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the Memoryless Binary Symmetric Channel

Ling-Hua Chang , Associate Member, IEEE, Po-Ning Chen , Senior Member, IEEE,

Fady Alajaji , Senior Member, IEEE, and Yunghsiang S. Han , Fellow, IEEE

Abstract— The generalized Poor-Verdú error lower bound
established by Chang et al. (2020) for multihypothesis testing is
studied in the classical channel coding context. It is proved that
for any sequence of block codes sent over the memoryless binary
symmetric channel (BSC), the minimum probability of error
(under maximum likelihood decoding) has a relative deviation
from the generalized bound that grows at most linearly in
blocklength. This result directly implies that for arbitrary codes
used over the BSC, decoder ties can only affect the subexponential
behavior of the minimum probability of error.

Index Terms— Binary symmetric channel, block codes, error
probability bounds, maximum likelihood decoder ties, error
exponent, channel reliability function, hypothesis testing.

I. INTRODUCTION

AWELL-KNOWN lower bound on the minimum proba-
bility of error Pe of multihypothesis testing is the so-

called Poor-Verdú bound [1]. The bound was generalized in [2]
by tilting, via a parameter θ ≥ 1, the posterior hypothesis
distribution, with the resulting bound noted to progressively
improve with θ except for examples involving the memoryless
binary erasure channel (BEC). The closed-form formula of
this generalized Poor-Verdú bound, as θ tends to infinity, was
recently derived in [3]. An alternative lower bound for Pe

was established by Verdú and Han in [4]; this bound was
subsequently extended and strengthened in [5].

In this paper, we investigate the generalized Poor-Verdú
lower bound of [3] in the classical context of the maximum-
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likelihood (ML) decoding error probability of block codes Cn

with blocklength n and size |Cn| = M sent over the
memoryless binary symmetric channel (BSC) with crossover
probability 0 < p < 1/2. For convenience, we denote this
lower bound by bn (see its expression in (3)). Specifically, for
channel inputs uniformly distributed over code Cn, we bound
the code’s minimum probability of decoding error an in terms1

of bn as follows:

bn ≤ an ≤ (1 + c n) bn, (1)

where c � (1− p)/p is the channel (likelihood ratio) constant
and is independent of code Cn. Noting that bn can be recovered
from an by disregarding all decoder ties, which occur with
probability no larger than c n bn, we conclude that decoder ties
only affect the subexponential behavior of the minimum error
probability an with respect to an arbitrary sequence of codes
{Cn}n≥1. Indeed, setting Ca∗

n � argminCn:|Cn|=M an(Cn) and
Cb∗

n � arg minCn:|Cn|=M bn(Cn) for codes of blocklength n
and size M used over the BSC, (1) implies that:

bn(Cb∗
n ) ≤ bn(Ca∗

n ) ≤ an(Ca∗
n )

≤ an(Cb∗
n ) ≤

�
1 +

(1 − p)
p

n

�
bn(Cb∗

n ), (2)

which immediately gives that with M = �enR�, the BSC
reliability function E(R) � lim supn→∞ − 1

n log an(Ca∗
n ) sat-

isfies E(R) = lim supn→∞ − 1
n log bn(Cb∗

n ) and can hence be
determined via a sequence of codes that minimizes bn(Cn)
(without considering ties) instead of an(Cn).

The related problem of exactly characterizing the channel
reliability function at low rates remains a long-standing open
problem; in-depth studies on this focal information-theoretic
function and related problems include the classical papers
[6]–[9] and texts [10]–[13] and the more recent works
[14]–[25] (see also the references therein). In [1], Poor and
Verdú conjectured that their original error lower bound for
multihypothesis testing, which yields an upper bound on the
channel coding reliability function, is tight for all rates and
arbitrary channels. The conjecture was disproved in [26],
where the bound was shown to be loose for the BEC at low
rates. Furthermore, Polyanskiy showed in [17] that the original

1Note that an and bn, as well as the notations introduced in Table I, are
all functions of the adopted code Cn. For ease of notation, we drop their
dependence on Cn throughout the paper (except in (2) and the discussion
related to it).
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Poor-Verdú bound [1] coincides with the sphere-packing error
exponent bound for discrete memoryless channels (and is
hence loose at low rates for this entire class of channels).
Our result in (1) which holds for arbitrary sequence of
codes {Cn}n≥1, while not explicitly determining the reliability
function for the BSC, provides an alternative approach for
studying it.

The rest of the paper is organized as follows. The error
bound bn is analyzed for the channel coding problem over the
memoryless BSC in Section II. The proof of the main theorem
is provided in detail in Section III. Finally, conclusions are
drawn in Section IV.

Throughout the paper, we denote [M ] � {1, 2, . . . , M} for
any positive integer M .

II. ANALYSIS OF LOWER BOUND bn FOR AN ARBITRARY

SEQUENCE OF BINARY CODES {Cn}n≥1

Consider an arbitrary binary code Cn∈ {0, 1}n with block-
length n and size |Cn| = M to be used over the BSC with
crossover probability 0 < p < 1

2 . It is shown in [3, Eq. (5)]
that the generalized Poor-Verdú error lower bound bn to the
minimum probability of decoding error an (obtained under
maximum-likelihood decoding) is given by

bn = PXn,Y n {(xn, yn) ∈ Xn × Yn :

PXn|Y n(xn|yn) < max
un∈Cn\{xn}

PXn|Y n(un|yn)
�

,

(3)

where PXn,Y n is the joint input-output distribution that Xn

is sent over the BSC (via n uses) and Y n is received, and
PXn|Y n is the corresponding posterior conditional distribution
of Xn given Y n. Indeed, by recalling that the (optimal)
maximum a posteriori (MAP) estimate of xn ∈ Cn from
observing yn ∈ Yn at the channel output is given by

e(yn) = arg max
xn∈Cn

PXn|Y n(xn|yn), (4)

the right-hand-side (RHS) of (3) is nothing but the error prob-
ability under a “genie” MAP decoder that correctly resolves
ties. We demonstrate that the lower bound bn in (3), upon scal-
ing it by the affine linear term (1+ c n), where c = (1−p)/p,
becomes an upper bound for an, and hence is asymptotically
exponentially tight with an

�
i.e., lim supn→∞

1
n log an

bn
= 0

�
for arbitrary sequences of block codes sent over the BSC. The
exponential tightness result follows directly from the following
theorem, which is the main contribution of the paper.

Theorem 1: For any sequence of codes {Cn}n≥1 of block-
length n and size |Cn| = M with Cn ⊆ Xn � {0, 1}n,
let an denote the minimum probability of decoding error
for transmitting Cn over the BSC with crossover probability
0 < p < 1/2, under a uniform distribution PXn over Cn,
where Xn is the n-tuple (X1, . . . , Xn). Then,

bn ≤ an ≤
�

1 +
(1 − p)

p
n

�
bn, (5)

where bn is given in (3).
In Theorem 1, it is implicitly assumed that all M codewords

are distinct as the codebook is defined as Cn ∈ Xn, with Xn

containing all (distinct) binary sequences of length n. Note
that if identical codewords are allowed in Cn, decoder ties
may become dominant in the minimum error probability an

and the right inequality (5) in Theorem 1 no longer holds.
Theorem 1 reveals that for any arbitrary sequence of block
codes {Cn}n≥1 used over the BSC, the relative deviation,
(an − bn)/bn, of the minimum probability of decoding error
an from bn is at most linear in the blocklength n. It is worth
mentioning that this conclusion cannot be applied for the BEC
for any code Cn because decoder ties are the only source of
decoding errors on the BEC, which gives bn = 0 since (3)
ignores ties.

Overview of the Proof of Theorem 1: Before providing the
full proof of Theorem 1 in Section III, we introduce the
necessary notation and highlight how we prove (5).

Because the channel input distribution PXn is uniform over
Cn, the code’s minimal probability of error an is achieved
under ML decoding. For the BSC, the ML estimate based
on any received n-tuple yn at the channel output is obtained
via the Hamming distances {d(xn, yn)}xn∈Cn,yn∈Yn . Define
the set of output n-tuples yn which definitely lead to an ML
decoder error when xn

(i) ∈ Cn is transmitted as

Ni �
�

yn ∈ Yn : d(xn
(i), y

n) > min
un∈Cn\{xn

(i)}
d(un, yn)

�
, (6)

and the set of output n-tuples yn that induce a decoder tie
when transmitting xn

(i) ∈ Cn as

Ti �
�

yn ∈ Yn : d(xn
(i), y

n) = min
un∈Cn\{xn

(i)}
d(un, yn)

�
. (7)

For the BSC with crossover probability 0 < p < 1
2 ,

we have PY n|Xn(yn|xn
(i)) =

�
p

1−p

�d(xn
(i),y

n)(1 − p)n. Thus,
d(xn

(i), y
n) > minun∈Cn\{xn

(i)} d(un, yn) if and only if
PY n|Xn(yn|xn

(i)) < maxun∈Cn\{xn
(i)} PY n|Xn(yn|un), and

therefore

bn =
M�
i=1

PXn(xn
(i))PY n|Xn(Ni|xn

(i))

=
1
M

�
i∈[M ]

PY n|Xn(Ni|xn
(i)). (8)

Similarly, PY n|Xn(yn|xn
(i)) =

�
p

1−p

�d(xn
(i),y

n)(1−p)n implies
that the probability of decoder ties, denoted by δn, satisfies

δn =
M�
i=1

PXn(xn
(i))PY n|Xn

�
Ti|xn

(i)

�
=

1
M

�
i∈[M ]

PY n|Xn

�
Ti|xn

(i)

�
. (9)

We thus obtain the following relationship:

bn ≤ an ≤ bn + δn =
�

1 +
δn

bn

�
bn. (10)

Note if δn = 0,2 then (10) is tight and (5) holds trivially; so
without loss of generality, we will assume in the proof that

2A straightforward example for which δn = 0 is Cn consisting of only two
codewords whose Hamming distance is an odd number.
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δn > 0. We then have that

δn

bn
=

	
i∈[M ] PY n|Xn(Ti|xn

(i))	
i∈[M ] PY n|Xn(Ni|xn

(i))
(11)

≤
	

i∈[M ]:Ti �=∅ PY n|Xn(Ti|xn
(i))	

i∈[M ]:Ti �=∅ PY n|Xn(Ni|xn
(i))

(12)

≤ 1	
i∈[M ]:Ti �=∅ PY n|Xn(Ni|xn

(i))�
i∈[M ]:Ti �=∅

�
PY n|Xn(Ni|xn

(i))

× max
i′∈[M ]:Ti′ �=∅

PY n|Xn(Ti′ |xn
(i′))

PY n|Xn(Ni′ |xn
(i′))

�
(13)

= max
i′∈[M ]:Ti′ �=∅

PY n|Xn(Ti′ |xn
(i′))

PY n|Xn(Ni′ |xn
(i′))

, (14)

where (12) holds because the assumption of δn > 0 guarantees
the existence of at least one non-empty set Ti for i ∈ [M ].
With (10) and (14), the upper bound in (5) follows by proving
that

PY n|Xn(Ti|xn
(i))

PY n|Xn(Ni|xn
(i))

≤ (1 − p)
p

n for non-empty Ti. (15)

To achieve this objective, we will construct a number of
disjoint covers of Ti and also construct the same number
of disjoint subsets of Ni such that a one-to-one correspon-
dence between the Ti-covers and the Ni-subsets exists. Since
PY n|Xn(Ti|xn

(i)) > 0 guarantees the existence of at least one

non-empty Ti-cover, a similar derivation to (14) yields that
PY n|Xn (Ti|xn

(i))

PY n|Xn (Ni|xn
(i))

is upper-bounded by the maximum ratio of the

probabilities of the Ti-cover-versus-Ni-subset pairs. The final
step (i.e., Proposition 4 in Section III-D) is to enumerate the
probabilities of the Ti-cover-versus-Ni-subset pairs and show
that it is bounded from above by (1−p)

p n. The full details are
given in the next section.

III. THE PROOF OF THEOREM 1

We divide the proof into four parts. In Section III-A,
we obtain a coarse disjoint covering of (non-empty) Ti and
the corresponding disjoint subsets of Ni. In Sections III-B
and III-C, we refine the covers of Ti just obtained by further
partitioning each of them in a systematic manner, and the
same number of disjoint subsets of Ni are also constructed.
In Section III-D, we enumerate the refined covering sets
of Ti and the corresponding subsets of Ni, which enable
us to obtain the desired upper bound for δn/bn. Since we
consider the memoryless BSC in this paper, we assume
without loss of generality that xn

(1) is the all-zero codeword.
We also assume for notational convenience that i = 1
and T1 �= ∅.

For ease of reference, we first summarize in Table I all
main symbols used in the proof. We also illustrate in Fig. 1
all sets defined in Table I, based on the code of Example 1
below.

A. A Coarse Disjoint Covering of Non-Empty T1 and the
Corresponding Disjoint Subsets of N1

Before providing a coarse disjoint covering of non-empty
T1 and corresponding disjoint subsets of N1, we elucidate the
idea behind them.

Note from its definition in (7) that T1 consists of all
minimum distance ties when xn

(1) is sent. To obtain disjoint
covers of T1, we first collect all channel outputs yn that are
equidistant from xn

(1) and xn
(2) and we place them in T2|1.

We next place into T3|1 those outputs yn that have not been
included in T2|1, and that are at equal distance from xn

(1) and
xn

(3). We iterate this process sequentially to obtain Tj|1 for
j = 4, 5, . . ., M by picking yn tuples that have not yet been
included in all previous collections, and that are equidistant
from xn

(1) and xn
(j). This completes the construction of the

disjoint covers {Tj|1}M
j=2 of T1. Note that for non-empty T1,

we have at least one Tj|1 that is non-empty.
The (M − 1) disjoint subsets of Ni are constructed as fol-

lows. Suppose T2|1 is non-empty. Given a channel output un in
T2|1 (that is at equal distance from xn

(1) and xn
(2)), we can flip

a zero component of un to obtain a vn to fulfill d(xn
(1), v

n)−
1 = d(xn

(1), u
n) = d(xn

(2), u
n) = d(xn

(2), v
n) + 1, imply-

ing d(xn
(1), v

n) > d(xn
(2), v

n) ≥ minzn∈Cn\{xn
(1)} d(zn, vn).

Therefore, it follows from the definition in (6) that vn ∈ N1.
Collecting all such vn from every un ∈ T2|1, we form N2|1.
This construction provides an operational connection between
T2|1 and N2|1. Iterating this process for j = 3, 4, . . ., M in
this order and deliberately avoiding repeated collections give
the desired disjoint subsets of N1. Here, we force Nj|1 = ∅
whenever Tj|1 is an empty set.

The above constructions are formalized in the following
definition.

Definition 1: Define for j ∈ [M ] \ {1},

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tj|1 �
�

yn ∈ Yn : d(xn
(1), y

n) = d(xn
(j), y

n)

< min
r∈[j−1]\{1}

d(xn
(r), y

n)
�

; (16a)

Nj|1 �
�

yn ∈ Yn :

d(xn
(1), y

n) − 1=d(xn
(j), y

n)+1
�= d(xn

(r), y
n)

+1 for r ∈ [j − 1] \ {1}
�
. (16b)

To better understand the terms just introduced, we provide
the following example.

Example 1: Suppose M = 3 and C4 = {x4
(1), x4

(2),

x4
(3)} = {0000, 1100, 0110}. Then, T1 = {0100, 1000, 0101,

1001, 1010, 1011, 0010, 0011} and N1 = {1100, 0110, 0111,
1101, 1110, 1111}. Furthermore, we have T2|1 = {0100,
1000, 0101, 1001, 1010, 1011, 0110, 0111} and T3|1 = {0010,
0011}. Note that the last two elements in T2|1 satisfy both
d(xn

(1), y
n) = d(xn

(2), y
n) and d(xn

(1), y
n) > d(xn

(3), y
n), and

hence they result in ties but not in minimum distance ties as
required for T1 in (7), indicating that T2|1 ∪ T3|1 is a proper
covering of T1 as shown in Fig. 1. On the other hand, we have
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TABLE I

SUMMARY OF ALL MAIN SYMBOLS USED IN THE PROOF

Fig. 1. An illustration of the sets defined in Table I, based on the setting in Example 1, where T2|1(0) = T3|1(0) = N2|1(0) = N3|1(0) = ∅,
U2|1(1) = {0100, 0101, 0110, 1011} and U3|1(1) = {0010, 0011}.

N2|1 = {1100, 1101, 1110, 1111} and N3|1 = {0110, 0111},
showing that they are disjoint subsets of N1. �

The observations we made from Example 1 are proved in
the next proposition.
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Proposition 1: For nonempty T1, the following two prop-
erties hold.

i) The collection {Tj|1}j∈[M ]\{1} forms a disjoint covering
of T1.

ii) {Nj|1}j∈[M ]\{1} is a collection of disjoint subsets of Ni.
Proof: The strict inequality in (16a) and the non-equality

condition in (16b) guarantee no multiple inclusions of an ele-
ment from the previous collections; therefore, {Tj|1}j∈[M ]\{1}
are disjoint and so are {Nj|1}j∈[M ]\{1}. Now for any yn ∈
T1, we have d(xn

(1), y
n) = d(xn

(m), y
n) for some m �= 1;

therefore, this yn must be collected in Tj|1 for some j ≤ m,
confirming that {Tj|1}j∈[M ]\{1} forms a covering of T1. Next,
for any yn ∈ Nj|1, we have d(xn

(1), y
n) − 1 = d(xn

(j), y
n) +

1 ≥ minun∈Cn\{xn
(1)} d(un, yn) + 1, leading to d(xn

(1), y
n) >

d(xn
(j), y

n) ≥ minun∈Cn\{xn
(1)} d(un, yn); hence, this yn must

be contained in N1, confirming that {Nj|1}j∈[M ]\{1} are
subsets of Ni. �

From Proposition 1, we have that

PY n|Xn(T1|xn
(1))

PY n|Xn(N1

���xn
(1))

≤
PY n|Xn

��
j∈[M ]\{1} Tj|1

��xn
(1)

�
PY n|Xn

��
j∈[M ]\{1} Nj|1

��xn
(1)

�

=

	
j∈[M ]\{1} PY n|Xn

�
Tj|1

���xn
(1)

�
	

j∈[M ]\{1} PY n|Xn

�
Nj|1

���xn
(1)

� ,
(17)

which implies, using the same method to derive (14), that

PY n|Xn(T1|xn
(1))

PY n|Xn(N1|xn
(1))

≤ max
j∈[M ]\{1}:Tj|1 �=∅

PY n|Xn(Tj|1|xn
(1))

PY n|Xn(Nj|1|xn
(1))
(18)

for non-empty T1.
In the next section, we continue decomposing non-empty

Tj|1 and its corresponding Nj|1.

B. A Partition of Non-Empty Tj|1 and the Corresponding
Disjoint Subsets of Nj|1

For the enumeration analysis in Section III-D, further
decompositions of Tj|1 and Nj|1 are needed in order to
facilitate the identification of which portions of xn

(r) are ones
and which portions of xn

(r) are zeros for every r ∈ [j]. Let Sj

denote the set of indices for which the (bit) components of
xn

(j) equal one.
Now as an example, if we decompose S3 into Sc

2

�
S3 and

S2

�
S3, then we are certain that the portions of xn

(2) with
indices in Sc

2

�
S3 are zeros, and those with indices in

S2

�
S3 are ones. Furthermore, when considering the por-

tions of xn
(4) that are ones, S4 can be decomposed into

Sc
2

�
Sc

3

�
S4, Sc

2

�
S3

�
S4, S2

�
Sc

3

�
S4 and S2

�
S3

�
S4,

and the values of xn
(2) and xn

(3) are known exactly when
considering their portions with indices in any of these four
sets. In general, we shall partition Sj into 2j−2 subsets based
on S2, S3, . . ., Sj−1 and their respective complements. As
such, S4 is partitioned into 2j−2 = 4 subsets (here j = 4). For
convenience, we use the positive integer m � 1 +

	j−1
r=2 λr ·

2r−2, where 1 ≤ m ≤ 2j−2, to enumerate the 2j−2 joint

intersections, where λr = 0 implies Sc
r is involved in the

joint intersections, while λr = 1 implies Sr is taken instead.
Thus, with j = 4, the four sets Sc

2

�
Sc

3

�
S4, S2

�
Sc

3

�
S4,

Sc
2

�
S3

�
S4 and S2

�
S3

�
S4 are respectively indexed by

m = 1, 2, 3 and 4, which correspond to (λ2, λ3) = (0, 0),
(1, 0), (0, 1) and (1, 1), respectively.

For j ∈ [M ] \ {1}, partition Sj into 2j−2 subsets according
to whether each index in Sj is in S2, . . ., Sj−2 or not as
follows:

S(m)
j �

� j−2�
r=2

Sr;λr

��
Sj

for 1 ≤ m = 1 +
j−1�
r=2

λr · 2r−2 ≤ 2j−2, (19)

where Sr;1 � Sr and Sr;0 � Sc
r, and each λr ∈ {0, 1}. Define

incrementally S
(0)
j � ∅ and

S
(m)
j �

m�
q=1

S(q)
j , m ∈ [2j−2]. (20)

Let �j � |Sj | and �
(m)
j � |S (m)

j | denote the sizes of Sj and

S
(m)
j , respectively. Then, as mentioned at the beginning of

this section, for all r ∈ [j], the components of xn
(r) with indices

in S(m)
j can now be unambiguously identified and are all equal

to λr . As a result, with xn
(1) being the all-zero codewords,

d(xn
(1), x

n
(r)|S

(m)
j ) =

�
|S(m)

j |, λr = 1;
0, λr = 0,

(21)

where d(un, vn|S) denotes the Hamming distance between the
portions of un and vn with indices in S, and by convention,
we set d(un, vn|S) = 0 when S = ∅. We will see later in the
proof of Proposition 4 that (21) facilitates our evaluation of
d(xn

(r), y
n) for channel output yn.

We illustrate the sets and quantities just introduced in the
following example.

Example 2: Suppose C6 = {x6
(1), x6

(2), x6
(3)} = {000000,

111100, 001111}. Then, from (16a) and (16b), we obtain
T3|1 = {001010, 001001, 000110, 000101, 000011, 010011,
100011} and N3|1 = {000111, 001011, 001101, 001110,
101011, 011011, 100111, 010111, 111101, 111110}. Next,
it can be seen that S2 = {1, 2, 3, 4}, S3 = {3, 4, 5, 6} and
�2 = �3 = 4. In addition, by varying m = 1 + λ2 for
λ2 ∈ {0, 1}, S3 can be partitioned into 23−1 = 2 sets, which
are:

S(m)
3 =

�
S2;0

�
S3 = {5, 6}, m = 1;

S2;1

�
S3 = {3, 4}, m = 2.

(22)

Hence,

S
(m)
3 =

�
S(1)

3 = {5, 6}, m = 1;
S(1)

3

�
S(2)

3 = {3, 4, 5, 6}, m = 2,
(23)

and �
(1)
3 = |S (1)

3 | = 2 and �
(2)
3 = |S (2)

3 | = 4. �
We are now ready to describe how we partition Tj|1 and

construct the corresponding disjoint subsets of Nj|1. Recall
from Section III-A that we can flip a zero component of un in
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Tj|1 to recover a vn in Nj|1. This observation indicates that the
number of zero components (equivalently, the number of one
components) of un ∈ Tj|1 with indices in S

(m)
j can be used

as a factor to relate each partition of Tj|1 to its corresponding
subset of Nj|1. As xn

(1) is assumed all-zero, this factor can be

parameterized via d(xn
(1), u

n|S (m)
j ) = k for 0 ≤ k < �

(m)
j .

Irrespective of the construction of disjoint subsets of N3|1,
one may improperly infer from Example 2 that T3|1 can be

subdivided into �3 partitions according to d(x6
(1), u

6|S (1)
3 ) =

k for each 0 ≤ k < �
(1)
3 , and then according to

d(x6
(1), u

6|S (1)
3 ) = �

(1)
3 and d(x6

(1), u
6|S (2)

3 ) = k for �
(1)
3 ≤

k < �
(2)
3 = �3. However, the above setup could have two

u6 tuples, in respectively two different partitions of T3|1,
recover the same v6, leading to two non-disjoint subsets of
N3|1. For example, flipping the last bit of 000110 that belongs

to the partition constrained by d(x6
(1), 000110|S (1)

3 ) = 1,
and flipping the 4th bit of 000011 that is included in the
partition constrained by d(x6

(1), 000011|S (1)
3 ) = �

(1)
3 and

d(x6
(1), 000011|S (2)

3 ) = 2 yield identical tuples given by
v6 = 000111; hence, the two partitions, indexed respectively
by k = 1 and k = 2, recover two non-disjoint subsets of
N3|1. To avoid repetitive constructions of the same v6 from
distinct partitions of T3|1, we note that multiple constructions
of the same v6 could happen only when the flipped zero
component of u6 is the only zero component in S

(1)
3 , i.e.

d(x6
(1), u

n|S (1)
3 ) = �

(1)
3 − 1. A solution is to place all

u6 tuples that result in multiple constructions of the same
v6 in one partition, based on which for k ≥ 2, we refine the
constraint of the kth partition as �

(1)
3 −1 ≤ d(x6

(1), u
6|S (1)

3 ) ≤
d(x6

(1), u
6|S (2)

3 ) = k. In this manner, 000110 and 000011 are
both included in the partition indexed by k = 2.

As a generalization, we constrain the kth partition of Tj|1
by �

(m−1)
j − 1 ≤ d(xn

(1), u
n|S (m−1)

j ) ≤ d(xn
(1), u

n|S (m)
j ) =

k for �
(m−1)
j − 1 ≤ k < �

(m)
j − 1. After flipping a zero

component of un in the kth partition of Tj|1, the resulting

vn that belongs to the kth subset of Nj|1 satisfies �
(m−1)
j =

d(xn
(1), v

n|S (m−1)
j ) ≤ d(xn

(1), v
n|S (m)

j ) = k+1. To simplify
our set constructions in the following definition, we define the
mapping from the partition index k to the number m satisfying

�
(m−1)
j − 1 ≤ k < �

(m)
j − 1, which designates the set S

(m)
j

the flipped zero component of un is located in, as follows:

σ(k) �
�

m, for �
(m−1)
j − 1 ≤ k < �

(m)
j − 1;

min
�
m : �

(m)
j = �j

�
, for k = �j − 1.

(24)

Definition 2: Define for k = 0, 1, . . ., �j − 1,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tj|1(k) �
�
yn ∈ Tj|1 :

�
(m−1)
j − 1 ≤ d

�
xn

(1), y
n
��S (m−1)

j

�
≤ d
�
xn

(1), y
n
��S (m)

j

�
= k

�
; (25a)

Nj|1(k) �
�
yn ∈ Nj|1 :

�
(m−1)
j = d

�
xn

(1), y
n
��S (m−1)

j

�
≤ d
�
xn

(1), y
n
��S (m)

j

�
= k + 1

�
, (25b)

where m = σ(k) is given in (24).

An example to illustrate the Tj|1-partitions and Nj|1-subsets
is given below.

Example 3: Using the setting of Example 2, we show how
we partition T3|1 according to S

(1)
3 and S

(2)
3 and construct

the corresponding disjoint subsets of N3|1. From (25a) and
(25b), we can obtain the partition {T3|1(k)}0≤k<�3 and disjoint
subsets {N3|1(k)}0≤k<�3 as follows:

T3|1(k) =

�
∅, k = 0, 1, 3;
T3|1, k = 2,

(26)

and

N3|1(k) =

�
∅, k = 0, 1, 3;
N3|1, k = 2,

(27)

as a result of the mapping

σ(k)=

⎧⎪⎨
⎪⎩

1, �
(0)
3 − 1 ≤ k < �

(1)
3 − 1 (equiv. k = 0);

2, �
(1)
3 − 1 ≤ k < �

(2)
3 − 1 (equiv. k = 1, 2);

2, k = �3 − 1 = 3.

(28)

�
With the above definition, we next verify the partitions of

non-empty Tj|1 and the corresponding disjoint subsets of Nj|1.
Proposition 2: For non-empty Tj|1, the following two prop-

erties hold.

i) {Tj|1(k)}0≤k<�j forms a partition of Tj|1;
ii) {Nj|1(k)}0≤k<�j is a collection of disjoint subsets of

Nj|1.

Proof: It can be seen from the definitions of
{Tj|1(k)}0≤k<�j and {Nj|1(k)}0≤k<�j that they are collec-
tions of mutually disjoint subsets of Tj|1 and Nj|1, respec-
tively. It remains to show that Tj|1 =

�
0≤k<�j

Tj|1(k).

Recall that S
(m)
j is a subset of Sj and every element yn

in Tj|1 must satisfy �j > d(xn
(1), y

n|Sj) = d(xn
(j), y

n|Sj) =
�j

2 ≥ d(xn
(1), y

n|S (m)
j ); hence, no element in Tj|1 can fulfill

d(xn
(1), y

n|S (m)
j ) = �j . This confirms that in defining Tj|1(k)

in (25a), we can exclude the case of k = �j . Since every
element in Tj|1 must satisfy the two constraints in Tj|1(k) for
exactly one 0 ≤ k < �j , {Tj|1(k)}0≤k<�j forms a partition of
Tj|1. �

By applying a similar technique that leads to (14) and (18),
Proposition 2 results in the following inequality:

PY n|Xn(Tj|1|xn
(1))

PY n|Xn(Nj|1|xn
(1))

≤ max
0≤k<�j :Tj|1(k) �=∅

PY n|Xn(Tj|1(k)|xn
(1))

PY n|Xn(Nj|1(k)|xn
(1))

(29)

for non-empty Tj|1. We further decompose non-empty Tj|1(k)
and its corresponding Nj|1(k) in the next section.

C. A Fine Partition of Tj|1(k) and the Corresponding
Disjoint Subsets of Nj|1(k)

The final decomposition of Tj|1(k) and Nj|1(k) is a little
involved. We elucidate its underlying concept via an example
before formally presenting it. The idea is to further partition
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Tj|1(k) using a group of representative elements in Tj|1(k)
and construct the corresponding subsets of Nj|1(k) based on
the same group of representative elements.

Pick an arbitrary element from T3|1(2) in Example 3 as the
first representative element, say u6 = 001010. We collect all
outputs y6 in T3|1(2) such that its components with indices

outside S
(σ(2))
3 are exact duplications of the components

of u6 at the same positions, and place them in T3|1(u6; 2).
In other words, we require d

�
u6, y6

���S (2)
3

�c� = 0. With�
S

(2)
3

�c = {1, 2}, we have T3|1(u6; 2) = T3|1(001010; 2) =
{000011, 001010, 001001, 000110, 000101}, where the first
two bits of each tuple in T3|1(u6; 2) must be equal
to the first two bits of u6 = 001010. Analogously,
N3|1(u6; 2) collects all elements in N3|1(2) satisfying

d
�
u6, y6

���S (2)
3

�c� = 0, and is given by N3|1(001010; 2) =
{000111, 001011, 001101, 001110}.

We can further pick another element 100011 in T3|1 \
T3|1(001010; 2) as the second representative to construct
T3|1(100011; 2) = {100011} and the corresponding
N3|1(100011; 2) = {101011, 100111}, where the first two
bits of elements in the two sets must equal 10. Continuing
this process to construct T3|1(010011; 2) = {010011} and
N3|1(010011; 2) = {011011, 010111}, we can see that all
elements in T3|1(2) have been exhausted. Thus, U3|1(2) =
{001010, 100011, 010011} is exactly the required group of
representatives.

We formalize the above set constructions in the following
definition and proposition, whose proof is omitted, being a
direct consequence of the construction process.

Definition 3: Define for un ∈ Tj|1(k) with m = σ(k),

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Tj|1(un; k) �
�
yn ∈ Tj|1(k) :

d
�
un, yn

����S (m)
j

�c� = 0
�
; (30a)

Nj|1(un; k) �
�
yn ∈ Nj|1(k) :

d
�
un, yn

���(S (m)
j )c

�
= 0
�
. (30b)

Proposition 3: For non-empty Tj|1(k), there exists a group
of representative Uj|1(k) ⊆ Tj|1(k) such that the following
two properties hold.

i)
�
Tj|1(un; k)

�
un∈Uj|1(k)

forms a (non-empty) partition

of Tj|1(k);
ii)
�
Nj|1(un; k)

�
un∈Uj|1(k)

is a collection of (non-empty)

disjoint subsets of Nj|1(k).
Again, by applying a similar technique to derive (14),

Proposition 3 yields that for non-empty Tj|1(k),

PY n|Xn(Tj|1(k)|xn
(1))

PY n|Xn(Nj|1(k)|xn
(1))

≤ max
un∈Uj|1(k)

PY n|Xn(Tj|1(un; k)|xn
(1))

PY n|Xn(Nj|1(un; k)|xn
(1))

. (31)

What remains to confirm is that (1−p)
p n is an upper bound on

PY n|Xn (Tj|1(un;k)|xn
(1))

PY n|Xn (Nj|1(un;k)|xn
(1))

; this will be shown in the next section.

D. Characterization of a Linear Upper Bound for δn/bn

The constraints of Tj|1(un; k) in (30a) and Nj|1(un; k) in

(30b) indicate that when dealing with
PY n|Xn (Tj|1(un;k)|xn

(1))

PY n|Xn (Nj|1(un;k)|xn
(1))

,

we only need to consider those bits with indices in S
(m)
j

with m = σ(k) because the remaining bits of all tuples in
Tj|1(un; k) and Nj|1(un; k) have identical values as un. Since

elements in Tj|1(un; k) with indices in S
(σ(k))
j have exactly

k ones, and those in Nj|1(un; k) with indices in S
(σ(k))
j have

exactly k + 1 ones, we can immediately infer that

PY n|Xn(Tj|1(un; k)|xn
(1))

PY n|Xn(Nj|1(un; k)|xn
(1))

=
pk(1 − p)n−k

pk+1(1 − p)n−(k+1)
·
|Tj|1(un; k)|
|Nj|1(un; k)| (32)

=
(1 − p)

p
·
|Tj|1(un; k)|
|Nj|1(un; k)| . (33)

The desired upper bound can thus be established by proving

that
|Tj|1(un;k)|
|Nj|1(un;k)| ≤ n, as shown in the next proposition.

Proposition 4: For non-empty Tj|1(un; k), we have

PY n|Xn(Tj|1(un; k)|xn
(1))

PY n|Xn(Nj|1(un; k)|xn
(1))

≤ (1 − p)
p

n. (34)

Proof: Recall from (16a), (25a) and (30a) that yn ∈
Tj|1(un; k) with m = σ(k) if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(xn
(1), y

n) = d(xn
(j), y

n); (35a)

d(xn
(1), y

n) < min
r∈[j−1]\{1}

d(xn
(r), y

n); (35b)

�
(m−1)
j − 1 ≤ d

�
xn

(1), y
n
��S (m−1)

j

�
≤ d
�
xn

(1), y
n
��S (m)

j

�
= k; (35c)

d
�
un, yn

��(S (m)
j )c

�
= 0. (35d)

Thus, we can enumerate the number of elements in Tj|1(un; k)
by counting the number of channel outputs yn fulfilling the
above four conditions.

We then examine the number of yn satisfying (35c) and
(35d). Nothing that these yn have either �

(m−1)
j − 1 ones or

�
(m−1)
j ones with indices in S

(m−1)
j , we know there are

�
�
(m−1)
j

�
(m−1)
j − 1

��
�
(m)
j − �

(m−1)
j

k − (�(m−1)
j − 1)

�

+
�

�
(m−1)
j

�
(m−1)
j

��
�
(m)
j − �

(m−1)
j

k − �
(m−1)
j

�
(36)

of yn tuples satisfying (35c) and (35d).3 Considering the
additional two conditions in (35a) and (35b), we get that the
number of elements in Tj|1(un; k) is upper-bounded by (36).

3To unify the expression, when m = 1, in which case �
(0)
j = 0, we assign

� 0
−1

�
= 0 and

�0
0

�
= 1 in (36). Similarly, when k = �

(m−1)
j − 1, we set

��
(m)
j −�

(m−1)
j

k−�
(m−1)
j

�
=

��
(m)
j −�

(m−1)
j

−1

�
= 0.
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On the other hand, from (16b), (25b), (30b) and
Nj|1(un; k) ⊆ Nj|1(k) ⊆ Nj|1, we obtain that wn ∈
Nj|1(un; k) if and only if⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(xn
(1), w

n) − 1 = d(xn
(j), w

n) + 1; (37a)

d(xn
(1), w

n) − 1 �= d(xn
(r), w

n) + 1
for r ∈ [j − 1] \ {1}; (37b)

�
(m−1)
j = d

�
xn

(1), w
n
��S (m−1)

j

�
≤ d
�
xn

(1), w
n
��S (m)

j

�
= k + 1; (37c)

d
�
un, wn

��(S (m)
j )c� = 0. (37d)

We then claim that any wn satisfying (37c) and (37d) should
automatically validate (37a) and (37b). Note that the validity
of the claim, which we prove in Appendix IV, immediately
implies that the number of elements in Nj|1(un; k) can be
determined by (37c) and (37d), and hence

|Nj|1(un; k)| =
�

�
(m)
j − �

(m−1)
j

k + 1 − �
(m−1)
j

�
. (38)

Under this claim, we complete the proof of the proposition
using (33), (36) and (38) as follows:

PY n|Xn

�
Tj|1(un; k)|xn

(1)

�
PY n|Xn

�
Nj|1(un; k)|xn

(1)

�
≤ (1 − p)

p

·

� �
(m−1)
j

�
(m−1)
j −1

�� �
(m)
j −�

(m−1)
j

k−(�
(m−1)
j −1)

�
+
��(m−1)

j

�
(m−1)
j

���(m)
j −�

(m−1)
j

k−�
(m−1)
j

�
��(m)

j −�
(m−1)
j

k+1−�
(m−1)
j

�
(39)

=
(1 − p)

p

�
�
(m−1)
j +

k + 1 − �
(m−1)
j

�
(m)
j − k

�
(40)

≤ (1 − p)
p

�
�
(m−1)
j +

�
(m)
j − �

(m−1)
j

1

�
(41)

≤ (1 − p)
p

n, (42)

where (41) holds because �
(m−1)
j −1 ≤ k ≤ �

(m)
j −1 by (24),

and (42) follows from �
(m)
j ≤ �j ≤ n. �

Using (18), (29), (31) and Proposition 4, we obtain

PY n|Xn(T1|xn
(1))

PY n|Xn(N1|xn
(1))

≤ (1 − p)
p

n. (43)

We close this section by remarking that the same inequality
as (43), i.e.,

PY n|Xn(Ti|xn
(i))

PY n|Xn(Ni|xn
(i))

≤ (1 − p)
p

n, (44)

can be analogously established for all i ∈ [M ] with Ti �= ∅.
Consequently, (14) implies

δn

bn
≤ max

i∈[M ]:Ti �=∅

PY n|Xn(Ti|xn
(i))

PY n|Xn(Ni|xn
(i))

≤ (1 − p)
p

n. (45)

IV. CONCLUSION

In this paper, the generalized Poor-Verdú error lower bound
of [3] was considered in the classical channel coding context
over the BSC. We proved that the bound is exponentially tight
in blocklength as a direct consequence of a key inequality,
showing that for any block code with distinct codewords used
over the BSC, the relative deviation of the code’s minimum
probability of error from the lower bound grows at most
linearly in blocklength.

Even though the exact determination of the reliability func-
tion of the BSC at low rates remains a daunting open problem,
our results offer potentially a new perspective or tool for
subsequent studies. Other future work includes investigating
sharp bounds for codes with small-to-moderate blocklengths
(e.g., see [5], [27], [28]) used over symmetric channels.
As our counting analysis for the binary symmetric channel
relies heavily on the equivalence between ML decoding and
minimum Hamming distance decoding, which does not hold
for non-symmetric channels, extending our results to general
channels may require more sophisticated enumerating tech-
niques.

APPENDIX

THE PROOF OF (37c) AND (37d) IMPLYING (37a) AND (37b)

We validate the claim via the construction of an auxil-
iary vn ∈ Nj|1(un; k) from un ∈ Tj|1(un; k). This aux-
iliary vn will be defined differently according to whether
d
�
xn

(1), u
n
��S (m−1)

j

�
equals �

(m−1)
j or �

(m−1)
j − 1 as follows.

i) d(xn
(1), u

n|S (m−1)
j ) = �

(m−1)
j : Since in this case, un

has no zero components with indices in S
(m−1)
j , we flip

a zero component of un with its index in S
(m)
j \

S
(m−1)
j = S(m)

j to construct a vn such that

d(xn
(1), v

n) = d(xn
(1), u

n) + 1 (46)

and
d(xn

(j), v
n) = d(xn

(j), u
n) − 1, (47)

where the existence of such vn is guaranteed by k ≤
�
(m)
j − 1. Then, vn must fulfill (37a), (37c) and (37d)

(with wn replaced by vn) as un satisfies (35a), (35c)
and (35d). We next prove vn also fulfills (37b) by
contradiction. Suppose there exists a r ∈ [j − 1] \ {1}
satisfying

d(xn
(1), v

n) − 1 = d(xn
(r), v

n) + 1. (48)

We then recall from (21) that d(xn
(1), x

n
(r)|S

(m)
j ) is

either 0 or |S(m)
j |. Thus, (48) can be disproved by

differentiating two cases: 1) d(xn
(1), x

n
(r)|S

(m)
j ) = 0, and

2) d(xn
(1), x

n
(r)|S

(m)
j ) = |S(m)

j |.
In case 1), vn that is obtained by flipping a

zero component of un with index in S(m)
j must sat-

isfy d(xn
(1), v

n) = d(xn
(1), u

n) + 1 and d(xn
(r), v

n) =
d(xn

(r), u
n) + 1. Then, (48) implies d(xn

(1), u
n) − 1 =

d(xn
(r), u

n) + 1. A contradiction to the fact that un

Authorized licensed use limited to: Queen's University. Downloaded on May 21,2022 at 13:55:46 UTC from IEEE Xplore.  Restrictions apply. 



CHANG et al.: DECODER TIES DO NOT AFFECT ERROR EXPONENT OF MEMORYLESS BSC 3509

satisfies (35b) is obtained. In case 2), the flipping manip-
ulation on un results in d(xn

(1), v
n) = d(xn

(1), u
n)+1 and

d(xn
(r), v

n) = d(xn
(r), u

n) − 1. Therefore, (48) implies
d(xn

(1), u
n) = d(xn

(r), u
n), which again contradicts

(35b). Accordingly, vn must also fulfill (37b); hence,
vn ∈ Nj|1(un; k).
With this auxiliary vn, we are ready to prove that every
wn satisfying (37c) and (37d) also validates (37a) and
(37b). This can be done by showing d(xn

(r), w
n) =

d(xn
(r), v

n) for every r ∈ [j], which can be verified as
follows:

d(xn
(r), w

n)

= d
�
xn

(r), w
n
��S (m−1)

j

�
+ d
�
xn

(r), w
n
��S(m)

j

�
+ d
�
xn

(r), w
n
��(S (m)

j )c
�

(49)

= d
�
xn

(r), v
n
��S (m−1)

j

�
+ d
�
xn

(r), v
n
��S(m)

j

�
+ d
�
xn

(r), v
n
��(S (m)

j )c
�

(50)

= d(xn
(r), v

n), (51)

where the substitution in the first term of (50) holds
because both vn and wn satisfy (37c), implying all
components of vn and wn with indices in S

(m−1)
j

are equal to one; the substitution in the 2nd term of
(50) holds because when considering only those portions
with indices in S(m)

j , xn
(r) are either all ones or all

zeros according to (21), and both wn and vn have
exactly k + 1 − �

(m−1)
j ones according to (37c); and

the substitution in the 3rd term of (50) is valid since
both vn and wn satisfy (37d).

ii) d(xn
(1), u

n|S (m−1)
j ) = �

(m−1)
j − 1: Now we let vn be

equal to un in all positions but one in S
(m−1)
j such that

d(xn
(1), v

n|S (m−1)
j ) = �

(m−1)
j . Then, vn must fulfill

(37a), (37c) and (37d) as un satisfies (35a), (35c) and
(35d). With the components of xn

(r) with respect to S(m)
j

being either all zeros or all ones, the same contradiction
argument after (48) can disprove the validity of (48)
for this vn and for any r ∈ [j − 1] \ {1}. Therefore,
vn also fulfills (37b), implying vn ∈ Nj|1(un; k). With
this auxiliary vn, we can again verify (51) via the same
derivation in (51). The claim that wn satisfying (37c)
and (37d) validates (37a) and (37b) is thus confirmed.
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