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Abstract

We consider the feedback capacity of a class of symmetritefsiate Markov channels. Here,
symmetry (termed “quasi-symmetry”) is defined as a germdliversion of the symmetry defined for
discrete memoryless channels. The symmetry yields thdeexis of a hidden Markov noise process
that depends on the channel’s state process and facilifateshannel description as a function of
input and noise, where the function satisfies a desirablerfibility property. We show that feedback
does not increase capacity for such class of finite-statar@ia and that both their non-feedback and
feedback capacities are achieved by an independent ammrmihjfdistributed (i.u.d.) input. As a result,
the channel capacity is explicitly given as a difference ofpoit and noise entropy rates, where the

output is driven by the i.u.d. input.

Index Terms

Channel capacity, channels with memory, finite-state Markbannels, dynamic programming,

feedback capacity.

I. INTRODUCTION AND LITERATURE REVIEW

Although feedback does not increase the capacity of disaretmoryless channels (DMCSs)

[1], it generally increases the capacity of channels witthmmosy. In this work, we study the
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feedback capacity of a class of channels with memory and shaixfeedback does not increase
their capacity. More explicitly, we consider finite-stateatov (FSM) channels [2], [3], [4]
which encompass symmetry in their channel transition mestri

FSM channels have been widely used to effectively modellegsefading channels (e.g., cf.
[5], [6], [7], [8]). A definition of symmetric finite-state M&ov channels is given in [9] and
[10] and capacity without feedback is calculated where ghewn that the capacity-achieving
distribution is uniform and that this distribution yieldsuaiform output distribution. In [11], it
is shown that feedback does not increase the capacity aketieschannels with modulo additive
noise. It is also shown that for any channel with memory Batig the symmetry conditions
defined in [12], feedback does not increase its capacityei®Bg it has been shown that feedback
does not increase the capacity of the compound GilberbtEdhannel [13], which is a family of
FSM channels. In a related work, the capacity of finite-sitadecomposable channels with side
information at the transmitter is investigated [14]. Intpadar, it is shown that the capacity of
finite-state indecomposable Markovian channels with (nmdadditive noise, where the noise
is a deterministic function of the state, is not increaseth whe availability of side information
at the transmitter. In a more recent work, it has been shoaniths possible to formulate the
computation of feedback capacity as a dynamic programmiobl@m and therefore it can be
solved by using the value iteration algorithm under infotiora stability conditions [15], [16].
In [17], finite-state channels with feedback, where feellbigca time-invariant deterministic
function of the output samples, is considered. It is showat ththe state of the channel is
known both at the encoder and the decoder then feedback a@bescnease capacity. In [18]
and [19], directed information is used to calculate the beett capacity of some classes of FSM
channels. In particular, the channel state is assumed ihtflBe a deterministic function of
the previous state and input; whereas in [19] the channtd gfaassumed to be a deterministic
function of the output. In [20], time varying channels aredeled as FSM channels and their
capacity is studied as a function of the feedback delay asguperfect channel state information
at the receiver. In addition to these results, it has alsa Bbewn that feedback does not increase
the capacity for a binary erasure channel with Markoviateql]. Although not closely related
with our result, an important insight into the use of feedbiaca real time causal coding context
is presented in [22]. In patrticular, it is shown that feedbacuseful in general causal coding

problems of a Markov source over a noisy channel; howeves ot useful if the channel is
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symmetric (as defined in [22]) and memoryless.

Considering the structure in typical communication chémaad the results in the literature
that we presented above, it is worth to look for the most gdneation of symmetry for channels
with memory under which feedback does not increase capatfith this motivation, we study
the feedback capacity of a class of symmetric FSM channdigghave call “quasi-symmetric”
FSM channels, and prove that feedback does not help incitbagecapacity. This result is
shown by demonstrating that for an FSM channel satisfyirgsyymmetry conditions defined
in the paper, its feedback capacity is achieved by an indigenand uniformly distributed
(i.u.d.) input which implies that its non feedback capadgyalso achieved by uniform input
distribution. Along this way, we first show the existence dfidden Markov noise process, due
to the symmetry characteristics of the channel, which idi@mally independent of the input
given the sate. As a result, the FSM channel can be succidefigribed as a function of input
and noise, where the function is an invertible map betweemtiise and output alphabets for a
fixed input. With this fact, the feedback capacity problemiuges to the maximization of entropy
of the output process. In the second step, we show that thigpgnis maximized by a uniform
input distribution. It should be noted that for quasi-synmee=SM channels, uniform inputs do
not necessarily yield uniform outputs; this is a key symmeiroperty used in previous works
for showing that feedback does not increase capacity fonsgtmc channels with memory (e.g.,
[11], [12]). This second step is solved via a dynamic prograng approach which shows that
it is possible to learn the channel via past feedback corctibns (input distributions) that
affect the future input actions by modifying the induced raial that the receiver observes. We
demonstrate that, when the FSM channel satisfies the conditat the column sums of its
channel transition matrices are invariant with respectto state process, it is still possible to
learn the channel via past input actions; however, the @ptinput distribution remains the same
even with this learning step. We also note that our resudirgsicts with [11] and [12] when
the noise process in the latter works is restricted to beiagkiVian, stationary and irreducible.
Furthermore, a by-product contribution of this work is thia¢ channel capacity is given as a
difference of the output and noise entropy rates, where tity|gud is driven by the i.u.d. input and
is also hidden Markovian. Thus the capacity can be easiljuated using existing algorithms
for the computation of entropy and information rates in liddlarkov channels (e.g., see [23]).

Finally, although our result covers a large class of digcdtannels with memory, we believe
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that by adopting the approach of this work, it is possible hove a similar result for more
general classes of both symmetric channels and asymmétimels whose feedback capacity
is achieved by an independent and identically distribuied.j input process, both in the single
user and multiple user settings.

The paper is organized as follows. We first give the definitcdnhquasi-symmetrid=SM
channels. This will be followed by a section on their capauitth feedback. Next, we present
examples of channels that satisfy the quasi-symmetry tondand hence conclude that their
capacity does not increase with feedback. Finally, we eedotiper with concluding remarks.

Throughout the paper, we will use the following notationgiaddom variable will be denoted
by an upper case letteX and its particular realization by a lower case lettelThe sequence
of random variables(;, X, ..., X,, will be denoted byX™ and so its realization will be™. We
will represent a finite-state Markov source by a pdr P], whereS is the state set an® is
the state transition probability matrix. We will also be @®sng that the Markov processes in

the paper are stationary, aperiodic and irreducible (hengedic).

II. QUASI-SYMMETRIC FINITE STATE MARKOV CHANNEL

A finite-state Markov (FSM) channel (e.g., [9], [10]) is defthby a pentadX, ), S, Ps,C],
whereX’ is the input alphabeyy is the output alphabet and the Markov procgSs}> ,, S, € S
is represented by the pa#, Ps] whereS is the state set anfls is the state transition probability
matrix. We assume that the sets ) andS are all finite. The sef is a collection of transition
probability distributionsp¢(y|z, s), on Y for eachz € X, s € S. We consider the problem of
communicating messadéd < {1,2,---,2"%} over the FSM channel (without or with the use
of feedback) via a code of ratB and blocklength:,® where W is uniformly distributed over
{1,2,---,2"} and independent a§™. We assume that the FSM channel satisfies the following

properties under both the absence and presence of feedback:

() Markov Property: For any integer> 1.

P(Si|si_l7yi_laxi_17w) = P(Si|si—1>' (1)

'Both feedback and non-feedback codes of rAtand blocklengthn, which yield up to2™® codewordsX™ € x™ for

transmission over the channel, are explicitly defined intiSedll in terms of a pair of encoding and decoding functions
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(I For any integeri > 1,

i—1 1

P(yi|si, zi, s T ,w) = pe(yilsi, xi) (2)
When the channel is without feedback, we also assume thd&3hé channel satisfies:

(Il.b) For any integeri > 1,
Py ~'a',s') = Py '™, s 3)

wherep¢(.|.,.) is defined byC. Note that properties (II) and (I.b) imply tha®(y"|z", s") =
[T, pe(yilsi, z;) when the channel is without feedback. Furthermore, thefaedback code-
words X™ at the channel input are only a function Bf (which is independent of™); hence,
in the non-feedback scenario, the channel inpkit} is also independent of™.

In this paper, we are interested in a subclass of FSM chanvtedse the channel transition
matrices,Qsé[pc(ms,x)]xy,s € &, carry some notion of symmetry which is similar to the
symmetry defined for DMCs as in the following.

Definition 1: A DMC with input alphabetY, output alphabed’ and channel transition matrix
Q = [pe(y|x)].y is Symmetricf the rows of) are permutations of each other and the columns
are permutations of each other [24].

Definition 2: A DMC with input alphabetY, output alphabel)’ and channel transition matrix
Q = [pe(y|r)]., is weakly-symmetridf the rows of @ are permutations of each other and all
the column sums _ pc(y|z) are identically equal to a constant [24].

Definition 3: A DMC with input alphabetY, output alphabe)’ and channel transition matrix
Q = [pc(y|z)].y is quasi-symmetridf () can be partitioned along its columns imeeakly-

symmetricsub-arraysQ:, Q,, . . ., Q.,, With eachQ; having size|X| x |V

, Where), U---U
Vo =Yandy;NY; =0, Vi # j [25]. A weakly-symmetrisub-array is a matrix whose rows
are permutations of each other and whose column sums ardealigally equal to a constant.
Note that for a quasi-symmetric DMC, the rows of its entir@ngition matrix,(), are also
permutations of each other. It is also worth pointing out tha above quasi-symmetryotion
for DMCs encompasses Gallager's symmetry definition [24]p 3\ simple example of a quasi-

symmetric DMC can be given by the following (stochastic,,iwith row sums equal td)

2The capacity of a quasi-symmetric DMC is achieved by a unifimput distribution and it can be expressed via a simple
closed-form formula [25]C = >~ a:C; where a; 2 2 yey,;

log, |Vi| — H (any row in the matri%@i) , i=1,---,m.

P(y|lz) = sum of any row inQ;, i = 1,--- ,m, andC; =
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transition matrix,Q, for which a; + a; = 2a3 anday + a5 = 2ag, and it can be partitioned along

its columns into two weakly-symmetric sub-arrays

a; ag a3 ag a5 Qg a; ag das a4 a5 dAag

asg Gz a; G G5 Q4 ~ a3z az ai ~ Qg Qs A4
Q = ) Ql = ) and QQ =

az a1 az as a4 ag Gz a; as as a4 QAg

asz ayp az G G4 das a3 ap QA g Q4 As

We can now define similar notions of symmetry for FSM channels

Definition 4: (e.g., [9], [10])An FSM channel is symmetritfor each states € S, the rows
of )° are permutations of each other such that the row permutaattern is identical for all
states, and similarly, if for each € S the columns of@Q° are permutations of each other with
an identical column permutation pattern across all states.

Definition 5: An FSM channel is weakly-symmetifidor each states € S, Q° is weakly-
symmetric and the row permutation pattern is identical lbstates.

Definition 6: An FSM channel is quasi-symmetiicfor each states € S, Q° is quasi-
symmetric and the row permutation pattern is identical ibstates.

To illustrate these definitions, let us consider the follegviconditional probability matrices
of a two-state quasi-symmetric FSM channel with= {1,2,3,4}, ¥ = {1,2,3,4,5,6} and
S={1,2}:

/ / / / / /
Q = Q= (4)
/ / / / / /

where Q' and Q? are stochastic matrices. As it can be se@h,and > have the same row
permutation pattern and are both quasi-symmetric.

It directly follows by definition that symmetric and weaklyrsmetric FSM channels are
special cases of quasi-symmetric FSM channels. Therefm@dpcus on quasi-symmetric FSM
channels for the sake of generality.

Let us defineZ (which will serve as a noise alphabet) such thgt = |Z|, where) is
the output alphabet. Then for each statesince the rows of)® are permutations of each

other (the FSM channel being quasi-symmetric), we can fimdtfans fs(.) : Z — [0, 1] and
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d.(.,.) : X x Y — Z that are onto giver: (i.e., for eachrz € X, &4 (z,.) : Y — Z is onto),
such that
fs(q)s(xvy)) :pC(y|x> S)' (5)

Note that since each functiob,(z,.) : Y — Z is onto givenz and since|)| = | Z|, then it is

also one-to-one given; i.e., &,(z,y) = ®s(x,y’) = y = ¢'. Thus®,(z,.) : Y — Z is invertible
for eachz € X,

For the sake of completeness, we herein provide an explcistcuction for the functions
fs(.) and ®4(.,.). The construction is basically as follows: for eagh y) pair having iden-
tical channel conditional probabilityc(y|x,s) under states, ®.(x,y) returns the same value
z with f,(z) set to equalpc(y|z,s). More explicitly, let X = {z@),z@), -, 2w}, VY =
{vay, v, vyt 2 = {20,292, zoph L = {1,2,--- Jk} andJ = {1,2,--, [V]}.
Fors € S, let q;jépc(y(j)mi),s), 1 € I andj € J, be the entries of)*. Since(® is quasi-
symmetric, then for each=1,2,--- | k, there exists a permutatiatf : / — J on the column
indices of the entries of th&h row of )* such that the first row of)® is a permutation of
every other row. Then, f,(.) and ®,(.,.) are given as follows®,(z(), y(j)) = 2(s(;)) and
flzg) =i i€l je .

Lemma 1:The function®,(., .), as defined above together witly(.) to satisfy (5), is invariant
with s.

Proof: It directly follows from the above construction that,(zu), y;)) = 2@:() =
2@y = L@y yy)) Vs, 8 € S andVa) € X,y € Y since by Definition 6,7;(j) is
identical for all states. [ ]
Therefore, for a quasi-symmetric FSM channel, there egidtsction®d(.,.) : X x ) — Z that

is invertible givenz (i.e., for eache € X, ®(x,.) : Y — Z is invertible) such that the random

*The row permutations are as follows. The first permutatigris set as the identity functiort (j) = j for all j € J. The
remaining permutations far= 2,--- , k, are given byr; (1) = k wherek is the smallest integer il for which ¢7 ;. = ¢; 1,
and forj =2,--- | |)|, 77 (j) = k' wherek’ is the smallest available (not yet assigned for valuex . .., j — 1) integer inJ

for which ¢7 ., = ¢; ;. This assignment rule is valid whether or not the rowssfcontain identical entries. Specifically, if the

ith row of Q° (i > 2) hasd identical entriesy; ;, = ¢; ;, = --- = ¢; j, With j1 < j2 < --- < jq in J, then (by the channel's
row symmetry) there exist integets <l < --- <lginJwithg; =q¢i;, = =d¢,, =i, =@, =" =, In
this case we setr (j;) = I, for t = 1,2,...,d, and=;(j) = k wherek is the uniqueinteger in.J for which 4z = ¢, for

j € J\{j17j27"' 7jd}'
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variableZ = ®(X,Y’) has the conditional distribution

_ P(z,2,5)  P(y,z,m,8)
Plelz,s) = P(z,s)  P(z,s)

P(z|z,y, s)pc(y|z, s)P(x, s)
P(z,s)
a)

= pelylz, s) = fs(2). (6)

—

wherey = v(z, z) andv(.,.) : X x Z — Y is the inverse ofd in the sense that(z, ) = ®(z,-)™*
for eachxz € X', and(a) is due to the fact that(z|z, y, s) = 1. This important observation first
given in [9], reduces the set of conditional probabilitytdizutions which identifies the quasi-
symmetric FSM channel to ai&| x | Z| matrix 7' defined by

Tls, z] = fs(2). (7)
Therefore, for quasi-symmetric FSM channels, we have thraamy n,
P(zp|n, $n) = P(zn|sn) = T [Sn, 2n) - (8)

To make this statement explicit, let us consider the FSM lkgiven in (4). For this channel,
we can derive the functions = ®(x,y) and f,(z), as explicitly shown above; for e.g., we
have ®(1,1) = ¢(2,3) = ¢(3,2) = ¢(4,2) = 1 and f,(1) = a; and f5(1) = a}. Therefore,
the channel conditional probabilities for each state can he defined byd and the matrix7’,

where

a1 az az a4 as dag
T[ .

ay ay ay ay ay ag

Hence, the fundamental property for quasi-symmetric FS&hokls is the existence of a noise
process{Z,} given by Z,, = ®(X,,Y,) such thatZ, is independent oX,, givenS,.. The class
of FSM channels having this property, when there is no feekibare termed variable noise
channels [10].

The features that we have developed so far are valid for aagiegymmetric FSM channel.
However, while discussing the feedback capacity of thesambls we assume that the channels
also satisfy the following assumption.

Assumption 1:We assume that for a fixagde ), the column sun}__ f(®,(z,y)) is invariant
with s € S > fo(Ds(z,y)) =D, fo(Po(x,y)) Vs, s € S, where f(P,(z,y)) = pe(y|z, s).
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In other words, the assumption requires that for each outplute y, the |S| column sums
corresponding to output in the channel transition matrices are all identical; i.e.,

ZPC(@/\% 51) = ZPC(@/\% Sg) =+ = ZPC(?A%S\S\), Vyel.

zeX rzeX rzeX

However, for a fixeds € S, > pe(y|z, s) is not necessarily invariant with € ), and as such,
a uniform input does not yield a uniform output in generalisTiequirement will be needed in
our dynamic programming approach which we use to deternfieeoptimal feedback control

action (as will be seen in the next sectidn).

[1l. FEEDBACK CAPACITY OF QUASI-SYMMETRIC FSM CHANNELS

In this section, we will show that feedback does not increéhsecapacity of quasi-symmetric
FSM channels defined in the previous section. By feedbacknean that there exists a channel
from the receiver to the transmitter which is noiseless agldydess. Thus at any given time, all
previously received outputs are unambiguously known byttaesmitter and can be used for
encoding the message into the next code symbol.

A feedback code with blocklength and rateR consists of a sequence of mappings
v {1,2,.., 2Ry x YTt 5 X
for i =1,2,..n and an associated decoding function
Ty — {1,2,..., 2"},

Thus, when the transmitter wants to send mesdages W = {1,2,...,2"%}, where W
is uniformly distributed ovedV and is independent o$™, it sends the codewor&™, where
X1 = (W) andX; = ¢;(W, Y1), fori = 2,---  n. In the case when there is no feedback, the
codewordX™, whereX; = (W) and X; = ¢;(W), fori =2 --. nis transmitted; and thus a
non-feedback code is a special case of a feedback code. Eoei@edY " at the channel output,

the receiver uses the decoding function to estimate thermired message d§ = Y(Y"). A

“Note for our main results to hold, we require the FSM chanseflefined via properties (1) and (l1) to be quasi-symmetric,

in addition to satisfying Assumption 1.
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10

decoding error is made whéi £ W. The probability of error is given by

2nR

1
P = SF SO P{YY") £WIW =k}
k=1

It should also be observed that when communicating withldaekl, property (ll.b) does not
hold, sinceX; is a function ofY*~! (in addition tol¥’); also X™ and.S™ are no longer independent
as X, causally depends od*~! and hences' !, fori =1,2,--- ,n.

The capacity with feedback;rz, is the supremum of all admissible rates; i.e., rates foctwhi
there exists sequences of feedback codes with asymptptiaadishing probability of error. The
(classical) non-feedback capacityy 5, is defined similarly (by replacing feedback codes with
non-feedback codes). Since a non-feedback code is a spas@bf a feedback code, we always
haveCrp > Cyrp.

The main result of this work is as follows.

Theorem 1:The feedback capacity of a quasi-symmetric FSM chankiel), S, Ps, Z, T, ®]
satisfying Assumption 1 is given by

Cpp=H(Y) - H(Z)

whereH(Y) is the entropy rate of the output procgS§} driven by an i.u.d. input and{(Z)
is the entropy rate of the channel’s noise (hidden Markgvjancess{Z;}:°,.

We devote the remainder of the section to prove this theomandaduce that feedback does
not help increasing the capacity of quasi-symmetric FSiVnhobkés satisfying Assumption 1.

From Fano’s inequality, we have
HW|Y,) < hy(P.™)+ P.™log, (2" —1)
< 1+ PM™nR

where the first inequality holds sind@(Pe(")) < 1, whereh,(+) is the binary entropy function.

Since W is uniformly distributed,
nR = H(W)
= HW|Y™)+I(W;Y")

< 14 P™nR+I(W;Y™)
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11

where R is any admissible rate. Dividing both sides hyand taking thdim inf yields
Crp < liminf sup lI(VV;Y"). 9)
R ) L
For every coding policy with feedbadk);, 1 < i < n}, there are induced mags;, 1 <i < n}
such that
ni X7 x YT S P(X),

with
ni(xi_l7yi_1) = (ﬁl('x(l))v ﬁz(x(Z))y e 7ﬁ2(x(k)))
and
ﬁz(x(J)) = Z P(w|xi_1vyi_l)l{m(j):d)i(w,yi*l)}
wew
for j =1,2,---k, whereX = {z@), 22, - ,zx} With £ = |X|, 1, denotes the indicator
function andP(X') denotes the space of probability distributions &n Every n; can also be

identified by the collection of control actions at tinte
D, 4 (P(zi])iY, 1) s il € XLyl e ity

In view of this discussion, following [15] (see also [16].6]2, we have
imi 1 n T RS i—1 i—1
liminf sup —I(W;Y™) = liminf sup =) [H(Yi[Y'™") = HY;[W, Y"1
OO g, T [ (S Y Ly
= liminf sup lZ[ztf(yin/i—l)—111(1/i|w,yi—1,X")}
[ (S Y Ly
= liminf sup %Z[H(myi—l)—H(in-l,Xi)] (10)
e {4
im i l 3 |yl 1yvi—l yi
< liminf sup — Y [HY[Y") - HY[Y™ X))  (11)
n—00  rp, n n i1
where (10) is shown in Appendix I. Note that the right-handesbf (11) is the directed
information whose supremum has been shown to be the feedizguacity under information
stability conditions [15].
Now, let us consider the following equation

oup LS [HEY) — HEY LX), (12)

{Di}?:1 n =1
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We next establish three Lemmas in order to prove the mainribation of the paper. In the
first Lemma, we show that the terdd (Y;| X? Y1) is equal toH(Z;|Z*~'), and in the other
two Lemmas we show thdt." | H(Y;|Y" ') is maximized by uniform feedback control actions
{P (i~ y =Ly

Lemma 2:The quasi-symmetric FSM channel satisfies

HY;| X, Y™ Y= H(Z|Z"™"), Vi=1,--- ,n.
The proof of the above lemma is given in Appendix Il.

We next show that all of the conditional output entropiéY;|Y*~!) in (12) are maximized
by uniform feedback control actions. We solve this problesimg dynamic programming [27].
Specifically, we recast the problem of maximizing the sumaiditional output entropies over
all feedback control actions, using dynamic programminige Dptimization problem can be

written as:

oA }{H(Yn|Y"‘1) + H(Y, 4|Y" )+ -+ HY1)}. (13)
Let
‘/i (P(yi_l)v Dlv o 7Di_1) - IIlDaX [H()/;|Y2_1) + V;'-i-l (P(yl)apla e 7D2) }7

(3

where V,,.; (P(y"), Dy, -+ ,D,) = 0 and theV; (P(y"!),Dy,--- ,D;_1) terms are explicitly
given fori =1,--- ,n as follows:

Vi (P(y"), D, D) = max H(Y,[Y")

n—1

vn—l (P(yn_2), Dl, ce ,Dn_2) = max {H(Yn_1|Y"—2) -+ I%&X {H(Yn|yn—1)}}

Vn_Q (P(yn_3), 'Dh ce ,Dn—3) = %1&}2{ {H(Yn_2|yn_3) + %aﬁx {H(Yn_1|yn_2)

+max {H(Yn|Y"‘1)}} }

Vi = max {H(Yl) + -+ max { H(Y,1]Y"?)
D1 'anl

+max {H(Y,[Y"")} - }} (14)

Here, Vi1 (P(y"), Dy, - - ,D;) denotes the reward-to-go at timigewhich is the future reward
generated by the control action at time
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Thus (13) is given by in (14), which indicates that the optimization problem isteel and
dynamic. It is nested since the actions and the action owspthat is the realizations of the
channel inputs and outputs, are available in future timgestalt is dynamic, since the control
actions applied at timé affects the future reward value realizations at time stages:. Thus
an optimal selection of the actions, should maximize bothdhrrent reward? (Y;|Y*~!) and
the reward-to-gd/;,, (P(y"), Dy, -+, D;) (see (14)).

Therefore, the optimization problem turns out to be findimg best induced policieg);, 1 <
i < n}; that is the best collection of functions used to generate gét of control actions
{D;,1 < i < n} which achievel;. We next show that the optimal set of control actions
achievingV; is composed of uniform input distributions féer= 1,--- ,n. Toward this goal,
we find a condition such that the control actions taken atgifme- 1),---,1 do not affect the
reward value attained at timewhen the control action at times uniform. Specifically, we find
that a sufficient condition to manage this problem is requif} . f,(®s(x,y)) to be invariant
with s € S, i.e., Assumption 1 . This will be explicitly shown in Lemma We first have the
following.

Lemma 3:For the quasi-symmetric FSM channel, each conditionaludwptropyH (Y;|Y 1),
1=1,---,nin (12), given the past sets of control actiagBs, D, - - - , D;_4, iS maximized by

uniform feedback control actions:

)

Dr 2 argglaxﬂ(myi—l)
_ {P(xz_u,i—l’yi—l) _ %7vxi—l e XLyl ¢ yi—l} (15)
forall z; e X and for alli = 1,--- ,n.

The proof of the above lemma is provided in Appendix IIl. Wikils Lemma, we have shown
that for eachi, H(Y;|Y!) is maximized by the uniform input distribution. Howeverjstlis
not sufficient to conclude that the optimal set of controiat attainingl;, i.e., the optimal
set of control actions maximizing_;_, H(Y;|Y""'), consists of a sequence of uniform input
distributions fori = 1,--- ,n. This is because Lemma 3 only maximizes the current comditio
entropy via a uniform input (that is it is optimal in a myopiense); however, it is still possible
that a non-uniform input might result in a higher value fumectthrough the rewards-to-go. Let

us now look atP(y;|y*~') when we apply a uniform distribution at time(current time). We
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obtain using (23) that

Plyly™) = Z Z pe(yilas, si) Pzl y = P(si|s ™) P(a' ™, sy

25,21 5,801

L pe(ilzs, 5:)P(sils ) P, 5=y~
]

i, @t si,st1

= T DT X peltlri s)P(sds ) Pl

—~
S
NS

s; gi—1 pi—1
1 - i1y, i—
= mZZZPC(M%Si)P(SJS HP(s Ty
T sp s
1 i
= mzzpc(yi|xi,3i)P(5i|y Y

where (i) is valid since P(z;|z*~!,y*~!) is uniform. Note that the dependency on past input
control actions comes throug®(s;|y*~') which includes transition probabilities between states,
on which we have no control.

Lemma 4:Assume that the feedback control actiétiz;|2'~!,y*~1), at (current) timei, is
uniform. Then the value of the conditional entrof(Y;|Y*~!), at timei, is independent of past
feedback control actions at times— 1), ---,1if > f(®(z,y)) is invariant withs € S (i.e.,
if Assumption 1 holds).

Proof: We have the following:

Pluly™) = %Zzpcwxi,si)msi\yi—l)

Z; Si

1 -
= mzp(sﬂyz I)ch(yi|$i,32‘)

= % Z P(silyi_l) Z fS((I)(xi? yl))

~~

Since the underbraced term is invariant withthe proof is complete as the final sum will be

ﬁzx fs(@ (i, 93))- u
We have so far shown thalf (V;| X", Y*""!) = H(Z;]z"') and that) ! K H(Y;|Y"™!) is

maximized by uniform input distributions. With these resuin hand, we have thus shown

the following upperbound for the feedback capacity

Cpp < liminf l[H(ff”) — H(Z")] (16)

n—oo M
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where H(Y™) is the output entropy when the input is uniform.

Let us now define a Hidden Markov Process (HMP) [28] which wi wge while discussing
the ergodicity of the noise and output processes. An HMP metel by a quadruples, P, Z, T
in which [S, P] is a Markov process and is the observation matrix defined by (7). The non-
Markov process Z;}2, with alphabetZ is called HMP and it is the noisy version of the state

process observed through a DMC determinediby

Lemma 5:For the quasi-symmetric FSM channel with feedback, theenpiscess is an HMP
with parameterssS, P, Z, 7).

Proof: To show this result, it suffices to show that
P(zi\si,zi_l) = P(ZZ|SZ)
Since {5;}%°, is Markovian, it directly implies thaP(s;|s;_1,2"71) = P(s;|si_1)-

Note that

P(zsi, 27 = Z Z P(y;, i, 2" Ys;, 271

=1 {(24,yi):2:=P(z4,y:) }

(@) i i— i i
= > P s, 2 > pe(yilas, ) Px|a'™" s, 257)

zi—1 {(z4,4):2:=P(i,y:) }
2N PE s AT Y fu( @ p)) Plada ™ 2
zi—1 {(z4,4):2:=P(i,y:) }

= Zp(xi_1|5i,2i_l)f8i(zi) Z P(xi|ai™t, 20

zi—1 {(z4,y:):2:=P(x4,:) }

() W pz)s) (17)

= sz(ZZ)

where (i) follows from (2) of property (II) and the fact that™! = v(2*7, 271) is one-to-
one with z*~! given =1, (i7) is valid by (5) and by the fact that feedback input depends on
(x=1, 271, (44i) is valid since eachy; is satisfied bylX'| number of(x;, ;) pairs where each
x; is different and(iv) follows from (5), (6) and (8). [ |

It should also be noted that, the output procgds}>,, for an i.u.d. input{ X;}2, is also an
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HMP since

P(gilsi, ' ZP (i, wilsi,5°7)

—~
S
N

ch yl|x2752 xz|527 1)

—~
=
=

ZPC yz‘stz xl|sl> = P(:gl‘sl)

where(a) is due to (2) andb) is due to the fact thak; is uniformly distributed. The channel
associated with the HMP is memoryless and as such it is statjo Therefore, since the state
process is stationary and ergodic both the output and nomsmgses are stationary and ergodic;
this is stated in the following lemma.

Lemma 6:For the quasi-symmetric FSM channdl, Y, S, Ps, Z, T, ®|, the noise process is
stationary ergodic. Also the output process is stationaggaic under an i.u.d. input.

We can now complete the proof of Theorem 1 and conclude tlealbfck does not increase
capacity for the class of quasi-symmetric FSM channelsfyatg Assumption 1.

Proof of Theorem 1With (16) we already have a converse for the feedback cgpadlke
need to show that this bound is achievable. We first note thatelmma 6 the noise and output

processes are stationary which imply that

1 « . 4 .
Crp < liminf sup =S THYY'T) - HY YT XY
n—oo {P(xi‘xi—l’yifl)}?:l n <
1 ~
— liminf ~[H(Y") — H(Z")]
n—oo M
1 ~ -
= lim ~[H(Y") ~ H(Z")] = H(Y) ~ H(Z). (18)

It is sufficient to show that the bound in (18) is achievablee Wéw remark that there exists
a coding policy which achieves this bound. Note that sin@rbise process is stationary and
ergodic, it can be shown th&{(Y) — H(Z) is an admissible rate (e.g. see [15, Theorem 5.3]
and [29, Theorem 2]). Thus,

Crp > lim S[H(T") — H(ZY] = H(V) — H(Z)

n—oo N,
and this completes the proof. [ |
Corollary 1: Feedback does not increase capacity of quasi-symmetricdfalhels satisfying

Assumption 1 (i.e., for which)__ fi(®,(x,y)) is invariant withs € S).
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Proof: The result follows by noting that a non-feedback code is @igpease of a feedback
code and that the non-feedback capacity is also achievecdifgrion input distributions. This

can be shown more explicitly as follows

1. - 1
Crp = lim —H{Y™) — lim —H(Z")

n—oo M, n—oo 1

i 1 1

9 im ZH(Y™) ~ lim ~H(Z")
n—oo 1 P(x”): 1n n—oo M,

x|

1
< lim — sup I(X™;Y") = Cnrp
n—oo N, P(:B")

whereC\y ¢ is the non-feedback capacity afd is valid since the input process is i.u.d. Finally,

sinceCrp > Cyrp, We obtain thatUrg = Cyrp. [ |

IV. EXAMPLES OF QUASI-SYMMETRIC FINITE STATE MARKOV CHANNELS

In this section, we present examples of quasi-symmetric EBhnels which satisfy As-
sumption 1 and hence have identical feedback and non-fekdtapacities. We also provide
their feedback capacity expression which, when not givesirigle-letter form, can be computed

using existing algorithms (e.g., see [23]) for the compatabf entropy rates of HMPs.

A. Gilbert-Elliot Channel (e.g., [3]): One of the widely used FSM channels is the Gilbert-
Elliot channel denoted bi¥’, Y, S, P, C], whereX =Y =S = {0, 1}. The two states are called

"bad” state and "good” state, respectively, and the statesition matrix is given by:

b 1-10
where( < g < 1,0 < b < 1 and in either of these two states, the channel is a binary strmonm

channel (BSC) with the following transition matrixes foattss = 0 and s = 1, respectively:

l—ps  pB
ra 1—pa pe l—ps
From the above channel transition matrixes, it can be oksehat the Gilbert-Elliot channel is
a symmetric FSM channel by Definition 4. Then, there existaralom variableZ = &(X,Y)
with alphabetZ = {0,1} and a functionf,(z) such that,f,(0) = 1 — pe and fo(1) = pg,
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f1(0) =1 —pp and fo(1) = pp. Therefore, one can define thds, z] matrix for this channel

as
T 1 —pe pc 7
l—pB pB
and we obtain thab(X,Y) = X @Y, whered represents modulo-2 addition, aifils, 2] defined
above. By Corollary 1, feedback does not increase the dypaicihe Gilbert-Elliot channel and
it should be noted that this result is a special case of [1d][4B8]. Since|X| = 2, the feedback

capacity of the Gilbert-Elliot channel can be found as
CFB = CNFB =1- H(Z),

where H(Z) is the entropy rate of the HMRZ;}°, and can be computed as shown in [3]
or [23].

B. Discrete Modulo Additive Channel with Markovian NoiseConsider the discrete channel
with a common alphabedl = {0,1,...,¢ — 1} for the input, output and noise processes. The
channel is described by the modulo-q additive equatipa- X,, ¢ Z,,, forn =1,2,3,..., and
Y,, X, and Z,, denotes the output, input and noise processes respecfiMadynoise process,
{Z,}7=%, is Markovian and it is independent of the input processs Istraightforward to see
that the channel transition matrix for this channel is syrmimdor each state, where the state is
given by the previous noise variablé; = Z; ;. For simplicity, let us assume that= 3. Then,

the channel transition matrix at statg @, will be as follows:

P(Z;=0|Z;-1=s;) P(Zi=1|Zi-1=s;) P(Z;=2|Zi_1=s;)
Q%= | P(Z;=2|Z;_1=s;) P(Zi=0|Z;_1=35;) P(Zi=1|Z;_y =s;)
P(Z;=1Z;1=s;) P(Z;=2Zi1=s;) P(Z;=0|Zi_1=3s;)
For each state, the channel transition matrix will still pmsetric with the same row permutation
order. Furthermore, it also satisfies Assumption 1 sincernolsums are always one. Therefore,
the discrete modulo additive channel is a symmetric FSM wébwith A = {0,1,2} and
®(X,Y) = X @Y. Hence, by Corollary 1, feedback does not increase the itgpaicthe
discrete modulo additive channel with Markovian noise. éNttat for this channel uniform
input gives uniform output and therefore, feedback capadfitthis channel i rg = Cnrp =
log3—H(Z) = H(Z,|Z,) whereH(Z) = H(Z,|Z,) is the entropy rate of Markov noideZ; } 2.
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This example can be readily extended for the cask/tif order Markovian noise; in that case the
statesS; is given byS; = (Z,_1,--- , Z;_yr) and the noise entropy rate6(2) = H(Zy.1|2™M).
This result is a special case of [11]. It has been recentlgrgdd to finite-state multiple

access channels in [30].

C. A Symmetric Discrete Channel with Markovian Nois€onsider a discrete, not necessarily
additive, channel with Markovian noise [12]. More precysatonsider the channel given by
Y, = f(X;,Z;) fori = 1,2,--- where X, Z; andY; are the input, noise and output of the
channel, respectively, anfl: X x Z — ) is a given function. Assume also thgk’;} and{Z;}
are independent from each other and the channel satisfidsltbving properties.

L [xX[==2]=q¢

2. Given the inputr, f(x,.) is one-to-one; i.eyr € X f(x,z) = f(x,2) = z = Z.

3. flexistssuchthat = f~!(z,y) and giveny, f~'(.,y) is one-to-one;i.eYy € ¥V f~!(z,y) =

fHz,y) =2 =1

We note that a channel satisfying these conditions has a symenthannel transition matrix
for each state, where the state is given by the previous naigable: S; = Z;_;. Therefore,
this channel is a symmetric FSM channel with the same petiontarder determined by the
function f. It also satisfies Assumption 1 as the column sums are onebbr €ate. Therefore, by
Corollary 1, feedback does not increase the capacity oetbkannels. This result is first shown
in [12], where the noise process may be non-Markovian andemgadic in general. Similar
to the previous example, uniform input yields uniform outper this channel and therefore,
feedback capacity of this channel (45 = Cypp = logq — H(Z) =logq — H(Z5|Z;). As in
the previous example, this example can be extended for e @@\/th order Markov noise.

We next present two different channels which illustraterdsailt of the paper when the column

sums for each state are different than one.

D. Binary Channel with Erasures, Errors and Markovian StateConsider the two-state
channel given by¥ = {0,1}, S = {s1, s2}, where{S;} is Markovian,) = {0, £, 1} with the

®In [12], it is stated thatX| = | Z| = ¢. However, following the proof, it can be evidently seen that = ¢ is also assumed.
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following channel transition matrices

O = l—e—-¢ & € 0" = 1—¢ —¢ ¢ e
3 E 1—e—¢ g’ g 1-e-=¢
where0 < ¢,¢,¢’, & < 1 are fixed. We first note that this channel is a two-state gsysimetric

FSM channel, since we can partitigyf* and )*2 in two symmetric sub-arrays given by

=, 1—e—-¢ € ~ 13
lel = ’ Q)}z -
€ 1l—e—¢ &
and
- 1—¢ — 5/ ! -, 5/
Qy = % =
! 1—8/—5/ 5/

respectively, wher@; = {0,1} and), = { £} with identical permutation order between states.
For this channel, if we s&t = ¢/, then we automatically satisfy Assumption 1 since the colum
sums in both@** and Q%2 will be 1 — &, 2¢ and 1 — £ respectively. In other words, although
the error probabilities are different across the stateg ¢’ in general), we still have identical
column sums. Therefore, by Corollary 1, feedback does rwease the capacity of this channel.
Furthermore, since both the output and noise process aresHMPvalue of feedback capacity

can be computed using [23].

E. Non-Binary Noise Discrete Channel with Markovian Nois&\Ve now present a binary-
input 2%-ary output communication channel with memory which waendly introduced in [31]
(in the absence of feedback) with the objective of captuboth the statistical memory and
the soft-decision information of time-correlated fadingaonels modulated via binary phase-
shift keying (BPSK) and coherently demodulated with an atutpuantizer of resolution. This
channel, which we refer to as the non-binary noise channBNDIC), has a straightforward
structure and useful properties and it can help in the desfgeoding/decoding schemes for
soft-decision demodulated channels with memory that t@ssuperior performance over coding
systems that ignore the channel’s memory (via interlegvamgl/or soft-decision information (via

hard demodulation) [31]. The NBNDC model is explicitly debed by the following equation
Y= (29— 1) X+ (—=1)**Z, (19)

fork=1,2,---,whereX; € X = {0,1}istheinputYy, Z, € Z2=Y ={0,1,--- ,27—1} isthe

output and the noise processes, respectively. The noismpntiprocesses are independent from
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each other and we assume that the noise process is Mark@analth order Markov process
can also be considered as examined in [31] for modeling tkenlying fading channel). For the
sake of simplicity, we consider the NBNDC channel with= 2. Let A = [\, j|iz1. 4;j=1.. 4,
Where)\wéP(Zi = j|Zi—1 = s;), denotes the transition probability matrix of the noisecess.

Then, with the stat&; = Z,_;, the channel transition matrix at statg Q*, is given by

)\si,O )\si,l )\si,2 )\si,3
)‘Sz‘,3 )\3i72 )‘Si,l )‘Si,o

Q" =

Note that NBNDC is a quasi-symmetric FSM channel but it doesmecessarily satisfy As-
sumption 1 . However, it can be easily shown that for a@ngatisfying that bochj:Q3 i j
and > ,_,,A;; do not change with different values, Assumption 1 is satisfied; therefore,
by Corollary 1, feedback does not increase capacity of suBNIDC channels. Furthermore,
the non-feedback capacity of NBNDC is given in [31] @srp = 1 + H(W) — H(Z,|Zy),
where H(W) is the entropy rate of the proce$dl,} which is defined on the alphabgV =
{0,1,---,2971 — 1} with W}, = min{Z;,2¢ — 1 — Z,;}. Therefore, ifA satisfies the condition
that both >-,_,,A;; and >°,_, ,\i; do not change with different values, we then have
Crp = Cnpp = 1+ H(W) — H(Z5|Z,). Note that{IV,} is an HMP and as such (V)
can be computed as shown in [23].

There is one more quasi-symmetric FSM channel that needisefuattention. We now in-
vestigate how its channel properties directly satisfy tbadition that the previous feedback
control actions do not affect the current value of the caaddl output entropy. In other words,
the example below satisfies Lemma 4 without having the cmmdihat the column sums are

identical among different states, (i.e., it does not satfs$sumption 1).

F. Simplified Binary Erasure Channel with Markovian StateConsider the following binary
erasure channel [21], which is a simplified (special) cas¢heferasure channel of Example
D and has been used to model packet losses in a packet conatiomioetwork, such as the
Internet. The channel has binary input and ternary output- {0,1},)Y = {0, E, 1}. Let S;
denote the state of the erasure channel when the packeives such that whel§; = 1, the
packet is erased, and whén= 0, the packet gets through. For a given input, the channelubutp

is identical to the input if there is no erasure, and it is ¢qaahe erasure symbolF) if an
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erasure occurs. Therefore, the channel transition matatetate$, 1 will be as follows

O LR S
0 01 010
This channel can be considered as a special case of deléi@omel in which the erased packet
is assumed to be known by the decoder. Therefore, in an erabannel, the receiver has also
the side information about the state. In [21], this chanseldnsidered as a finite buffer queue,
which can be viewed as an FSM channel, and the state of the finfter channel is determined
by the state of the buffer and it is shown that feedback do¢snmoease the capacity of this
channel. We herein note that the approach presented in fiex gaves the same result.
Proposition 1: Feedback does not increase capacity of simplified binaigueeachannel with
Markovian state and the feedback capacity is achieved byuash input.

Proof: We first note that since the channel is quasi-symmetric foh agate, the conditional
output entropy is maximized by uniform input distributionghat we further need to show is the
independence of the value attained HyY;|Y~! = ¢'~!) from previous input control actions.
In particular, we need to show th&t(s;|y'~!) is independent of past input control actions (see
Lemma 4). It should be noted that

32|y ZP Silsi—1)P(si— 1|y )

Thus, giveny'™!, s;_; is deterministic and independent of~!. Integrating this fact in our
approach proves the desired result. [ |
It has been shown that [21, Proposition 3.1] the capacityhed thannel, with and without
feedback, is given by’ = Cnrp = (1 — p.) Wherep, is the erasure probability.

This particular example has the benefit of learning the staterministically by only observing
the output. We should remark that availability of both thetesinformation and output feedback
has also been considered within different setups in sonmer etbrks and the situations for which

feedback does not help increasing capacity are determsesd[(7, Theorem 19] and [20]).

V. CONCLUSION

In this work, we presented a class of symmetric channels lwbhitcapsulates a variety of
discrete channels with memory. Motivated by several regultthe literature, we established a

class of symmetric finite-state Markovian channels for Whieedback does not increase their
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capacity. We showed this result by first reformulating theirojzation problem in terms of
dynamic programming and then proving that, under feedlhekcapacity achieving distribution
is uniform. An important observation should be highlighéeghin: when feedback exists, one can
learn the channel via the past control actions and as suchapgly a nonuniform distribution
which will result in a higher output entropy and capacity. Wesent a sufficient condition,
Assumption 1, under which it is still possible to learn thamhel via these past control actions;
however, this learning does not affect the optimal distidou It is also worth observing that even
though we have emphasized finite-state channels with Makastate (i.e., FSM channels) due
to their wide use in the literature, our result also holds ntiee state process is not Markovian
but still stationary ergodié.Finally, although this result covers a large class of discohannels
with memory, we believe that by adopting the approach of #usk, it is possible to show
a similar result for a further general class of both symmetnd asymmetric channels whose

feedback capacity is achieved by an i.i.d. input, both insingle user and multiple user settings.
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®In this case, property (1) is modified by replacii(s;|s;—1) with P(s;|s"~") and the noise process is no longer an HMP

but remains stationary ergodic.

June 15, 2011 DRAFT



24

APPENDIX |
PROOF OFEQUATION (10)
Proof: We need to show thaP(y;|w, 2,y 1) = P(y;|2%, ') fori = 1,2,---  n. Note
that

, ‘ a 0 Py, w, 21y
P ; ; i—1 i—1 (:) |z, s (ZE’Z|ZL’ Y ) (3] 74 7'
(i, 2277, 97) ZPC Ul 5 p [ ) P, T, )

= ch yz|xzasz Sz|w l’ 1>yi_1)

(®) i
= ch yilai, s:) P(sila'™ "y )

= (yilx YY)

where(a) follows from property (Il), and) is valid since

i—1 i @) i-1 i
P(sifw, 2~y = ZP(Si|Si—1)P(5i—1|w7x Ly

Si—1
(i1) i— i—
= ZP(Si|Si—1)P(Si—1|x 17y 1)
Si—1

— P(Si|l’i_l,yi_1)

where (i) holds by the channel Markovian property (). Furthermdi¢), can be shown recur-
sively as follows:
P(Slvwaxlayl) _ P(yl‘%,Sl)P(%,Slaw)
281 P(Sluwwrhyl) Esl P(y1|$1,31)P(x1,31,w)
(g) P(?J1|$1,81)P(31)P($1,w)
Zsl P(yl‘bel)P(Sl)P(xhw)
P(?J1|$1,81)P(31‘$1)
Zsl P(y1|z1, 1) P(s1]21)
= P<31|$17y1) (20)

P(Sl|w7 Xy, yl)
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where(zii) is valid sinces; is independent ofv andzx; (asz; is only a function ofw). Similarly,

P(52|w,x2,y2) _ P<S27w7$2uy2> _ P(ya|za, 52) P(1, T2, Y1, 52, W)
282 P(s2,w, 1% y?) 252P(y2|x2,Sz)P(i)fl,xz,bez’w)
(1v) P(y2| o, 52) P(22|21, Y1, w) P (82, 21, Y1, w)
B 252P(y2|x2,sz)P(g:2|9:1,y1,w)P(52,x1,yl,w)
P (32|72, 52) P(82]21, y1, w) P21, Y1, )
252P(y2|$2,Sz)P(32|$1,y17w)P(i)fl,yl,w)
w  Pyelra, s2) 305 P(s2]s1)P(s1]z1, y1)
>, Plyalwa, 52) X2, P(sals1)P(s1|1,m)

= Plsafa®,y%)

where (iv) is valid sincez, is a function ofz;,y; andw and (v) is due to (20). Using these

steps recursively fof = 1,2, --- ,n yields (i7) and completes the proof. [ |

APPENDIX I

PROOF OFLEMMA 2

Proof: The proof is composed of two steps. In the first step we shotwAliE;| X, Y1) =
H(Z;|Zi=1, X*). Following this, we show thaZ; — Z~! — X' form a Markov chain. Observe
that

%

—
=

i, i i i—1y () i i1 i1y (i) i i
P(yz‘x7y 1) P(Zl‘xvy 1) = P(Zl|x7y 17Z 1) = P(ZZ'|'T7Z 1)

where (i) and (i) is valid sincez’ = ®(z',y") and (:i4) is valid sincey; = v(x;, z;) where
v(z,-) = ®7Y(z,-). This completes the first step. We next show tHat— Z:~! — X' form a
Markov chain. Note that

Pz, 7', 27Y) ) Plagle'™!, 27 ) Plat™], 2, 27
P(zi, 271 P(xglat=t, 2i-1) P21, 2i-1)

where (iv) is valid since the feedback input depends (causally) onlya6nt, y~1), or equiva-

P(za', 271 =

= P(Zi"xi_17 Zi_l)

lently on (=1, 2i=1) . Similarly, we get
P(zi1|72, 272 P(2i2, 2, 21)
P(z;_1|2i=2, 2-2)P(2i~2, zi-1)

P(Zi|xi_17 Zi_l) =

= P(z|a"2, 27 h).

June 15, 2011 DRAFT



Using these steps recursively, we get
P(ZZ', $i_2, Zi—l) (U_) P($i_2|l’i_3, Zi_g)P(ZZ', $i_3, Zi—l)

P ; i—27 i—1 — : ‘ ) : ‘ : i
(Z |3j z ) P(:L,Z_Q’ 22_1) P([l?i_2|l'l_3, Zl_g)P(:L'Z_3, Zz—l)

(2) P($2|$1,21)P(Zi,1'1,2i_1)
P(xo|xy, 21) P21, 271)

wiy Pl)P(z2h) o0 i
© Pop R

where (v), (vi) and (vii) are valid due to the same reasoning above.

APPENDIX |11

PROOF OFLEMMA 3

Proof: Let us first write the conditional output entrogy(Y;|Y*~!) as

Y‘YZ 1 ZP i— 1 Y|YZ 1 _ i—l)

where

HY;[Y™ =y == P(yly"") log P(yily™™).

Yi
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(21)

(22)

To show thatH (Y;|Y*~1) in (21) is maximized by a uniform input distribution, it is @mgh to

show that such a uniform distribution maximizes each of fh&;|Y"~! = y*~1) terms.

We now expand”(y;|y'~') as follows

P(yi|yz’—1) _ Z Z Z Z P(y“ i, Si,l’i_l, Si_l‘yi_l)

xr; gi—1 s; gi—1

= Z Z yz|xzasza 17Si_17yi_1)P($iaSiaxi_17sz 1|yl 1)

SCZCCZ 15 S’L 1

(1) i—1 i—1), i—
= Z Z pc(yi\meSi)P(fCi,Si,x 173 l‘y 1)

@211 5;,51—1

= S pelwdass)Plana Sy Psia, a5y

IEZIEZ 18 SL 1

(47) i i—1 i1 i =1 i1y, i
= Z Z pe(Yilws, si) P(sils' ™) P(aifa’™, '~y P(a' ™Y sy

zi,@t 1 si,s171

(ddd) i—1 i i— i—1 i—1|, i—
= > > peilwi, s) Pl y ) P(sils™ ) Pla ! sy

x5, sg,8071
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where (i) follows by (2), (i7) is valid due to the property (I) and finallyiii) is due to the fact
that the feedback input depends only @it y*1).

The key observation in equation (23) is the existence of anvabtpnt channel. More specifi-
cally, >, P(yilzi, s;) P(s;|s'") actually represents a quasi-symmetric channel transitiatrix
such that its entries are determined by the entries of ther&idransition matrices of each state
and the transition distribution of state probabilities. cantinue, by (5),

Plily™) = 350 3 Fful@ (s ) Plsils ™) Plaile™, y' =) Pa, s~ |y'™).(24)

i, i 18 SL 1

By definition of quasi-symmetry, there exists weakly symmetric sub-arrays in the channel
transition matrix at each statg. Among these sub-arrays, let us pié}? of size |X| x |V;].
(We assume that the partition 9f is identical across all states.) Lef,, for t = 1,...,|Y}],
denote the output values in sub-arrayTherefore, we obtain

Py ly'™) = > @ (@) Psils T Plala™ g P sy ). (25)

x5,xt 1 g;,801

We desire to maximize (21) over the feedback control actiBn;| X~ Y*=1). To be more
precise in the following lines of equations, fat = {z), ..., zu) } with k = |X|, letk(i—1) =
P(si|st™1), x(i — 1) = P(«1, s 1|y*~!) and denote the feedback control actions by

P(X; = zgla™ v = wi(zw), for I=1,... k. (26)

Then, fort =1,...,|Y;| we can write

P(yly'™") =
Z X = 1)) k(i = 1) {@il) fo (R, (1) y5) + -+ + i) fo (Pu (1), y31)) }
P(yply'™) =
Z X(’i—1)2“(1'—1){%(x(l))fsz-(‘bsi(x(lwij))+"'+s0i( ) fsi(Ps, (T r)s y5)) }

P(yj ly'™) =
Z x(i—1) Z k(i —1) {@z‘(ﬂf(l))fsz-(‘bsi(x(l)a Yy )+ + %(ﬂf(k))fsi(q)si(ﬂf(k),yj‘yj‘))} :

si—1 gi—1 i
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It should be noted that, each, (2., (z«,y;,)) in the equations above corresponds to an entry
in the channel transition matrig* at states;. We also know that, the rows of the sub-array
Qsl are permutations of each other. In other words, eadl®,, (z¢),y;,)) value appears exactly

k times (once in each row) in the sub-arr@y’. Thus, the feedback control actign(z(;) is
multiplied by a differentf;, (®,(z(), y;,)) value for eacht = 1,...,]Y;| in the P(y;,|y"~') given
above. Thereforey" P!l P(Y; = v;,ly""1) is equal to

1] el
Z P = yjt|yi_l) = Z X(’L — 1 Z k(1 — 1 Z (Pz Z fsz s,L yjt))
si—1 gi-1 si
k 21
- Z x(i —1) Zm(i —1) Z(Pi ch Yilray,si)  (27)
| %1
SR SR RIS STOTIR @)

where (27) follows sincef,(®,(x,y)) = pe(y|x,s) and (28) is valid since each rows in the
channel transition matrix are permutations of each othet am suchZ‘tyJ1 Pe(Yi Ty, i) 1S
identical for eachz(, and finally noting thatzl:1 @i(xq)) = 1 verifies (28). The critical
observation is that the value attained by (28) is independéithe feedback control actions.
Similarly, for all the othemn — 1 sub-arrays, their conditional output sums will be indeperid

of the feedback control actions. Let us denote these sumQ;by..,2,,. More specifically

for sub-arrayj, let 2, = ‘tﬁ' P(Y; = y;,|y*"1). Then the maximization of equation (22) now
becomes,
m |Vl
argmax Z Z Q;logQ,, (29)

j=1 t=1
where > " Z'tﬁ‘ Qi =1landQ;, = P(Y; = y;,ly"™Y), t =1,...,|Y], j=1,...,m. For
each sub-array, we need to find the), , values that maximizgjgjl‘ Q;,log ;. By the log-sum

inequality, we have that
NZ1 RZ1 IyJ

Q4
— E Q]thngt < — E thlog |y ‘ (30)
J

with equality if and only |f

Qj,t = Qs,w VS,’(U S {177|y]|} (31)
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In other words, for the sub-array, the conditional entropy is maximized if and only if the
conditional output probabilities in this sub-array arentieal. Since this fact is valid for the
other sub-arrays, to maximize the conditional entropy wedn® (31) to be valid for all sub-
arrays.

At this point, we have shown that the conditional output@pyris maximized if the conditional
output probabilities are identical for each sub-array. ideo to complete this step, we have to
show that this is achieved by uniform input distributions.

Now, let us consider two conditional output probabiliti€3(Y; = y;,

y= 1) and P(Y; =
y;,ly""1), in sub-arrayj. ThenP(Y; = y,.|y" ) = P(Y; = y;,|y* ') is implied by

wi(za) fs: (P(z @y, y5,)) Z% ) s (@(z ), v5)- (32)

||M»

However, for a fixed outpqu:1 [s:(®(z@),y5,)) is equal to the sum of the column corresponding
to outputy;, (similarly for y;,) and since sub-array is weakly symmetric, the column sums
are identical. Therefore, (32) can be achieveg,ifr ) = ¢i(T(m)) = l Vim=1,...k by

Yl = P(Y; = |y = & S0 £ (®(2a), ,)- Thus for other
sub-arrays since they are also weakly-symmetric, the tmifieedback control action will also

which we getP(Y; = y;,

satisfy the equivalence of conditional output probalgti [ |
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