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Abstract—We consider a Bonferroni-type lower bound due to Kounias
on the probability of a finite union. The bound is expressed in terms of
only the individual and pairwise event probabilities; however, it suffers
from requiring an exponentially complex search for its direct implemen-
tation. We address this problem by presenting a practical algorithm for
its evaluation. This bound is applied together with two other bounds, a re-
cent lower bound (the KAT bound) and a greedy algorithm implementa-
tion of an upper bound due to Hunter, to examine the symbol error( )
and bit error ( ) probabilities of an uncoded communication system used
in conjunction with -ary phase-shift keying (PSK)/quadrature ampli-
tude (QAM) (PSK/QAM) modulations and maximum a posteriori(MAP)
decoding over additive white Gaussian noise (AWGN) channels. It is shown
that the bounds—which can be efficiently computed—provide an excellent
estimate of the error probabilities over the entire range of the signal-to-
noise ratio (SNR) . The new algorithmic bound and the greedy
bound are particularly impressive as they agree with the simulation results
even during very severe channel conditions.

Index Terms—Additive white Gaussian noise (AWGN) channels, bit error
rate (BER), lower bound, maximum a posteriori (MAP) and maximum-
likelihood (ML) decoding, probability of a union, phase-shift keying (PSK)
and quadrature amplitude (QAM) modulations, symbol error rate, upper
bound.

I. INTRODUCTION

We consider a Bonferroni-type [12] lower bound on the probability
P (A1 [ � � � [AN ) of a finite union ofN events. This bound—which
is due to Kounias [16]—is expressed in terms of only the individual
(P (Ai)’s) and pairwise (P (Ai \ Aj)’s) event probabilities. It is ob-
tained as an optimal bound over a family of bounds which is indexed
by the set of all subsets off1; 2; . . . ; Ng; thus a direct search to de-
termine the optimal bound requires a search over2N � 1 nonempty
subsets, which is of exponential complexity. We have found in experi-
ments in which various lower bounds were compared for small values
ofN that the above bound was almost always the tightest. Thus it is of
interest to have a practical implementation of this bound, or a near-op-
timal instance of it.

In this correspondence, we provide a novel stepwise algorithm which
implements a suboptimal version of the Kounias lower bound; the com-
plexity of this algorithm is empirically observed (in our applications)
to be usually linear inN and at worstO(N2). It is worth mentioning
that this proposed algorithmic bound, along with a recent lower bound
established by the authors in [19] (the KAT bound) and a greedy algo-
rithm [1] implementation of an upper bound due to Hunter [14], provide
new and computationally efficient techniques for error analysis of a va-
riety of communication systems which have been traditionally handled
using the union upper bound and variations of it.

One important communication system for which exact error proba-
bilities are not available is when a nonuniformly distributed Bernoulli
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source is transmitted via coherentM -ary phase-shift keying (PSK) and
quadrature amplitude modulation (QAM) signaling with Gray code bit
mapping over additive white Gaussian noise (AWGN) channels. We
next investigate the application of the two algorithmic bounds (the step-
wise algorithm lower bound and the greedy algorithm implementation
of the Hunter upper bound) and the KAT lower bound to the probabil-
ities of symbol errorPs and bit errorPb for this system. The justifi-
cation for the nonuniformity assumption of the source stems from the
fact that in many practical image and speech compression techniques,
after some transformation, the transform coefficients are turned into
bit streams (binary source). Due to the suboptimality of the compres-
sion scheme, the bit stream often exhibits a certain amount of redun-
dancy [3], [6], [13], [29]. This embedded residual redundancy can be
characterized by modeling the bit stream as an independent and identi-
cally distributed (i.i.d.) nonuniform (Bernoulli) process or as a Markov
process [2], [3], [6], [17], [18].

When a nonuniformM -ary signalsu is transmitted over an AWGN
channel, maximuma posteriori(MAP) decoding—which is optimal in
the sense of minimizing the symbol error probability—is utilized at the
receiver. Moreover, the more nonuniform the source is, the better is the
system performance under the MAP decoding criterion ([2], [6], [13],
see also Section IV). Under the MAP decoding rule, the symbol error
probability can be written as

Ps =

M

u=1

P (� j su)P (su)

whereP (� j su) is the conditional probability of error given thatsu
was sent, andP (su) is the probability of transmitting signalsu. For
most signal sets, an exact calculation of the right-hand side of the
above equation is very difficult due to the complexity and nonsymmet-
rical structure of the decision regions. For this reason, upper and lower
bounds onPs are of importance. Furthermore, calculation of the bit
error probabilityPb is more complex than computingPs by an order
of magnitude. In this work, the above three bounds are employed to
estimatePs andPb. The numerical computations of the bounds are
shown to be excellent as both the stepwise lower bound and the greedy
upper bound often coincide and agree with the simulation results even
when the channel is very noisy.

In previous related work [7], Craig provided an elegant method for
computingPs for two-dimensionalM -ary signaling over AWGN chan-
nels. Although he implemented his technique exclusively for uniformly
distributed (equally likely) signaling used with maximum-likelihood
(ML) decoding, he briefly considered the problem of nonuniform sig-
naling (with MAP decoding) and gave an expression forPs (cf. [7, eqs.
(13) and (14)]). However, [7, eq. (13)] is not completely correct, as it
assumes that each signal is inside its decision region which is not nec-
essarily true for nonuniform signals with MAP decoding. Moreover,
this expression is a sum of single integrals, the number and limits of
which depend explicitly on the geometry of each decision region. In
the case of uniform signaling, these regions are straightforward to de-
termine and are symmetrically shaped. But for nonuniform signaling,
these regions are nonsymmetric and are shaped differently for each
signal. More specifically, each decision region is a (possibly infinite)
polygon with up toM � 1 sides determined by the intersection of
M�1 half-planes, where the equation of each half-plane boundary is a
function of thea priori signal probabilities and the channel noise vari-
ance. We have not encountered any efficient and systematic methods
for numerically evaluating this expression in the literature. In this corre-
spondence, we employ a different approach which does not require any
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knowledge of the geometry of the decision regions. With this method,
we are also able to efficiently estimatePb for nonuniform signaling.

In [4], [26], and [10], Craig’s method was extensively generalized
to provide a unified framework for the determination ofPs for var-
ious uniform modulation schemes over generalized fading channels. In
other work, the computation ofPb for uniformM -ary PSK and QAM
signaling over AWGN channels was investigated in [21], [15], and [20].
In an approach similar in spirit to our correspondence, Séguin [23] em-
ployed an inequality by de Caen [9] to derive a lower bound on the
probability of codeword error of uniformM -ary signals derived from
binary linear codes and sent over AWGN channels. We note that de
Caen’s bound is weaker than the KAT lower bound [19]; thus the re-
sults in [23] can be tightened using the bounds presented in this corre-
spondence.

The rest of this correspondence is organized as follows. In Section
II, the three general bounds on the probability of a finite union of
events are described in detail. In Section III, the problem of estimating
the symbol and bit error probabilities of nonuniformM -ary signals
transmitted via PSK/QAM modulation over AWGN channels is inves-
tigated. Numerical results and discussions are presented in Section IV.
Finally, conclusions are stated in Section V.

II. BOUNDS ON THEPROBABILITY OF A UNION

Consider a finite family of eventsA1; A2; . . . ; AN in an arbitrary
probability space(
; P ), whereN is a fixed positive integer. In this
section, we present a practical algorithmic lower bound toP ( N

i=1 Ai)
and briefly describe an algorithmic implementation of an upper bound
due to Hunter [14] and a recent lower bound established by the authors
in [19].

A. Stepwise Algorithm Lower Bound

In this subsection, we present an algorithmic lower bound on the
probability of a finite union. The bound is a suboptimal instance of
the following bound by Kounias [16], which is generally infeasible to
determine exactly

P

N

i=1

Ai � max
J

i2J

P (Ai)�
i;j2J
i<j

P (Ai \ Aj) (1)

whereJ � S
4
= f1; 2; . . . ; Ng. We note that the above maximization

requires a search over2N�1 subsets; this results in a search complexity
that increases exponentially withN . We significantly reduce this com-
plexity by proposing a suboptimal algorithm whose search complexity
is empirically observed (in our applications) to be usually linear inN

and at worstO(N2). It employs a stepwise searching technique which
is commonly used in statistics to search for the optimal subset of pre-
dictors in regression problems involving a large number of candidates
(see, for example, [28]). In the statistical applications, the objective
function is usually based on a goodness of fit measure, such as the
Akaike Information Criterion (AIC) [28]. In our problem, the objec-
tive is to maximize the term in braces on the right-hand side (RHS) of
(1).

Let M(J ) denote the term in braces on the RHS of (1) for subset
J � S . The basic idea of the algorithm is to (iteratively) construct a
subsetJ such that bothM(J [ fig) andM(J nfjg) are not greater
thanM(J ) for any indexi 62 J on indexj 2 J . Specifically, the
algorithm is as follows.

Stepwise Algorithm:

• Step 0:SetJ1 = ; andJ2 = S . SetM(J1) = 0 and compute
M(J2).

• Step 1:
– 1a:AugmentJ1 by adding to it (if possible) the indexi 2 SnJ1

such that the term in braces on the RHS of (1) is maximized and
M(J1 [ fig) > M(J1).

– 1b: ShrinkJ2 by deleting from it (if possible) the indexj 2 J2

such that the term in braces on the RHS of (1) is maximized and
M(J2nfjg) > M(J2).

• Step 2:Repeat Step 1 until the term in braces on the RHS of (1)
can no longer be improved in either Steps 1a or 1b.

• Step 3:
— 3a: ShrinkJ1 by deleting (if possible) the indexj 2 J1 such

that the term in braces on the RHS of (1) is maximized and
M(J1nfjg) > M(J1).

— 3b:AugmentJ2 by adding to it (if possible) the indexi 2 SnJ2

such that the term in braces on the RHS of (1) is maximized and
M(J2 [ fig) > M(J2).

• Step 4:Repeat Step 3 until the term in braces on the RHS of (1)
can no longer be improved in either Steps 3a or 3b.

• Step 5:Repeat Steps 1–4 until the metricM can no longer be
improved. Output the stepwise lower bound as

maxfM(J1);M(J2)g:

The above algorithm actually implements the stepwise procedure
twice, once starting with the empty set and once starting with the
set of all indexesS , and chooses the better of the two results. In our
applications we observed that, starting with either set (; or S), the
algorithm goes through a process of successively deleting or adding
indexes from the current subset at most once, resulting in a linear
search complexity.

B. Greedy Algorithm Upper Bound

We herein describe an algorithmic upper bound on the probability
of a union. As in the case for the lower bound, this upper bound is
expressed in terms of the individual and pairwise error probabilities.
We first present a family of upper bounds due to Hunter.

Theorem 1 ([14], [12]): Let A1; A2; . . . ; AN be N sets, where
N � 3. Then

P

N

i=1

Ai �
N

i=1

P (Ai)�
(i;j)2T

P (Ai \Aj) (2)

where T0 is any tree spanning theN indices of the setsA1;

A2; . . . ; AN and(i; j) is an edge inT0.

SinceT0 is arbitrary, the tightest bound in this family is obtained as
follows:

P

N

i=1

Ai �
N

i=1

P (Ai)� max
T 2T

(i;j)2T

P (Ai \Aj) (3)

whereT is the set of all spanning trees of theN indexes. This setT has
NN�2 elements [27]; thus a direct search to compute (3) has an expo-
nential complexity. However, the problem of finding the optimal tree
can be formulated as that of determining the maximal spanning tree of
a completely connected weighted graphGwith nodes corresponding to
the event indexes and edge weights corresponding to the pairwise event
probabilities. Viewed in this way, the Greedy Algorithm [27], [1] (also
known as Kruskal’s algorithm) for obtaining a minimal spanning tree
for a weighted graph can be applied to construct the optimal spanning
treeT0 for (3). The algorithm is described as follows.

Greedy Algorithm: Consider a (fully) connected graphG with N
vertices and(N2 ) edges(i; j) of weightsP (Ai \ Aj). Construct a set
of edgesT0 as follows.
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• Step 0:T0 = ;.
• Step 1:Add toT0 the edge with maximum weight.
• Step 2:From the remaining edges, add toT0 the edge with max-

imum weight subject to the constraint thatT0 remain cycle-free.
• Step 3:Repeat Step 2 untilT0 containsN � 1 edges.

The complexity of this algorithm is theoretically at worstO(N3) [1].
However, as for the stepwise bound, we observed in our applications a
search complexity that was usually linear. We also note that there exists
an improved implementation of this algorithm which has theoretically
at worstO(N2) search complexity [1].

C. KAT Lower Bound

In [19], Kuai, Alajaji, and Takahara prove the following bound.

Theorem 2 ([19]): KAT lower bound

P

N

i=1

Ai �
N

i=1

�iP (Ai)
2

N

j=1 P (Ai \Aj) + (1� �i)P (Ai)

+
(1� �i)P (Ai)

2

N

j=1 P (Ai \Aj)� �iP (Ai)
(4)

where

�i
4
=

�i
�i

� �i
�i

�i
4
= P (Ai)

and

�i
4
=

j:j 6=i

P (Ai \ Aj):

In [19], it was also demonstrated that de Caen’s lower bound [9] and
the Dawson–Sankoff lower bound [8] are special cases of the above
lower bound. When�i = 0 for all i, the KAT lower bound reduces
to de Caen’s bound; when the ratio�i=�i is constant, it reduces to
Dawson–Sankoff’s bound. Furthermore, it is shown in [19] that the
KAT bound is always sharper than these two bounds.

III. N ONUNIFORM SIGNALING OVER AWGN CHANNELS

We apply the bounds to estimate the symbol error probability(Ps)
and the bit error probability(Pb) of nonuniformM -PSK orM -QAM
modulated AWGN channels. The problem formulation is as follows.

We consider a nonuniform i.i.d. binary sourcefXig, with distri-
butionPfX = 0g = p, that is transmitted viaM -PSK orM -QAM
modulation over an AWGN channel with single-sided power spectral
densityN0. The source stream is grouped in blocks oflog2M bits
which are each subsequently mapped to a modulation signal for
transmission over the channel (we assume thatM is a power of2).
At the receiver, optimal MAP decoding is performed in estimating
the transmittedM -ary signal. More specifically, if one ofM signals
s1; s2; . . . ; sM is sent, then the MAP decoder declares thatsk was
sent if, fori = 1; 2; . . . ;M andi 6= k, the MAP metric ofsk is bigger
than the metric ofsi; i.e.,

P (sk j r) � P (si j r)

wherer = su + n is the received signal andn is Gaussian distributed
noise with zero-mean and covariance matrix(N0=2)I2, whereI2 is the
2 � 2 identity matrix.

A. Average Symbol Error Rate

The probability of symbol decoding errorPs is

Ps =

M

u=1

P (� j su)P (su) =
M

u=1

P
i6=u

�iu P (su) (5)

whereP (� j su) is the conditional probability of error given thatsu was
sent, and�iu represents the event thatsi has a higher MAP metric than
su given thatsu was sent. Therefore,

P (�iu) = Prfp(r j si)p(si) � p(r j su)p(su)g (6)

and

P (�iu \ �ju) = Prfp(r j si)p(si) � p(r j su)p(su);
p(r j sj)p(sj) � p(r j su)p(su)g:

The RHS of (6) can be easily reduced to

PrfN0 ln p(si)� kn+ su � sik2 � N0 ln p(su)� knk2g

which is

Pr

p
2hn; si � suip
N0ksi � suk

� ksi � sukp
2N0

+
N0 ln

p(s )
p(s )p

2N0ksi � suk
:

Notice that

Xi =

p
2p

N0ksi � suk
hn; si � sui

is Gaussian with0-mean and unit variance. Then

P (�iu) = Q
diup
2N0

+

p
2N0 lnP (su)=P (si)

2diu

and similarly

P (�iu \ �ju) = 	 �iju;
diup
2N0

+

p
2N0 lnP (su)=P (si)

2diu
;

djup
2N0

+

p
2N0 lnP (su)=P (sj)

2dju
(7)

where

diu = ksi � suk;
�iju =

hsi � su; sj � sui
ksi � suk � ksj � suk

Q(x) =
1p
2�

1

x

exp(�y2=2)dy

	(�iju; a; b) =
1

2� 1� �2iju

1

a

1

b

e
�

dx dy

wherek � k is the Euclidean norm andh�; �i denotes the usual dot
product.

If we apply the algorithms in Sections II-A and II-B and Theorem 2
toP (

i6=u �iu) and substitute in (5), we obtain two lower bounds and
one upper bound onPs in terms ofP (�iu), P (�iu \ �ju), andP (su).

B. Average Bit Error Rate (BER)

In many cases, the bit error probability is a more useful performance
measure. Under the MAP decoding criterion, the bit error probability
Pb can be written as

Pb =

M

u=1

Pb(u)P (su)
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where

Pb(u) =
1

log
2
M

E(# of bit errors j su is sent)

=
1

log
2
M

M

j=1

d(cj ; cu)Aj=u; (8)

and

Aj=u = P (sj is decoded j su is sent)

= 1� P
i6=j

fP (si j r) � P (sj j r) j su is sentg

= 1� P
i6=j

�iju (9)

whereu = 1; . . . ;M; cj andcu are the bit assignments for signals
sj andsu, respectively,d(cj ; cu) is the Hamming distance betweencj
andcu, and�iju represents the event that symbolsi has a higher metric
than symbolsj given that symbolsu was sent. As in the case for the
symbol error probability,P (�iju) andP (�iju\�kju) can be expressed
in terms of theQ(�) and	(�) functions, respectively. More precisely,
we obtain that

P (�iju) = Prfp(r j si)p(si) � p(r j sj)p(sj) j su is sentg
= PrfN0 ln p(si)� kn+ su � sik2
� N0 ln p(sj)� kn+ su � sjk2g

= Pr

p
2hn; si � sjip
N0ksi � sjk

�
N0 ln

p(s )

p(s )p
2N0ksi � sjk

+
ksi � suk2p
2N0ksi � sjk

� ksj � suk2p
2N0ksi � sjk

= Q
N0 ln

p(s )

p(s )p
2N0ksi � sjk

+
ksi � suk2p
2N0ksi � sjk

� ksj � suk2p
2N0ksi � sjk

(10)

and

P (�iju \ �kju) = Prfp(r j si)p(si) � p(r j sj)p(sj);
p(r j sk)p(sk) � p(r j sj)p(sj)g

= 	 �ikj ;
N0 ln

p(s )

p(s )p
2N0ksi � sjk

+
ksi � suk2p
2N0ksi � sjk

� ksj � suk2p
2N0ksi � sjk

;

N0 ln
p(s )

p(s )p
2N0ksk � sjk

+
ksk � suk2p
2N0ksk � sjk

� ksj � suk2p
2N0ksk � sjk

(11)

where

�ikj =
hsi � sj ; sk � sji

ksi � sjk � ksk � sjk :

Finally, applying the algorithms in Sections II-A and II-B and Theorem
2 toP ( i6=j �iju) in (9) yields two upper bounds and one lower bound
on the bit error probabilityPb.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we apply the results of Sections II and III to present
bounds for the probability of symbol errorPs and bit errorPb for
nonuniform signals with 8-PSK, 16-PSK, 32-PSK, and 16-QAM mod-
ulation (using Gray mapping) over AWGN channels. We considerp =
0:5 and0:9 for the probability that an input source bit is zero. The re-
sults for symbol and bit error are displayed in terms of the signal-to-
noise ratio (SNR)Eb=N0, whereEb is the energy per information bit.
The SNR ranges considered are all from SNR= �4 to SNR= h, with
h ranging from4 to 14, so the focus is on noisy channels for which
the usual union bound performs poorly. For evaluation of the bounds,
we also provide simulation results forp = 0:9. We provide the union
upper bound in the plots for symbol-error rate (SER). We do not show
the KAT-based upper bound in the bit-eror rate (BER) plots, as its per-
formance in relation to the stepwise bound is similar to its performance
in the SER plots.

We first consider the casep = 0:5 for which MAP estimation is
equivalent to ML estimation. We note that forp = 0:5 with M -PSK or
M -QAM modulation, exact methods are available forPs (e.g., [22])
andPb ([21], [15], [20]), so that bounds are unnecessary. However, for
M -PSK modulation(M = 8; 16; 32) we have found the lower and
upper bounds for both symbol error(Ps) and bit error(Pb) derived in
Sections III-A and III-B, based on the stepwise and greedy bounds from
Sections II-A and II-B, to coincide, and agree with the exact values for
Ps andPb. Thus either of these bounds may simply be viewed as al-
ternative methods for computing the exact symbol- or bit-error rates
in these cases. For the 16-QAM case, we plot the symbol and bit er-
rors in Figs. 1 and 2. Though not exact for this case, the stepwise and
greedy-based bounds are excellent over the entire range of SNR values.
We also show in these figures the simulation results for a highly nonuni-
form source withp = 0:9. These curves, when compared with the plots
for p = 0:5, illustrate the fact that the system performance is consid-
erably improved via increased nonuniformity and the use of MAP de-
coding.

As mentioned, exact methods are available in the case of uniform
signals. The use of these bounds provides equally precise probabilities
in a practical sense. Their added value is that the same code can be used
to estimate performance for nonuniform signals, which are considered
in the following.

For the case of nonuniform signaling, we have found no published
results for efficiently calculatingPs orPb exactly; thus bounds are very
useful. In Figs. 3 to 6, the bounds for the symbol- and bit-error rates
are plotted forp = 0:9. In all cases, the stepwise and greedy bounds
provide excellent results, being very close to exact over the entire range
of SNR values. The union upper bound for SER, as expected, does not
perform well at lower SNR, particularly for the 32-PSK case in Fig. 5.

The KAT lower bound for the SER provides very good results,
though not as good as the stepwise lower bound for SER, and the
accuracy seems to degrade asM increases in the case ofM -PSK
modulation. It should be remembered, however, that the KAT lower
bound is a single formula which, given the single and pairwise event
error probabilities, does not involve a search over a large class of
bounds, and so may be more practical for applications which involve
a very large number of events in the union of interest; for example, in
analyzing code or BERs in complex coded systems (cf. [23]).

For the applications considered in this correspondence, all bounds
were practical to compute. For the SER curves, for a given value of
SNR, and including the time to calculate all the single and pairwise
event probabilities, the combined computing time to calculate all
bounds (KAT, stepwise, greedy, and union) was less than a second for
8-PSK and 1 or 2 s for 32-PSK, on a computer with a 266-MHz MMX
Pentium chip running Linux. For thePb plots (described below), the
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Fig. 1. Symbol error rateP for 16-QAM.

Fig. 2. BERP for 16-QAM.

corresponding times for just the KAT upper bound (computed but
not shown in this correspondence) were less than a second even for
32-PSK, while the times for the stepwise or greedy bounds were about
1 s for 8-PSK and up to 2 min for 32-PSK.

Fig. 3. Symbol error rateP and BERP for 8-PSK,p = 0:9.

Fig. 4. Symbol error rateP and BERP for 16-PSK,p = 0:9.

We next mention the algorithms used to compute theQ and func-
tions of Sections III-A and III-B. ForQ(�), we adopted the algorithm
developed by Beaulieu [5], which takes only a few lines of code and
which we have found to be very efficient and accurate. For the	(�)
function, we adopted an algorithm for computing bivariate normal tail
probabilities written in Fortran by Donnelly [11] (see also [24]). We



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000 2717

Fig. 5. Symbol error rateP and BERP for 32-PSK,p = 0:9.

Fig. 6. Symbol error rateP and BERP for 16-QAM, p = 0:9.

note that naive computation of the double integral in the	(�) function
by simple numerical integration rules results in a very inefficient al-
gorithm that takes over a day of computing to produce, for example,
the values for the SER curves for 16-PSK in Fig. 4. For nonnegative
lower limits, Simon and Divsalar [25] (see also [26]) provide an al-
ternate representation of the	 function as the sum of two single in-

tegrals over finite ranges. For uniform signaling, the lower limits in
(7) or (11) are both nonnegative, but for nonuniform signaling, one or
both of these limits can be negative, in which case the	 function can
be expressed as a linear combination of four instances of the	 func-
tion with nonnegative lower limits. However, with the application of
Simpson’s composite numerical integration rule, this method proved
much less efficient for a given accuracy as compared with Donnelly’s
algorithm, which is based on rational function approximations. Thus
the latter method was adopted.

Additional results for the computation of the SER and BER bounds
whenp = 0:7 were obtained. The accuracy of the stepwise and greedy
bounds were again shown to be excellent. However, we do not include
them for the sake of brevity.

V. CONCLUSION

A stepwise algorithmic lower bound on the probability of a finite
union, which is expressed in terms of only the individual and pairwise
intersection event probabilities, was presented. This bound is a prac-
tical implementation of a bound that is otherwise exponentially com-
plex to evaluate.

This bound along with two other bounds, a recent lower bound due
to the authors (the KAT bound) and a greedy algorithm implementation
of an upper bound due to Hunter, were applied for the estimation of the
symbol and bit error probabilities of nonuniformM -PSK/QAM sig-
naling over very noisy AWGN communication channels used in con-
junction with MAP decoding. The stepwise and greedy bounds pro-
vided excellent and often exact estimates ofPs andPb for all exam-
ples considered. The KAT bound was also shown to provide very good
bounds for most cases considered. The main advantage of the KAT
bound is its computational simplicity, which can be an advantage when
one wishes to calculate the probability of the union of a very large
number of events, or the probability of a small or moderate union many
times.

It should be noted that the bounds we have presented are very gen-
eral and can be applied to any problem involving calculation of the
probability of events which can be expressed as a finite union of events
whose individual and pairwise intersection probabilities can be effi-
ciently computed. Future work may include the application of these
bounds to Rayleigh fading channels and the analysis of channel coded
communication systems with nonuniform inputs using MAP decoding.
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Optimum Asymptotic Multiuser Efficiency of Randomly
Spread CDMA
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Abstract—This correspondence analyzes the high signal-to-noise ratio
(SNR) performance of optimum multiuser detectors for synchronous
direct-sequence spread spectrum with random spreading in an additive
white Gaussian noise channel. Under very general conditions on the
received powers, we show that the optimum asymptotic efficiency of a

-user system with spreading gain converges to1 almost surely as
, and is kept equal to an arbitrary nonzero constant.

Therefore, the asymptotic behavior of the minimum bit error rate is
equivalent to that of a single-user system.

Index Terms—Asymptotic efficiency, CDMA, multiuser detection, op-
timum multiuser detection, spread spectrum.

I. INTRODUCTION

This correspondence is concerned with the analysis of the capabili-
ties of optimum multiuser detection for the basic synchronous CDMA
multiple-accessK-user channel [1]

y(t) =

K

k=1

Akbksk(t) + �n(t) (1)

whereAk 2 (0;1); bk 2 f�1; 1g andsk are the received amplitudes,
data, and unit-energy signature waveform of thekth user, respectively,
andn(t) is additive white Gaussian noise.

Uncoded bit error rate has received much attention as a performance
measure of multiuser detectors. Of particular interest is the asymptotic
multiuser efficiency which characterizes the performance loss (in ef-
fective signal-to-noise ratio (SNR)) as the background noise vanishes.
If a particular receiver achieves bit-error ratek(�) in the presence
of multiple-access interference and additive white Gaussian noise with
power spectral level equal to�2, then the asymptotic multiuser effi-
ciency is given by [1]

�k =
2

A2

k

lim
�!0

�2 log 1= k(�): (2)

The analysis of the error probability of optimum multiuser detectors
for arbitrary signature waveforms and received powers goes back more
than fifteen years [2]–[4]. Denote the diagonal matrix of received am-
plitudesAAA = diagfA1; . . . ; AKg, and the normalized crosscorrela-
tion matrix byRRR, with entries�ij = hsi; sji. The optimum asymptotic
multiuser efficiency is equal to [1]

�k = min
vvv2f�1;0;1g

v =1

1

A2

k

vvvTARAvARAvARAv: (3)
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