t=1 Ωj,t log Ωj,t. By the log-sum

inequality, we have that

−

|Yj |∑

t=1

Ωj,t log Ωj,t ≤ −

|Yj |∑

t=1

Ωj,t log

∑|Yj |
t=1 Ωj,t

|Yj|
(30)

with equality if and only if

Ωj,t = Ωs,w ∀s, w ∈ {1, . . . , |Yj|}. (31)
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In other words, for the sub-arrayj, the conditional entropy is maximized if and only if the

conditional output probabilities in this sub-array are identical. Since this fact is valid for the

other sub-arrays, to maximize the conditional entropy we need to (31) to be valid for all sub-

arrays.

At this point, we have shown that the conditional output entropy is maximized if the conditional

output probabilities are identical for each sub-array. In order to complete this step, we have to

show that this is achieved by uniform input distributions.

Now, let us consider two conditional output probabilities,P (Yi = yjs|y
i−1) and P (Yi =

yjt|y
i−1), in sub-arrayj. ThenP (Yi = yjs|y

i−1) = P (Yi = yjt|y
i−1) is implied by

k∑

l=1

ϕi(x(l))fsi
(Φ(x(l), yjs)) =

k∑

l=1

ϕi(x(l))fsi
(Φ(x(l), yjt)). (32)

However, for a fixed output
∑k

l=1 fsi
(Φ(x(l), yjs)) is equal to the sum of the column corresponding

to outputyjs (similarly for yjt) and since sub-arrayj is weakly symmetric, the column sums

are identical. Therefore, (32) can be achieved ifϕi(x(l)) = ϕi(x(m)) = 1
k
∀ l,m = 1, . . . , k, by

which we getP (Yi = yjs|y
i−1) = P (Yi = yjt|y

i−1) = 1
|X |

∑k

l=1 fsi
(Φ(x(l), yjs)). Thus for other

sub-arrays since they are also weakly-symmetric, the uniform feedback control action will also

satisfy the equivalence of conditional output probabilities.
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