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Abstract—We consider a Bonferroni-type lower bound due to Kounias
on the probability of a finite union. The bound is expressed in terms of
only the individual and pairwise event probabilities; however, it suffers
from requiring an exponentially complex search for its direct implemen-
tation. We address this problem by presenting a practical algorithm for
its evaluation. This bound is applied together with two other bounds, a re-
cent lower bound (the KAT bound) and a greedy algorithm implementa-
tion of an upper bound due to Hunter, to examine the symbol error( P,)
and biterror (B;) probabilities of an uncoded communication system used
in conjunction with M -ary phase-shift keying (PSK)/quadrature ampli-
tude (QAM) (PSK/QAM) modulations and maximum a posteriori(MAP)
decoding over additive white Gaussian noise (AWGN) channels. It is shown
that the bounds—which can be efficiently computed—provide an excellent
estimate of the error probabilities over the entire range of the signal-to-
noise ratio (SNR) E,/IN,. The new algorithmic bound and the greedy
bound are particularly impressive as they agree with the simulation results
even during very severe channel conditions.

Index Terms—Additive white Gaussian noise (AWGN) channels, bit error
rate (BER), lower bound, maximum a posteriori (MAP) and maximum-
likelihood (ML) decoding, probability of a union, phase-shift keying (PSK)
and quadrature amplitude (QAM) modulations, symbol error rate, upper
bound.
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source is transmitted via coheréwt-ary phase-shift keying (PSK) and
quadrature amplitude modulation (QAM) signaling with Gray code bit
mapping over additive white Gaussian noise (AWGN) channels. We
nextinvestigate the application of the two algorithmic bounds (the step-
wise algorithm lower bound and the greedy algorithm implementation
of the Hunter upper bound) and the KAT lower bound to the probabil-
ities of symbol errorP,; and bit errorP, for this system. The justifi-
cation for the nonuniformity assumption of the source stems from the
fact that in many practical image and speech compression techniques,
after some transformation, the transform coefficients are turned into
bit streams (binary source). Due to the suboptimality of the compres-
sion scheme, the bit stream often exhibits a certain amount of redun-
dancy [3], [6], [13], [29]. This embedded residual redundancy can be
characterized by modeling the bit stream as an independent and identi-
cally distributed (i.i.d.) nonuniform (Bernoulli) process or as a Markov
process [2], [3], [6], [17], [18].

When a nonuniformi/ -ary signals,, is transmitted over an AWGN
channel, maximura posteriori(MAP) decoding—which is optimal in
the sense of minimizing the symbol error probability—is utilized at the
receiver. Moreover, the more nonuniform the source is, the better is the
system performance under the MAP decoding criterion ([2], [6], [13],
see also Section IV). Under the MAP decoding rule, the symbol error
probability can be written as

M

P, = Z P(e|su)P(s4)

u=1

We consider a Bonferroni-type [12] lower bound on the probabilitwhere P(¢ | s,,) is the conditional probability of error given thaf,
P(A1 U---U Ay) of afinite union of N events. This bound—which was sent, and®(s,,) is the probability of transmitting signal,. For
is due to Kounias [16]—is expressed in terms of only the individuahost signal sets, an exact calculation of the right-hand side of the
(P(A:)’s) and pairwise P(A4; N A;)’s) event probabilities. It is ob- above equation is very difficult due to the complexity and nonsymmet-
tained as an optimal bound over a family of bounds which is indexeidal structure of the decision regions. For this reason, upper and lower
by the set of all subsets dfl,2,..., N}; thus a direct search to de-bounds onP. are of importance. Furthermore, calculation of the bit
termine the optimal bound requires a search @&/&r— 1 nonempty error probabilityP, is more complex than computing. by an order
subsets, which is of exponential complexity. We have found in expedf magnitude. In this work, the above three bounds are employed to
ments in which various lower bounds were compared for small valuestimateP, and P,. The numerical computations of the bounds are
of V that the above bound was almost always the tightest. Thus it issifown to be excellent as both the stepwise lower bound and the greedy
interest to have a practical implementation of this bound, or a near-aypper bound often coincide and agree with the simulation results even
timal instance of it. when the channel is very noisy.

Inthis correspondence, we provide a novel stepwise algorithm whichin previous related work [7], Craig provided an elegant method for
implements a suboptimal version of the Kounias lower bound; the cogbmputingP. for two-dimensional -ary signaling over AWGN chan-
plexity of this algorithm is empirically observed (in our applicationshels. Although he implemented his technique exclusively for uniformly
to be usually linear inV and at worsO(N?). It is worth mentioning  distributed (equally likely) signaling used with maximum-likelinood
that this proposed algorithmic bound, along with a recent lower bouwiL) decoding, he briefly considered the problem of nonuniform sig-
established by the authors in [19] (the KAT bound) and a greedy algsaling (with MAP decoding) and gave an expressionfofcf. [7, egs.
rithm [1]implementation of an upper bound due to Hunter [14], providg 3) and (14)]). However, [7, eq. (13)] is not completely correct, as it
new and computationally efficient techniques for error analysis of a vassumes that each signal is inside its decision region which is not nec-
riety of communication systems which have been traditionally handlegdsarily true for nonuniform signals with MAP decoding. Moreover,
using the union upper bound and variations of it. this expression is a sum of single integrals, the number and limits of

One important communication system for which exact error probamich depend explicitly on the geometry of each decision region. In
bilities are not available is when a nonuniformly distributed Bernoulthe case of uniform signaling, these regions are straightforward to de-

termine and are symmetrically shaped. But for nonuniform signaling,
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knowledge of the geometry of the decision regions. With this method,  Step 1:

we are also able to efficiently estimal for nonuniform signaling. — la:Augment7, by adding to it (if possible) the indexe S\ 7

In [4], [26], and [10], Craig’s method was extensively generalized such that the term in braces on the RHS of (1) is maximized and
to provide a unified framework for the determination &f for var- M U{i}) > M(7).
ious uniform modulation schemes over generalized fading channels. In-  1b: Shrink 7> by deleting from it (if possible) the indexe 7>
other work, the computation d?, for uniform M -ary PSK and QAM such that the term in braces on the RHS of (1) is maximized and

signaling over AWGN channels was investigated in [21], [15], and [20]. M(J\{j}) > M(J2).
In an approach similar in spirit to our correspondence, Séguin [23] em- « Step 2:Repeat Step 1 until the term in braces on the RHS of (1)
ployed an inequality by de Caen [9] to derive a lower bound on the can no longer be improved in either Steps 1a or 1b.
probability of codeword error of uniform/-ary signals derived from » Step 3:
binary linear codes and sent over AWGN channels. We note that de— 3a: Shrink 7; by deleting (if possible) the index € 71 such
Caen’s bound is weaker than the KAT lower bound [19]; thus the re-  that the term in braces on the RHS of (1) is maximized and
sults in [23] can be tightened using the bounds presented in this corre- M (7:\{j}) > M (/).
spondence. — 3b: Augment7z by adding to it (if possible) the indexe S\ 7

The rest of this correspondence is organized as follows. In Section  such that the term in braces on the RHS of (1) is maximized and
I, the three general bounds on the probability of a finite union of M(J2 U{i}) > M(J2).
events are described in detail. In Section Ill, the problem of estimating ¢ Step 4:Repeat Step 3 until the term in braces on the RHS of (1)
the symbol and bit error probabilities of nonuniforid-ary signals can no longer be improved in either Steps 3a or 3b.
transmitted via PSK/QAM modulation over ANGN channels is inves- ¢ Step 5:Repeat Steps 1-4 until the metrié can no longer be
tigated. Numerical results and discussions are presented in Section IV. improved. Output the stepwise lower bound as
Finally, conclusions are stated in Section V.

max{M(T), M(T2)}.

II. BOUNDS ON THEPROBABILITY OF A UNION The above algorithm actually implements the stepwise procedure

Consider a finite family of events, As,..., Ax in an arbitrary twice, once starting with the empty set and once starting with the

probability spacd(2, P), where N is a fixed positive integer. In this set of all indexesS, and chooses the better of the two results. In our
section, we present a practical algorithmic lower bounBtp), A;) applications we observed that, starting with either $eor(S), the
and briefly describe an algorithmic implementation of an upper bou@gorithm goes through a process of successively deleting or adding
due to Hunter [14] and a recent lower bound established by the authifidexes from the current subset at most once, resulting in a linear
in [19]. search complexity.
A. Stepwise Algorithm Lower Bound B. Greedy Algorithm Upper Bound
We herein describe an algorithmic upper bound on the probability
a union. As in the case for the lower bound, this upper bound is
gxpressed in terms of the individual and pairwise error probabilities.
We first present a family of upper bounds due to Hunter.

Theorem 1 ([14], [12]): Let Ay, A,..., An be N sets, where
N > 3.Then

In this subsection, we present an algorithmic lower bound on th?
probability of a finite union. The bound is a suboptimal instance &
the following bound by Kounias [16], which is generally infeasible t
determine exactly

N
P U Al) > max Z P(A;) — Z P(A; N Aj) Q) N N
<i:1 o v €T ’ P (Ul A) < ;P(Ai) - > PAin4)) 2)

(1,5)€To

where7 C S 2 {1,2,..., N}. We note that the above maximizationwhere 7, is any tree spanning thév indices of the setsd,,
requires a search ovet — 1 subsets; this results in a search complexitylz, . . ., Ax and(i, j) is an edge iffy.
that Increases exponenﬂally Wlm we S|gn|f|cantly reduce this com- .. SinceTy is arbitrary, the tightest bound in this family is obtained as
plexity by proposing a suboptimal algorithm whose search complexhtgnows,
is empirically observed (in our applications) to be usually linea¥in ' . .
and at worst)(V2). It employs a stepwise searching technique which ‘ -
is commonly l(Jsec; in statistics to search for the optimal subset of pre- ¥’ (U Ai) < ZP(AZ') R Z PAind;) @)
dictors in regression problems involving a large number of candidates =t =t (1.1 €Lo
(see, for example, [28]). In the statistical applications, the objectivghereT is the set of all spanning trees of theindexes. This sef’ has
function is usually based on a goodness of fit measure, such as €2 elements [27]; thus a direct search to compute (3) has an expo-
Akaike Information Criterion (AIC) [28]. In our problem, the objec-nential complexity. However, the problem of finding the optimal tree
tive is to maximize the term in braces on the right-hand side (RHS) 4n be formulated as that of determining the maximal spanning tree of
(2). a completely connected weighted graphwith nodes corresponding to

Let M(7) denote the term in braces on the RHS of (1) for subsgie eventindexes and edge weights corresponding to the pairwise event
J C S. The basic idea of the algorithm is to (iteratively) construct grobabilities. Viewed in this way, the Greedy Algorithm [27], [1] (also
subset7 such that both\/ (7 U {i}) andAM (7\{j}) are not greater known as Kruskal's algorithm) for obtaining a minimal spanning tree
thanM (7) for any indexi ¢ 7 onindex;j € J. Specifically, the for a weighted graph can be applied to construct the optimal spanning
algorithm is as follows. treeT; for (3). The algorithm is described as follows.

Stepwise Algorithm: Greedy Algorithm: Consider a (fully) connected gragh with V

e Step 0:SetJi = B and > = S. SetM (7)) = 0 and compute vertices and ’QV) edgeqi, j) of weightsP(A,; N A4;). Construct a set

M(J2). of edgesT; as follows.
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« Step 0:1p = 0. A. Average Symbol Error Rate
» Step 1:Add to T, the edge with maximum weight.
» Step 2:From the remaining edges, addTe the edge with max-
imum weight subject to the constraint that remain cycle-free. M M
« Step 3:Repeat Step 2 until, containsN — 1 edges. P, =) Ple|su)P(su) =D P <
u=1

The probability of symbol decoding errét; is

U fiu,> P(Su) (5)

iFu

u=1
The complexity of this algorithm is theoretically at wofstN?) [1].
However, as for the stepwise bound, we observed in our applicationdBereP (¢ | s.) is the conditional probability of error given that was
search complexity that was usually linear. We also note that there ex&@§it, and.. represents the event thathas a higher MAP metric than
an improved implementation of this algorithm which has theoreticalfy. given thats, was sent. Therefore,

72 :
at worstO(N?) search complexity [1]. Plein) = Pr{p(r|s)p(si) > p(r | 5a)p(s4)} ©6)
C. KAT Lower Bound and |
P(eiw Neju) = Pr{p(r|s:)p(s:) > p(r|5.)p(54),

In [19], Kuai, Alajaji, and Takahara prove the following bound.
p(r]s;)p(s;) = p(r | su)p(su)}

Theorem 2 ([19]): KAT lower bound
The RHS of (6) can be easily reduced to

N N . . .
P U A )2 Z N 0: ()" Pr{Nolnp(s;) — ||n + su — .S‘i||2 > Nolnp(s,) — ||71,||2}
TS\ o P(AiN A + (1= 6:)P(A)

= which is

N (1-6)P(4)° @ (e
YL P(AiNA)) — 6, P(A)) ppd VHusimsu) o llsi—sull  Nolmiey |
VNol|lsi — sull = V2No V2Ng||si — sul|
where ]
Notice that
et |2 Xi= )
VNollsi = sull
FAN
ai = P(4i) is Gaussian witl)-mean and unit variance. Then
and
diu V2No In P(sy)/P(s;
52 S PN A,). P(ei) = Q <\/W + == 2d(7;,, )/ )>
i
and similarly
In [19], it was also demonstrated that de Caen’s lower bound [9] and diw V2NoIn P(s.)/P(s:)
the Dawson—Sankoff lower bound [8] are special cases of the above P(€iu Neju) = ¥ { piju, JIN, + 2. ’
lower bound. Wherd; = 0 for all 7, the KAT lower bound reduces J. ) /2Ns In P(s,)/P(s)
to de Caen’s bound; when the rati#p/«; is constant, it reduces to :"“; + Noln P(s.)/P(s; ) )
Dawson—Sankoff's bound. Furthermore, it is shown in [19] that the V2No 2dju
KAT bound is always sharper than these two bounds. where
l1l. N ONUNIFORM SIGNALING OVER AWGN CHANNELS diu = ”sé — Sull
o §i— SuySj — Su
We apply the bounds to estimate the symbol error probakility) Piju = [si = sull - Is5 — sull
and the bit error probabilityF;) of nonuniformAZ-PSK or A -QAM 1 00 )
modulated AWGN channels. The problem formulation is as follows. Qx) = \/?/ exp(—y~/2)dy

We consider a nonuniform i.i.d. binary sour¢&’; }, with distri-
bution P{X = 0} = p, that is transmitted vid/-PSK or A/-QAM _ 1 O T R
modulation over an AWGN channel with single-sided power spectra?(pij”’a"b) - %F /a /b ¢ o
density Ny. The source stream is grouped in blocksl@f, M bits Pigu
which are each subsequently mapped to a modulation signal T/%ere” .|| is the Euclidean norm and,-) denotes the usual dot
transmission over the channel (we assume fats a power of2). product.

At the receiver, optimal MAP decoding is performed in estimating |;ye apply the algorithms in Sections II-A and 1I-B and Theorem 2
the transmitted/ -ary signal. More specifically, if one o/ signals 4 P(U#u ¢:) and substitute in (5), we obtain two lower bounds and

(ﬂ’Z*QPijumeryZ)

) dx dy

s1,2,..., 51 IS sent, then the MAP decoder declares thawas  one ypper bound of, in terms of P(e;, ), P(ciu N ¢ju), andP(s.,).
sentif, fori = 1,2,..., M andi # k, the MAP metric ofs, is bigger '
than the metric of;; i.e., B. Average Bit Error Rate (BER)
In many cases, the bit error probability is a more useful performance
P(sg|r) > P(si|r) measure. Under the MAP decoding criterion, the bit error probability

P, can be written as
wherer = s, + n is the received signal andis Gaussian distributed v
noise with zero-mean and covariance matf¥ /2) I, wherel. is the P, = Z Py(u)P(s.)
2 x 2 identity matrix.

u=1
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where IV. NUMERICAL RESULTS AND DISCUSSION
Py(u) = ;E(# of bit errors|s, is sent) In this section, we apply the results of Sections Il and 11l to present
log, M bounds for the probability of symbol errd?, and bit errorP, for
1 nonuniform signals with 8-PSK, 16-PSK, 32-PSK, and 16-QAM mod-
= m - d(cjs cu)Ajras (®) ulation (using Gray mapping) over AWGN channels. We consider
=t 0.5 and0.9 for the probability that an input source bit is zero. The re-
and sults for symbol and bit error are displayed in terms of the signal-to-
Ajju = P(s; is decoded|s, is sent) noise ratio (SNR)2, /No, whereE, is the energy per information bit.
The SNR ranges considered are all from SNR-4 to SNR= £, with
=1-r (U{P(s,- |7) > P(sj|r)|suis Sent}> h ranging from4 to 14, so the focus is on noisy channels for which
i) the usual union bound performs poorly. For evaluation of the bounds,
we also provide simulation results fpr= 0.9. We provide the union
=1-r <U f'?.i“) ©) upper bound in the plots for symbol-error rate (SER). We do not show
73 the KAT-based upper bound in the bit-eror rate (BER) plots, as its per-
_ / . . . formance in relation to the stepwise bound is similar to its performance
whereu = 1,..., M, ¢; andc, are the bit assignments for signals,

in the SER plots.

We first consider the cage = 0.5 for which MAP estimation is
equivalent to ML estimation. We note that for= 0.5 with M -PSK or
M-QAM modulation, exact methods are available for (e.g., [22])
andP, ([21], [15], [20]), so that bounds are unnecessary. However, for
M-PSK modulationl M = 8,16, 32) we have found the lower and
upper bounds for both symbol err@P, ) and bit error{ P, ) derived in

N Y TV D N N Sections IlI-A and I11-B, based on the stepwise and greedy bounds from
Pleiu) = Prip(r|siplsi) 2 plr |é])p(‘”3 |su 35 sent} Sections II-A and II-B, to coincide, and agree with the exact values for
=Pr{Nolnp(si) = lln + su — sil]” P, and P,. Thus either of these bounds may simply be viewed as al-

> Nolnp(s;) — ||n+ su — 5;]|°} ternative methods for computing the exact symbol- or bit-error rates

s; ands.,, respectivelyd(c,, c.) is the Hamming distance between
andc,, ande; j,, represents the event that symbphas a higher metric
than symbols; given that symbok, was sent. As in the case for the
symbol error probabilityP(e; ;. ) andP(e; ;. Neg;. ) can be expressed
in terms of theR)(-) and¥(-) functions, respectively. More precisely,
we obtain that

o N g 22 in these cases. For the 16-QAM case, we plot the symbol and bit er-
= Pr V2n,si = 55) ) rors in Figs. 1 and 2. Though not exact for this case, the stepwise and
VNollsi = sill = V2Nollsi = sl greedy-based bounds are excellent over the entire range of SNR values.
, ) We also show in these figures the simulation results for a highly nonuni-
N llsi —sull®™ sy — sull form source withp = 0.9. These curves, when compared with the plots
V2No|lsi — s;||  V2Nol|si — sj| for p = 0.5, illustrate the fact that the system performance is consid-
- erably improved via increased nonuniformity and the use of MAP de-
_ [ MemiEs ls: = sall” coding.
- V2Nollsi = s;ll | V2Nol|si — s5]] As mentioned, exact methods are available in the case of uniform
signals. The use of these bounds provides equally precise probabilities
lls; — sull? in a practical sense. Their added value is that the same code can be used
- m (10) o estimate performance for nonuniform signals, which are considered

in the following.
For the case of nonuniform signaling, we have found no published
Pleiju Nerju) = Pr{p(r|si)p(si) > p(r|s;)p(s;), results for efficiently calculatin@; or P, exactly; thus bounds are very
p(r|si)p(se) 2 p(r|s;)p(s;)} useful. In Figs. 3 to 6, the bounds for the symbol- and bit-error rates
o p(sy) are plotted fop = 0.9. In all cases, the stepwise and greedy bounds
— 0 pin; NoIn p(s:) provide excellent results, being very close to exact over the entire range
V2N |Isi — sl of SNR values. The union upper bound for SER, as expected, does not
perform well at lower SNR, particularly for the 32-PSK case in Fig. 5.

and

s —sull® Il = sull® , The KAT lower bound for the SER provides very good results,
V2Nollsi = 551l V2Nollsi — 5] though not as good as the stepwise lower bound for SER, and the
NoIn fESi)) . llsk = sall? accuracy seems to degrade /&5 increases in the case aff-PSK

— modulation. It should be remembered, however, that the KAT lower

V2Nollsi = s5ll - V2Nollsi = 5] bound is a single formula which, given the single and pairwise event
Is; — sull? 11 error probabilities, does not involve a search over a large class of

- W—%H 11 bounds, and so may be more practical for applications which involve

a very large number of events in the union of interest; for example, in

where analyzing code or BERs in complex coded systems (cf. [23]).

For the applications considered in this correspondence, all bounds

(5i — 85,85 — 5;) were practical to compute. For the SER curves, for a given value of

Piki = llsi — sill - llsx — 5] SNR, and including the time to calculate all the single and pairwise

event probabilities, the combined computing time to calculate all
Finally, applying the algorithms in Sections II-A and 11-B and Theorerbounds (KAT, stepwise, greedy, and union) was less than a second for
2to P(Ui# €;u) in (9) yields two upper bounds and one lower boun&-PSK and 1 or 2 s for 32-PSK, on a computer with a 266-MHz MMX
on the bit error probability?;. Pentium chip running Linux. For th&, plots (described below), the
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Fig. 4. Symbol error rat@’; and BERP, for 16-PSK,p = 0.9.

Fig. 2. BERP, for 16-QAM. ) )
We next mention the algorithms used to compute(ghend« func-

tions of Sections Ill-A and I1I-B. For)(-), we adopted the algorithm
corresponding times for just the KAT upper bound (computed bdeveloped by Beaulieu [5], which takes only a few lines of code and
not shown in this correspondence) were less than a second everwfbich we have found to be very efficient and accurate. Fordike
32-PSK, while the times for the stepwise or greedy bounds were abéurction, we adopted an algorithm for computing bivariate normal tail
1 s for 8-PSK and up to 2 min for 32-PSK. probabilities written in Fortran by Donnelly [11] (see also [24]). We
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note that naive computation of the double integral in®e) function
by simple numerical integration rules results in a very inefficient al-
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tegrals over finite ranges. For uniform signaling, the lower limits in
(7) or (11) are both nonnegative, but for nonuniform signaling, one or
both of these limits can be negative, in which case¥hieinction can

be expressed as a linear combination of four instances o¥ theac-

tion with nonnegative lower limits. However, with the application of
Simpson’s composite numerical integration rule, this method proved
much less efficient for a given accuracy as compared with Donnelly’s
algorithm, which is based on rational function approximations. Thus
the latter method was adopted.

Additional results for the computation of the SER and BER bounds
whenp = 0.7 were obtained. The accuracy of the stepwise and greedy
bounds were again shown to be excellent. However, we do not include
them for the sake of brevity.

V. CONCLUSION

A stepwise algorithmic lower bound on the probability of a finite
union, which is expressed in terms of only the individual and pairwise
intersection event probabilities, was presented. This bound is a prac-
tical implementation of a bound that is otherwise exponentially com-
plex to evaluate.

This bound along with two other bounds, a recent lower bound due
to the authors (the KAT bound) and a greedy algorithm implementation
of an upper bound due to Hunter, were applied for the estimation of the
symbol and bit error probabilities of nonuniforif -PSK/QAM sig-
naling over very noisy AWGN communication channels used in con-
junction with MAP decoding. The stepwise and greedy bounds pro-
vided excellent and often exact estimatesbfand P, for all exam-
ples considered. The KAT bound was also shown to provide very good
bounds for most cases considered. The main advantage of the KAT
bound is its computational simplicity, which can be an advantage when
one wishes to calculate the probability of the union of a very large
number of events, or the probability of a small or moderate union many
times.

It should be noted that the bounds we have presented are very gen-
eral and can be applied to any problem involving calculation of the
probability of events which can be expressed as a finite union of events
whose individual and pairwise intersection probabilities can be effi-
ciently computed. Future work may include the application of these
bounds to Rayleigh fading channels and the analysis of channel coded
communication systems with nonuniform inputs using MAP decoding.
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