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Abstract—A joint source–channel hybrid digital–analog (HDA)
vector quantization (VQ) system is presented. The main advan-
tage of the new VQ-based HDA system is that it achieves excellent
rate-distortion-capacity performance at the design signal-to-noise
ratio (SNR) while maintaining a “graceful improvement” charac-
teristic at higher SNRs. It is demonstrated that, within the HDA
framework, the parameters of the system can be optimized using
an iterative procedure similar to that of channel-optimized vector
quantizer design. Comparisons are made with three purely dig-
ital systems and one purely analog system. It is found that, at high
SNRs, the VQ-based HDA system is superior to the other investi-
gated systems. At low SNRs, the performance of the new scheme
can be improved using the optimization procedure and using soft
decoding in the digital part of the system. These results demon-
strate that the introduced scheme provides an attractive method
for terrestrial broadcasting applications.

Index Terms—Broadcasting, hybrid digital–analog coding, joint
source–channel coding, robust transmission, source coding, vector
quantization (VQ).

I. INTRODUCTION AND MOTIVATION

CONSIDER the problem of transmitting a Gaussian source
over a Gaussian channel. According to the source–channel

separation principle [2], optimal performance can be achieved
by separate, or independent, design of the source and channel
codes. Systems which are designed based on this principle are
often referred to astandem source–channel codingsystems.
Tandem systems are always designed usingdigital coding
techniques. A fundamental problem associated with the digital
tandem system in particular, is the so-calledthreshold effect.

The threshold effect actually involves two problematic traits.
i) First, even though these systems typically perform well rela-
tive to the Shannon limit at the designed channel signal-to-noise

Manuscript received April 16, 2000; revised October 4, 2001. The work of
M. Skoglund was supported in part by the Swedish Research Council for Engi-
neering Sciences under Grant 271-99-194. The work of F. Alajaji was supported
in part by the Natural Sciences and Engineering Research Council (NSERC) of
Canada. The material in this paper was presented in part at the IEEE Sympo-
sium on Information Theory, Sorrento, Italy, June 2000 [1].

M. Skoglund is with the Department of Signals, Sensors and Systems,
Royal Institute of Technology, SE-100 44 Stockholm, Sweden (e-mail:
skoglund@s3.kth.se).

N. Phamdo was with the Department of Electrical and Computer Engineering,
State University of New York, Stony Brook, NY 11794 USA. He is now with the
Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723
USA (e-mail: nam.phamdo@jhuapl.edu).

F. Alajaji is with the Department of Mathematics and Statistics and the
Department of Electrical and Computer Engineering, Queen’s University,
Kingston, ON K7L 3N6, Canada (e-mail: fady@mast.queensu.ca).

Communicated by P. A. Chou, Associate Editor for Source Coding.
Publisher Item Identifier S 0018-9448(02)00633-8.

ratio (SNR), there usually is adrastic degradationin perfor-
mance at lower SNRs. Historically, the better these systems per-
form at the design SNR, the more drastic is the performance
degradation at lower SNRs. This problem, which is well known
in the literature, is due to the quantizer sensitivity to bit errors
and the total breakdown of most powerful error-correcting codes
at low SNRs. The breakdown at low SNRs is not a feature of dig-
ital tandem systems only, but a problem of nonlinear communi-
cation systems in general (that is, the breakdown typically also
occurs in systems based on nonlinearanalogmodulation for-
mats, such as frequency or phase modulation). ii) A second and
often-overlooked problem is that as the channel SNR increases,
the performance of tandem systems does not improve after a cer-
tain point. We refer to this as theleveling-off effect.This effect
is due to the unrecoverable quantizer distortion which limits the
system performance at high SNRs. The leveling-off effect is a
feature of purely digital systems and is not in general a problem
in analog systems.

To address the first problem various digitaljoint source–
channel codingsystems have been proposed. In these systems,
the designs of the source and channel codes are either com-
bined or are well coordinated. Examples of approaches to joint
source–channel coding include: a) optimal quantizer design for
noisy channels [3]–[7], b) optimization of the channel codeword
assignment [6], [8], c) channel codes which use unequal error
protection, and d) channel codes which are designed to exploit
the residual redundancy of the source encoder output to correct
channel errors [9]–[11]. These traditional joint source–channel
coding systems improve the system performance at low SNRs.
However, they do not address the leveling-off effect which
occurs at high SNRs.

In [12] and [13], various hybrid digital–analog (HDA) joint
source–channel coding systems are proposed to address the lev-
eling-off effect. The main motivation for using an HDA system
is that it can asymptotically achieve the optimal performance at
the design SNR (a feature advantage of digital systems) while
maintaining a “graceful improvement” characteristic at high
SNRs (a feature advantage of analog systems). Thus, HDA
systems combine the best of both (digital and analog) worlds.
In [12] and [13], the asymptotic performances of the HDA
systems are obtained. In [14], an application of an HDA system
to the coding of a speech signal over a noisy Gaussian channel
is presented. Other methods which combine digital and analog
coding techniques include [15]–[20].

In this paper, we present a vector quantization (VQ)-based
HDA joint source–channel coding system. Our main objective
is to design asimple(low-complexity, low-delay) system which
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Fig. 1. Hybrid digital–analog system with joint decoding.

performs well over a wide range of channel SNRs. We assume
memoryless and Gauss–Markov sources and an additive white
Gaussian noise (AWGN) channel. We demonstrate that within
the VQ-based HDA framework, the system can be optimized
using an iterative method similar to the traditional channel-op-
timized VQ (COVQ) design algorithm [4], [7]. Motivated by a
broadcast scenario, we then present the performance of a fixed
encoder, adaptive decoder system in which the encoder is opti-
mized for a fixed-channel SNR while the decoder adapts to the
changing channel SNR. Comparisons are made with the unopti-
mized system, three purely digital systems, and a purely analog
system. Results with soft-output demodulation in the digital part
of the system are also presented.

II. SYSTEM DESCRIPTION

In this section, we give an account for the basic assumptions
made about the investigated HDA system. We begin with con-
sidering the system depicted in Fig. 1. The upper half of the
figure corresponds to the “digital part” of the system, while the
lower half corresponds to the “analog part.” The overall pur-
pose of the system is to convey a-dimensional random source
vector1 and reproduce it as at the receiver side, with
the aim of minimizing the totaldistortion

or, equivalently, maximizing thesignal-to-distortion ratio

SDR

The individual parts of the system are described in the following.
A sample, , from the source is fed to theencoder

of the system, and the encoder then produces an index
, with (where is an integer). The

mapping of the encoder is specified by theencoder regions,
, which form a partition of such that when

the encoder outputs the index. Let

1Throughout, we denote random entities by capital letters, and realizations of
these by the corresponding lower case letters. Bold-face symbols will be used
for vectors and matrices.

denote the probability that indexis chosen by the encoder, and
let

denote the centroid of theth encoder region. When
the bits of the chosen indexare fed to a binary symmetric
channel (BSC)2 with crossover probability , resulting in the
output index . Let

denote the probability that index is received given that the
input index to the channel was. We assume that the BSC of
the digital channel results from using hard decisions on a dis-
crete-timebinary-input Gaussian channel (binary phase shift
keying (BPSK) modulation over an AWGN channel), with input
in and with noise variance per channel use. Conse-
quently, the transition probabilities can be obtained as

(1)

where denotes the Hamming distance between the
binary representations of the integersand , and where

with

(2)

At the transmitter, the output indexof the encoder also
chooses a codevector from theencoder codebook, ,
and the residual vector is then formed. This vector
is scaled by the real constant and transmitted over a dis-
crete-timeanalog-amplitudeGaussian channel. The purpose of
the scaling constant is to regulate the transmission power in
the analog part. The received analog vector is ,
where is drawn according to a Gaussian distribution with
zero-mean independent components of variance. Note that

2We assume that the digital channel can be modeled as a BSC for simplicity.
Most results of this paper can, however, straightforwardly be generalized to any
discrete memoryless channel model for the digital part, for example, a discrete
model corresponding to a memoryless multilevel modulation scheme. To keep
this fact in mind we will frequently work with a general set of transition prob-
abilities,fP (jji)g.
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Fig. 2. Hybrid digital–analog system with simplified decoding.

we assume that the noise variance in the digital and analog parts
are equal. The digital and analog parts are hence implicitly as-
sumed to use the same underlying physical channel or two dif-
ferent channels with the same noise characteristics.3

In the general case, as it is illustrated in Fig. 1, thedecoderof
the system is a mapping , chosen to minimize the
distortion for a given encoder, as defined by , a given
encoder codebook, , and a fixed . It is straightforward to
see that the optimal decoder is the minimum mean-square error
(MMSE) estimator . That is,

(3)

where is the probability density function (pdf) of the source
vector, and is the conditional pdf of given
and . Furthermore, the conditional pdf of
given and is obtained as

since is -dimensional Gaussian with independent compo-
nents of variance . Studying (3), we see that the reproduction

of the source vector is based on information transmitted both
via a digital and an analog channel. This fact is the key principle
behind the work of this paper.

Unfortunately, the optimal joint decoder as given by (3) is
very hard to implement. The reason for this is that the inte-

3The digital and analog transmissions can, for example, take place simultane-
ously at two different carrier frequencies, or be divided in time by alternate uses
of the same carrier. However, since we assume that the noise characteristics are
the same for the digital and analog parts, the most reasonable assumption about
the transmission is the latter one.

grals in the last expression of (3) cannot, in general, be solved
in closed form, and hence they must be calculated numerically
or estimatedfor each received value of. Since one of our main
objectives is to present a reasonably simple system for hybrid
digital–analog coding we will not use the optimal joint decoder.
Instead, having introduced the general system of Fig. 1, we turn
to Fig. 2 and an approximation to the joint decoder where the
digital and analog parts are decoded separately and then com-
bined. To this end, and with reference to Fig. 2, consider the
receiver side of the system with simplified decoding. In the dig-
ital part of the decoder a particular indexis received, and the
codevector is produced via table lookup decoding using the
decoder codebook . In the analog part, the received
vector is multiplied by a rescaling constant and then
added to the codevector, resulting in an estimate of the trans-
mitted source vector according to

(4)

We hence see that the decoder (4) combines the contributions
from the digital and analog parts linearly to form a source vector
estimate.

In the remaining parts of the paper we will study the system
with simplified decoding as in Fig. 2, and when referring to the
“HDA system” we always refer from now on to Fig. 2.

III. PERFORMANCE OF THEUNOPTIMIZED HDA SYSTEM

In this section, we investigate the performance of an unop-
timized version of the VQ-based HDA system with simplified
decoding, as introduced in Fig. 2. This is the most straightfor-
ward implementation of the HDA system and we refer to it as
HDA-VQ. In the HDA-VQ system, the encoder regions
are obtained via the well-known Linde, Buzo, and Gray (LBG)
design algorithm [21] for noiseless channels. Furthermore, the
encoder and decoder codebooks are obtained from the centroids,
that is,

(5)

The constant is chosen to satisfy the analog channel power
constraint (cf., the discussion in con-
nection with (11) below), while is chosen such that is
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the component-wise linear MMSE (LMMSE) estimator of the
vector based on the observation , that is,

(6)

(see also (13) below). Note that choosingaccording to (6) re-
quires that is known at the analog part of the receiver. Thus,
the HDA-VQ system employs a “semi-adaptive” receiver where
the analog part knows the noise variance while the digital part
does not utilize any channel knowledge at all. Motivated by a
broadcast scenario, we will, in Section V, investigate the perfor-
mance of a fully adaptive receiver, where both the digital and
analog parts know the channel statistics.

The performance of the HDA-VQ system for an indepen-
dent and identically distributed (i.i.d.) Gaussian source and a
Gauss–Markov source with correlation parameter is
shown in Figs. 3 and 4, respectively. Here, . Note
that this corresponds to an overall transmission rate of
channel uses per source sample. The LBG-VQ was designed
using one million training vectors, and 500 000 test vectors were
employed in simulating the resulting performance. Performance
is illustrated as SDR versus channel SNR, where the channel
SNR in our case is obtained as SNR . For comparison
purposes, we also present the following curves.

• The optimal performance theoretically attainable (OPTA),
which is obtained by setting

(7)

where is the rate-distortion function in bits per
source sample of the source (under the squared-error
distortion measure), channel uses per source
sample, and is the channel capacity of the (con-
tinuous-input, continuous-output) AWGN channel given
by

SNR [bits per channel use]

• The resulting OPTA when the digital part of the system is
restricted to the use of binary modulation, resulting in a
BSC as described in Section II. This OPTA curve is ob-
tained via

(8)

where

[bits per channel use]

with SNR , is the capacity of the BSC. In Figs. 3
and 4, the unrestricted OPTA, obtained from (7), is de-
noted by “OPTA” and the OPTA for a BSC in the digital
part, obtained via (8), is denoted by “OPTA.”

• A purely analog system in which each source sample is
rescaled to variance one and then directly transmitted over
the channel twice , and where the receiver employs

Fig. 3. Performance for unoptimized systems and an i.i.d. Gaussian source.
Solid linesfrom above at SNR= 15 dB: HDA-VQ, LBG-VQ (d = 8 and rate
two), LBG-VQ–turbo (d = 8 and overall rate two).Dashed linesfrom above:
OPTA for an unrestricted AWGN channel in the digital part, OPTA for a BSC
in the digital part, purely analog.

Fig. 4. Performance for unoptimized systems and a Gauss–Markov source.
Solid linesfrom above at SNR= 15 dB: HDA-VQ, LBG-VQ (d = 8 and rate
two), LBG-VQ–turbo (d = 8 and overall rate two).Dashed linesfrom above:
OPTA for an unrestricted AWGN channel in the digital part, OPTA for a BSC
in the digital part, purely analog.

an LMMSE decoder. The distortion of this scheme is given
by

(9)

This system is chosen for simplicity. An alternative bench-
mark, based on linear analog modulation, would be the
system in Berger’s book [22, Sec. V-B]. When viewed as
a block code, Berger’s system, however, has infinite block
length (it is based on a concatenation of noncausal linear
filters) while our HDA system uses (rather short) finite
blocks. Therefore, comparing with the optimal system of
[22] would be somewhat unfair to the HDA system, while
comparing with (9) is still reasonable.
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• A purely digital system with no channel coding. Here,
the source is quantized by an eight-dimensional, 16-bit
LBG-VQ . The LBG-VQ was trained
using 8 million training vectors, and simulated using
500 000 test vectors. The bit assignment for the LBG-VQ
is obtained from the natural splitting procedure of the
LBG design algorithm [21].

• A purely digital tandem system, denoted by LBG-VQ–
turbo, which consists of an eight-dimensional 8-bit LBG-
VQ , followed by a rate- ,

turbo code [23] with generators .
Twenty iterations were applied in the turbo decoding part.
Note that this system has a much higher encoding/de-
coding delay and complexity than the HDA-VQ system
(see below). In this simulation, the LBG-VQ was designed
using 250 000 training vectors, and then the performance
was tested using 65 536 source vectors.

Observe the following. i) The strictly positive slope (slope
) of the HDA-VQ curves at high SNRs. This is contrasted

with the leveling-off effect (slope ) of the two purely
digital systems. We say that the HDA-VQ systemgracefully
improvesat high SNRs. Note also that for high SNRs, the
HDA-VQ system performs close to the OPTA for a BSC in
the digital part (OPTA), and the performance increases with
the same slope. ii) In both figures, HDA-VQ outperforms
LBG-VQ at all channel SNRs. iii) For high SNRs (9 dB and
above), HDA-VQ outperforms the other three systems. iv) The
superiority of HDA-VQ over the purely analog system at high
SNRs is more pronounced when the source has memory. v) At
low SNRs, both purely analog and LBG-VQ–turbo outperform
the HDA-VQ system. It should be noted, however, that the
LBG-VQ–turbo system has a delay of 1024 samples compared
with the eight-sample delay of the HDA-VQ system. Further-
more, the decoding complexity of the turbo decoder is about
3800 floating-point operations per source sample, whereas the
complexity of the HDA-VQ decoder is only one operation
per source sample. We will show that the performance of the
HDA-VQ system at low SNRs can be improved using the
optimization technique described in Section IV.

Before leaving the present section we return to observation
iv) and emphasize the interesting fact that the difference in per-
formance between the HDA-VQ system and the purely analog
system appears to beconstantfor high SNRs . Using
(9) and (5) in (14) (as derived in Section IV), it is, in fact,
straightforward to show that

SDR

where is the distortion of the HDA-VQ system in
Figs. 3–4, and SDR is the SDR of the VQ part “alone” in
the HDA-VQ system. Hence, the gap between the performance
of the HDA-VQ and the purely analog system is indeed con-
stant for high SNRs, since SDR does not depend on .
Furthermore it is clear that the gap is larger for sources with
memory since SDR typically can be made to increase with
increasing source correlation. This conclusion about the differ-

ence in performance between the HDA system and the purely
analog system can be generalized to hold also for the optimized
HDA systems simulated in Section V.

IV. DESIGN OFOPTIMIZED HDA SYSTEMS

In this section, we consider an optimization technique for im-
proving the performance of the HDA system in Fig. 2. The treat-
ment will lead up to an algorithm that strives to minimize the
distortion

(10)

at a given “design SNR” and under a constraint on the
transmitted power

(11)

per channel use in the analog part. More precisely, the aim of
the design will be to find encoder regions , encoder code-
vectors , decoder codevectors , and a decoder rescaling
constant , such that is minimized under the constraint that

is chosen such that is satisfied at all times, that is, the
SNRs in the digital and analog parts are constrained to be equal.
This power constraint is imposed for two reasons. i) Since we
(implicitly) assume that the digital and analog parts of the HDA
system use the same carrier on the underlying physical channel
in a time-division mode, it is natural to assign the digital and
analog transmission equal power. This is because a time-varying
transmission power typically would entail costly requirements
on the power amplifier in the transmitter. ii) Assigning equal
power to both parts is motivated also by our objective to de-
sign a transmitter that is robust against variations in the channel
SNR. Even if we need to specify a design SNR in the system op-
timization, it is still desirable to allocate equal power from the
point of view of making as few additional assumptions about
the channel quality as possible.

To begin our treatment of how to optimize the system we
first look at the expression for the overall distortion. To this
end, we note that for arbitrary , , , and , but with

chosen to satisfy the power constraint, the distortion can be
expressed as

(12)

where , and where we have assumed that
is satisfied. Based on this expression for the distortion, we

will derive optimality criteria for all parameters of the system.
In Section IV-A, we show how , , and can be chosen
to minimize the distortion (under the constraint ), for a
given set of encoder regions . Then, in Section IV-B, we
derive an expression for the optimal encoder regions, for given
values of the other parameters of the system (and, again, as-
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suming that the power constraint is satisfied). In Section IV-C,
we investigate the structure of the system in some asymptotic
cases, for example, how the optimal encoder regions change as
the noise variance in the analog part goes to zero or infinity.
Finally, in Section IV-D, we use the results of Sections IV-A
and -B to formulate an iterative design algorithm for the whole
system.

A. Optimizing for Fixed Encoder Regions

Assume that , , and are arbitrary, but that the set
of encoder regions is known and fixed. Also assume that
is chosen such that the power constraint is satisfied at all times.
Let us first focus on how the encoder codevectors should
be chosen to minimize the distortion under these assumptions.
We note that the only term in the last equality of (12) that can
be influenced by changing is the middle one. Hence, the
encoder codevectors should be chosen to maximize

Note that

where . Applying Schwarz’s inequality,
we get

for all . The last term does not depend on , and it
can easily be verified that the inequality can be achieved with
equality by letting . Consequently, the encoder code-
vectors should be chosen as .
Note that this choice of is consistent with the result derived
in [24] for a two-stage digital coding system (see [24, text fol-
lowing eq. (30)]). Now, letting , we get the distortion

Hence, we see that for a fixed and an arbitrary , and
with chosen as , the optimal is

(13)

That is, since it is straightforward to check that this value of
also minimizes , we have that is the com-

ponent-wise LMMSE estimator of based on the observation
. When is set according to (13) the resulting distortion

is

(14)

We now consider how the decoder codevectors should
be chosen to minimize the distortion. Since (10) can be rewritten
as

it is obvious that the codevectors that minimizeare obtained
by letting represent the MMSE estimator
of the vector based on the observation . That is,

should be chosen as

(15)

where

and (16)

Hence, to summarize, we have so far derived that for a given
set the encoder codevectors should be chosen as

, the rescaling constant as in (13), and the de-
coder codevectors as in (15) and (16). We note that for a given

, the optimal value for depends only on the channel SNR.
Consequently, can be chosen independently of and .
However, the expressions for and are not independent. In
fact, these expressions can be combined so that the encoder and
decoder codevectors may be obtained jointly. Such a result is
presented in the following paragraph.

Letting

and

the expressions for and can be rewritten as

(17)

(18)

with

(19)

Now we note that (17) can be used in (18) to give thesimul-
taneous equations

(20)
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for the decoder codevectors . These can be put into matrix
form by defining the matrices

and

and the matrix with elements

(21)

and then observing that (20) is equivalent to the matrix equation

(22)

where is the identity matrix. It is important to note,
in connection with (22), that the matrix is invertible
for all (a proof of this statement is provided in
the Appendix). Consequently, since withchosen according to
(13), and with , we have that , we can
safely assume that a uniquecan always be found by solving
(22). Then, with extracted from the resulting the encoder
codevectors are obtained using (17).

As an alternative to using (22) and (17) to solve for
and jointly, an iterative approach may be used. Such an
approach can be initialized, for example, by letting .
Then can be computed using (18), and for this set of
decoder codevectors can be computed according to (17).
Then a new decoder codebook can be obtained using (18) and
a new using (17), and so on, until the two codebooks
have reached stable values. Two situations when using this
iterative approach may be preferred over the direct approach
of solving (22): i) when is (very) large, so that the matrix

becomes hard to compute and store, and solving the
equation system becomes too complex and ii) whenis close
to one (corresponding to ) so that becomes
ill-conditioned.

B. Optimal Encoder Regions

Here we assume, instead, that an arbitrary is given,
and that for this given the encoder codevectors are
chosen as and the rescaling con-
stant as , under the assumption that is
chosen such that is satisfied at all times.
Then, with and utilizing the fact that

, an expression for the resulting dis-
tortion can obtained from (14) as

(23)

where

(24)

Consequently, since is nonnegative, theth encoder region
should be assigned thosethat minimize the term within

brackets in the last equality of (23). That is, the optimal encoder
regions are

(25)

The expression given in (25) can be put into a form that allows
for some further interpretation. Let , that is, the
vector in defined by augmenting the source vectorwith
a zero, and

(assuming ), that is, the vector in obtained by
augmenting with the scalar in the th
position. Then (25) can be rewritten as

(26)

That is, letting be the th region in the Voronoi partition of
defined by the vectors , the th -dimensional op-

timal region is obtained as the intersection4 of with the
hyperplane . For some indexes,
it may be the case that this intersection is empty. Hence, these
indexes can never be chosen by the encoder and are, thus, totally
redundant. The redundancy in the transmitted data induced by
this phenomenon is utilized by the decoder for error protection
(cf., [7], [25], [26] for similar results on VQ over binary dis-
crete channels, and binary-input soft-output channels). In the
following subsection, we utilize (26) to provide some interpre-
tations of how the optimal regions vary as a function of the tran-
sition probabilities in the digital part and the noise variance in
the analog part.

C. Some Special Cases and Interpretations

Above, we have assumed that the noise variance in the dig-
ital and analog parts are equal. That is, the value ofinflu-
ences both the variance of the noise in the analog channel and
the transition probabilities of the digital channel. In this
subsection, we temporarily let go of this assumption with the
purpose of investigating some special cases in terms of asymp-
totic values for and . To this end, let denote the
noise in the analog part (only), and assume thatand
are independent. Also assume that , , and are
chosen according to the treatment in Section IV-A and assume,
furthermore, that the encoder regions satisfy (25). Then
consider the following situations.

Arbitrary, but fixed, transition probabilities and the
following.

• Low noise level in the analog part, : Since
implies the last component of , in (26), goes
to infinity. Hence, as a result, the vectors , in the
augmented source space, will move away from the hyper-
plane . Consequently, more and more regionswill

4Strictly speaking, this intersection is still a(d + 1)-dimensional set (in the
sense that its elements are members of ). A more rigorous definition of
the mapping from
 to S would be to say thatS is the projection of the
intersection�\
 onto obtained by leaving out the last coordinate (which
is 0) in the elements of� \ 
 .
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become empty, and the redundancy content in the trans-
mitted digital data will increase until, finally, there is only
one nonempty region left. This fact can be interpreted
by noting that since the analog channel is of increasingly
good quality, the digital part can “afford” to use more and
more redundancy to protects its data. Now consider in-
stead the optimal codevectors. We show in the Appendix
that as the solution of (22) approaches a ma-
trix with all columns equal.5 That is, all decoder codevec-
tors will become equal, say . Further-
more, by studying (17) we see that this will also imply

. Regarding the fact that the codevec-
tors become increasingly equal is reasonable since, as we
have noted, the redundancy content in the transmitted dig-
ital data increases (equal codevectors can be interpreted as
error-correction coding [25]). Moreover, as the analog part
becomes noiseless we have (cf., Fig. 2), and
since this gives ,
so the fact that is also motivated.

• High noise level in the analog part, : Assuming
this implies . That is, the infor-

mation stemming from the analog part will not be used
by the receiver (which is reasonable, since the quality of
this information will be increasingly bad as ).
Moreover, since the equations describing the dig-
ital system, e.g., (15) and (25), will converge to the corre-
sponding expressions for a purely digital system (cf., e.g.,
[7] and [25]). Hence, the digital part will depend only on
the transition probabilities , independently of the
analog part, and the analog part will be completely “turned
off.”

Arbitrary, but fixed, and the following.

• Low noise level in the digital part: That is

if and otherwise.

First we note that as the digital channel becomes noise-
less, the matrix in (22) approaches an identity matrix.
Hence, noting that (since we assume )
the solution of (22) will, in the limit, be equal to the
matrix , that is, . Furthermore, from (19), we
have that , and studying
(17) we see that . Hence, in the limit it holds
that the vectors , , and are all equal.
Now, turning to the optimal encoder regions we first note
that as the digital channel becomes noiseless, we have
that . Hence, studying (24) we see that

. Consequently, from (25)
(and, again, noting that ), we have that the optimal
regions will approach the Voronoi regions defined by
the vectors . Hence, to summarize, since the code-
vectors approach the encoder centroids , and
since the optimal regions become equal to the Voronoi re-
gions of these, we see that the VQ in the digital part ap-
proaches a VQ designed for a noiseless digital channel.

5The proof provided in the Appendix assumes that the noise in the digital part
is nonzero, i.e.,P (jji) � " > 0 for all j andi.

Fig. 5. Description of design algorithm.

(VQ design for noiseless channels is described, e.g., in
[27].)

• High noise level in the digital part: For derived
from a BSC, as in (1), increasingly high noise level in the
digital channel corresponds to . This will give

for all and

First, noting that this implies , and
then studying (19) we see that . Then,
in solving (17) and (18), noting that we assume , and
using , we get and

, for all and . Studying the expression (25) for the
optimal encoder regions we see that since , and
since , there will, furthermore, only be
one nonempty region, say . That is, we get a situation
similar to the one obtained for , as studied above,
where all codevectors become equal and where increas-
ingly many encoder regions become empty until, finally,
only one index is transmitted, irrespective of the input,
and the decoder produces the expected value of the
source for all received indexes.

D. Training Algorithm

The results presented in Section IV-A and -B can be utilized
to formulate an iterative training algorithm for the HDA system.
This algorithm is summarized in Fig. 5. With reference to this
figure, the following is a list of comments to the design.

• Besides the source vector dimensionand the size
of the VQ (and assuming that the statistics of

the source, as described by the pdf , are known),
the algorithm takes as input the transition probabilities

of the digital channel and the SNR in
the analog part. Assuming that the digital channel is
derived from a binary Gaussian channel, the transition
probabilities can be obtained from (1), (2) for a given
noise variance .

• In Step 0) of the algorithm, the encoder regions can be ini-
tialized by using the Voronoi regions of a VQ trained for a
noiseless channel and the source under consideration. An-
other alternative is to use the encoder of a COVQ trained
for the digital channel .

• As mentioned earlier, an alternative to using (22) in step
i) is to employ an iterative approach. In the systems inves-
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tigated in Section V, we used this approach when training
for a high SNR (and hence aclose to one), since in this
case the matrix is close-to-singular and solving
the equation system becomes numerically unstable.6

• Convergence, in step vi), may be checked by monitoring
the distortion , and stop the iterations when the relative
improvement is small enough.

• Finally, it should be noted that the scaling constantis
updated in steps ii) and v) of the training and, strictly
speaking, there is therefore no guarantee that the power
constraint is satisfied atall instants of the algorithm (while
our derivation assumed this). Consequently, convergence
is not guaranteed. However, all our practical experience
with implementing the training algorithm suggests that
this issue is not a problem in practice, since in all cases we
have encountered, the algorithm does converge to a stable
solution.

V. PERFORMANCE OFOPTIMIZED HDA SYSTEMS

In this section, we evaluate the performance of our optimized
VQ-based HDA system for the compression and transmission
of two (unit variance) sources: a memoryless (i.i.d.) Gaussian
source and a Gauss–Markov source with correlation parameter

. Motivated by a broadcast scenario, we use the design algo-
rithm described in Fig. 5 to implement afixed encoder, adaptive
decoder(FEAD) optimized HDA system. More precisely, the
proposed scheme, denoted by HDA-FEAD, consists of an op-
timized HDA system in which the encoder (i.e., the parameters

, , and , where is chosen to satisfy the power con-
straint) is designed for afixedvalue (in decibels) of the channel
SNR, , and is not modified as the true SNR changes, while
the decoder (i.e., the parameters and ) has knowledge of
the true SNR and thusadaptsto it.

We present simulation results for different optimized HDA-
F EAD schemes, and compare them with the basic (unopti-
mized) HDA-VQ system (discussed in Section III), a purely
analog system, and several purely digital systems. All consid-
ered systems have an overall transmission rate of channel
uses per source sample. We employed 2 million training vec-
tors in designing codes with and , and 8 million
training vectors for VQ codes with and ; we used
500 000 test vectors for the simulations. The training of each
HDA system was initialized by using the encoder regions of a
COVQ trained for the corresponding digital channel (see the re-
mark concerning step 0) of the algorithm in Section IV-D). In
Figs. 6–10, we show performance results in terms of the SDR
for an i.i.d. Gaussian source (Figs. 6 and 8) and a Gauss–Markov
source (Figs. 7, 9, and 10) transmitted over an AWGN channel
via the following systems.

6This is the approach we employed, for high values of
, to obtain the results
of Section V. Another alternative, perhaps a preferred one, would be to use a
more sophisticated technique tailored to solving close-to-singular equation sys-
tems [28].

Fig. 6. i.i.d. Gaussian source.Solid linesfrom above at SNR= 15 dB: (a)
HDA-VQ, and HDA-F EAD with “�” equal to (b) 10 dB, (c) 5 dB, (d) 0 dB.
Dashed linesfrom above at SNR= 15 dB: OPTA (unrestricted AWGN channel),
purely analog, purely digital LBG-VQ (d = 8 and rate two), LBG-VQ–turbo
(d = 8 and overall rate two).

Fig. 7. Gauss–Markov source.Solid linesfrom above at SNR= 15 dB: (a)
HDA-VQ, and HDA-F EAD with “�” equal to (b) 10 dB, (c) 5 dB, (d) 0 dB.
Dashed linesfrom above at SNR= 15 dB: OPTA (unrestricted AWGN channel),
purely analog, purely digital LBG-VQ (d = 8 and rate two), LBG-VQ–turbo
(d = 8 and overall rate two).

• Three (optimized) HDA-FEAD schemes shown in Figs.
6–9: HDA-F EAD, HDA-F EAD, and HDA-F EAD
trained at an SNR of 0, 5, and 10 dB, respectively. The
HDA-F EAD schemes employ a quantizer with
and a rate of 1 bit/source sample .

Note that the above HDA-FEAD schemes assumed
a binary-input binary-output channel in the digital part,
since the underlying BPSK-modulated AWGN channel
was assumed to be used with hard-decision demodulation.
In Fig. 10, we present HDA-FEAD schemes that exploit
thesoftchannel information in the digital part. To accom-
modate this change, the design algorithm was modified as
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Fig. 8. i.i.d. Gaussian source.Solid lines from above at SNR= 15 dB:
HDA-F EAD with “�” equal to (a) 10 dB, (b) 5 dB, (c) 0 dB.Dashed linesfrom
above at SNR= 15 dB: OPTA (unrestricted AWGN channel), COVQ-FEAD
with “�” equal to (d) 10 dB, (e) 5 dB, (f) 0 dB. (The COVQs haved = 8 and
rate two, with encoder optimized at SNR� and with adaptive decoding.)

follows. Assume that the vector is received at the
output of the underlying Gaussian channel of the digital
part as a result of transmittingbits of an index. Soft de-
codingwas applied (cf., [29], [26], [11], [30]) in the sense
that and , as defined in (16), are replaced with the
estimators and , respectively, in
the decoding of the digital part (see, e.g., [26] for more
details regarding the implementation of these estimators).
Thus, instead of performing a table lookup decoding based
on the decoder codevectors , the decoder of the dig-
ital part uses the mapping

based on the received soft data . This results in an
overall receiver output given by

• The basic (unoptimized) HDA-VQ scheme shown in
Figs. 6 and 7. It is designed with given by (13) and
using the LBG algorithm [21] for the digital part with

and source coding rate of 1 bit/source sample
. (The codebook of the resulting VQ then spec-

ifies both and , and the encoder regions are
given by the Voronoi regions of the VQ codebook; cf.,
Section III.)

• A purely analog system employing an LMMSE decoder
(cf., Section III above). The performance of this system is
shown in Figs. 6 and 7.

• Three purely digital systems: two tandem source-channel
coding systems (LBG-VQ and turbo) and one joint source-
channel coding system (COVQ-FEAD). These systems
are described as follows.

— LBG-VQ: It is a basic VQ with and rate
designed for the noiseless digital channel using

Fig. 9. Gauss–Markov source.Solid lines from above at SNR= 15 dB:
HDA-F EAD with “�” equal to (a) 10 dB, (b) 5 dB, (c) 0 dB.Dashed lines
from above at SNR= 15 dB: OPTA, COVQ-FEAD with “�” equal to (d) 10
dB, (e) 5 dB, (f) 0 dB. (The COVQs haved = 8 and rate two, with encoder
optimized at SNR� and with adaptive decoding.)

Fig. 10. Gauss–Markov source.Solid linesfrom above at SNR= 10 dB:
HDA-F EAD with � = 10; 5; 0 [dB] using soft decoding in the digital part.
Dashed linesfrom above at SNR= 10 dB: OPTA, and HDA-FEAD with
� = 10; 5; 0 [dB] using hard decoding in the digital part.

the LBG-VQ algorithm (the same code as also used in
Section III). It is shown in Figs. 6 and 7.

— LBG-VQ–turbo: It consists of an eight-dimensional
LBG-VQ with a rate of 1 bit/source sample, followed
by a rate- , turbo code [23]
with generators . (Shown in Figs. 6 and 7; the
same system as in Section III.)

— COVQ-F EAD: It consists of a COVQ with
and rate , with the encoder optimized at
SNR and adaptive decoding (as in HDA-FEAD). It
is shown in Figs. 8 and 9.
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• The optimal performance theoretically attainable, as de-
fined in (7) above (for an unrestricted AWGN channel in
the digital part).

We observe from Figs. 6–10 that the HDA-based systems
offer a robust and graceful performance over the entire range
of the SNRs, with the HDA-FEAD systems employing soft
decoding providing the best performance (see Fig. 10). More
specifically, the HDA-FEAD systems perform very well in the
vicinity of the SNR at which their encoder was designed; they
also provide a smooth degradation/improvement as the true
SNR varies away from the designed SNR. We remark that the
optimized HDA-FEAD systems provide substantial improve-
ments over the basic HDA-VQ scheme for low to medium
SNRs. For high SNRs, the HDA-FEAD scheme nearly
matches the performance of the HDA-VQ system (Figs. 6 and
7). We also note that all HDA-FEAD systems outperform the
analog (cf., Figs. 6 and 7) for most SNRs. The gains over the
analog systems are more pronounced for the Gauss–Markov
source; this is expected, since, unlike the HDA schemes, the
analog system fails to exploit the source memory. Furthermore,
the HDA-FEAD systems provide considerable gains over all
purely digital systems (cf., Figs. 6–9) for most SNRs. We also
observe that the use of soft channel information in the design
of the digital part significantly enhances the performance of the
HDA-FEAD systems, particularly at low SNRs (see Fig. 10).

Finally, before closing this section, we remark that while the
theory of Sections II and III is general in the sense that most of
the treatment holds for a general set of transition probabilities

, and hence any (memoryless) modulation constella-
tion in the digital part (cf., footnote 2), we have chosen to carry
out all simulations for binary modulation. The main reason for
this is again our objective of keeping the system simple and ro-
bust. We also note that increasing the rate in the digital transmis-
sion (the rate can be increased by choosing a larger modulation
signal set) makes the digital part “more analog” and this is es-
sentially not a desired feature of the system, since the purpose
of the analog part is to take care of the residual error, at high
SNRs, due to the low rate in the digital part. Hence, with sim-
plicity and robustness in mind, binary modulation (BPSK) is a
natural choice since it is a simple modulation format that works
comparatively well at low SNRs. While both the power and rate
allocation problems are interesting in their own rights, we have
chosen not to study them in detail. Optimizing the power and/or
rate allocation between the digital and analog parts will not sig-
nificantly change the overall (global) system behavior. Further-
more, robustness will be lost since the more parameters (in the
transmitter) are tailored to a specific design SNR, the less robust
will the system be when the true SNR deviates from it.

VI. SUMMARY AND CONCLUSION

In this work, a VQ-based HDA joint source–channel coding
system for AWGN channels was investigated. This HDA
system, which exploits the attributes of both purely analog
systems and purely digital joint source–channel coding sys-
tems, was optimized via an iterative design algorithm that

minimizes, for each SNR, the end-to-end mean square-error
distortion subject to a power constraint in the analog part of
the system. The behavior of the system was also analyzed for
various asymptotic conditions on the noise level in the analog
and digital parts.

The performance of optimized HDA systems with a fixed
encoder and an adaptive decoder (FEAD) was assessed for a
wide range of channel conditions; comparisons were also made
with the unoptimized HDA system, a purely analog system, and
various (tandem and joint source–channel coding) purely dig-
ital systems. Optimized HDA-FEAD schemes which exploit the
soft channel information in the digital part were also imple-
mented. Simulation results for memoryless Gaussian as well as
Gauss–Markov sources demonstrated a very robust and graceful
performance of the HDA systems over the entire range of the
channel SNRs. Significant coding gains were also achieved over
the unoptimized HDA system and the purely analog and digital
systems.

The system investigated in this paper only works for channel
transmission rates above one channel use per source sample.
An important topic for further study is to investigate how the
system can be modified to work at rates below one. One strong
candidate system to study for this purpose is the “dual system”
presented by Mittal and Phamdo in [12]. Preliminary results in
this direction are reported in [31].

APPENDIX

Here we investigate the properties of the matrix
in some more detail. This matrix was defined in connection with
(20) and its properties are important, for example, in analyzing
under what conditions the equation system (20) has a unique
solution.

The matrix is defined in terms of the real parameterand
the matrix , with elements as given by (21). To begin
with, we note that since and since
, is a column stochastic matrix. Hence,has the real number
as eigenvalue, and all other eigenvalues have modulus less

than or equal to . To prove this statement, let be an arbitrary
square matrix with nonnegative elements, and assume thathas
eigenvalues . Furthermore, let . Then, ac-
cording to [32, Corollary 8.1.30], if is an eigenvector of with
all elements positive, , then the corresponding eigenvalue
is . Consequently, letting be a vector with all elements
equal to and noting that is an eigenvector to , with its
corresponding eigenvalue being the real number, we know that

. Moreover, since a square matrix and its transpose
have the same eigenvalues, we also have that , hence
proving the desired result. Thus, knowing that all eigenvalues
of are less than or equal toin modulus, we get the result
that the eigenvalues of the matrix are all nonzero as long as

(since the eigenvalues of are obtained as times
the eigenvalues of ). This proves that is invertible for all

.
In Section IV-C, we studied the case of an arbitrary set of

transition probabilities and . Assuming that
are derived from a binary symmetric channel, as in
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(1), all transition probabilities are positive as long as .
Consequently, assuming in the digital part we have

and hence, using the definition (21), it follows that

for all and . Hence, when are derived from a BSC
with positive crossover probabilitythe matrix is strictly pos-
itive. This means that by Perron’s theorem [32, p. 500]has
a uniqueeigenvalue of maximum modulus, and sinceis sto-
chastic we know that this eigenvalue is the real number. That
is, hasoneeigenvalue equal to andall other eigenvalues of

are less than in modulus. Now we return to the system (22),
and study it under the assumption . Taking transpose
of both sides in (22), we get

In calculating a Schur decomposition of (cf., [32, Theorem
2.3.1]) we get (where denotes the Hermi-
tian transpose, defined as with being the com-
ponent-wise complex conjugate of) where is unitary (i.e.,

) and where is an upper triangular matrix with the
eigenvalues of on its diagonal. The decomposition can al-
ways be chosen such that the unique largest eigenvalue (in mod-
ulus), the number, appears in the uppermost left position of,
and with the corresponding (normalized) eigenvector
(where is the all-one vector of size ) in the first column of

. Then, using we get (for all )

(27)

Now, in partitioning according to

where is a column vector, is the all-zero column vector of
size , and is an upper triangular matrix with the

remaining eigenvalues of on its diagonal, we get (still
assuming )

(28)

(this result can easily be verified). Here we note that since
is an upper triangular matrix with all diagonal entries less than

(in modulus), the inverse exists for all
(i.e., including ). Hence, studying (28) we see that

as the solution for in (27) has a well-defined limit,
namely

where is a diagonal matrix with the elements of the row vector
on its diagonal, and where we used the

fact that the first column of is . This result shows, for
example, that as the matrix approaches a matrix with
all columns equal to the single vector .
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