Decoder Ties Do Not Affect the Error Exponent of the Memoryless Binary Symmetric Channel

Ling-Hua Chang ${ }^{(}$, Associate Member, IEEE, Po-Ning Chen ${ }^{\oplus}$, Senior Member, IEEE, Fady Alajaji ${ }^{\oplus}$, Senior Member, IEEE, and Yunghsiang S. Han ${ }^{\ominus}$, Fellow, IEEE

Abstract

The generalized Poor-Verdú error lower bound established by Chang et al. (2020) for multihypothesis testing is studied in the classical channel coding context. It is proved that for any sequence of block codes sent over the memoryless binary symmetric channel (BSC), the minimum probability of error (under maximum likelihood decoding) has a relative deviation from the generalized bound that grows at most linearly in blocklength. This result directly implies that for arbitrary codes used over the BSC, decoder ties can only affect the subexponential behavior of the minimum probability of error.

Index Terms-Binary symmetric channel, block codes, error probability bounds, maximum likelihood decoder ties, error exponent, channel reliability function, hypothesis testing.

I. Introduction

AWELL-KNOWN lower bound on the minimum probability of error P_{e} of multihypothesis testing is the socalled Poor-Verdú bound [1]. The bound was generalized in [2] by tilting, via a parameter $\theta \geq 1$, the posterior hypothesis distribution, with the resulting bound noted to progressively improve with θ except for examples involving the memoryless binary erasure channel (BEC). The closed-form formula of this generalized Poor-Verdú bound, as θ tends to infinity, was recently derived in [3]. An alternative lower bound for P_{e} was established by Verdú and Han in [4]; this bound was subsequently extended and strengthened in [5].
In this paper, we investigate the generalized Poor-Verdú lower bound of [3] in the classical context of the maximum-

Manuscript received July 6, 2020; revised November 1, 2021; accepted February 3, 2022. Date of publication February 9, 2022; date of current version May 20, 2022. The work of Ling-Hua Chang was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 109-2221-E-155-035MY3. The work of Po-Ning Chen was supported by the Ministry of Science and Technology, Taiwan, under Grant MOST 110-2221-E-A49-024-MY3. The work of Fady Alajaji was supported by the Natural Sciences and Engineering Research Council of Canada. (Corresponding author: Ling-Hua Chang.)
Ling-Hua Chang is with the Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan (e-mail: iamjaung@ee.yzu.edu.tw).
Po-Ning Chen is with the Institute of Communications Engineering and the Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan (e-mail: poningchen@nycu.edu.tw).

Fady Alajaji is with the Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada (e-mail: fa@queensu.ca).

Yunghsiang S. Han is with the Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Guangdong, Shenzhen 611731, China (e-mail: yunghsiangh@gmail.com).
Communicated by T. Koch, Associate Editor for Communications.
Color versions of one or more figures in this article are available at https://doi.org/10.1109/TIT.2022.3150597.

Digital Object Identifier 10.1109/TIT.2022.3150597
likelihood (ML) decoding error probability of block $\operatorname{codes} \mathcal{C}_{n}$ with blocklength n and size $\left|\mathcal{C}_{n}\right|=M$ sent over the memoryless binary symmetric channel (BSC) with crossover probability $0<p<1 / 2$. For convenience, we denote this lower bound by b_{n} (see its expression in (3)). Specifically, for channel inputs uniformly distributed over code \mathcal{C}_{n}, we bound the code's minimum probability of decoding error a_{n} in terms ${ }^{1}$ of b_{n} as follows:

$$
\begin{equation*}
b_{n} \leq a_{n} \leq(1+c n) b_{n} \tag{1}
\end{equation*}
$$

where $c \triangleq(1-p) / p$ is the channel (likelihood ratio) constant and is independent of code \mathcal{C}_{n}. Noting that b_{n} can be recovered from a_{n} by disregarding all decoder ties, which occur with probability no larger than $c n b_{n}$, we conclude that decoder ties only affect the subexponential behavior of the minimum error probability a_{n} with respect to an arbitrary sequence of codes $\left\{\mathcal{C}_{n}\right\}_{n \geq 1}$. Indeed, setting $\mathcal{C}_{n}^{a *} \triangleq \arg \min _{\mathcal{C}_{n}:\left|\mathcal{C}_{n}\right|=M} a_{n}\left(\mathcal{C}_{n}\right)$ and $\mathcal{C}_{n}^{b *} \triangleq \arg \min _{\mathcal{C}_{n}:\left|\mathcal{C}_{n}\right|=M} b_{n}\left(\mathcal{C}_{n}\right)$ for codes of blocklength n and size M used over the BSC, (1) implies that:

$$
\begin{align*}
b_{n}\left(\mathcal{C}_{n}^{b *}\right) & \leq b_{n}\left(\mathcal{C}_{n}^{a *}\right) \leq a_{n}\left(\mathcal{C}_{n}^{a *}\right) \\
& \leq a_{n}\left(\mathcal{C}_{n}^{b *}\right) \leq\left(1+\frac{(1-p)}{p} n\right) b_{n}\left(\mathcal{C}_{n}^{b *}\right) \tag{2}
\end{align*}
$$

which immediately gives that with $M=\left\lfloor e^{n R}\right\rfloor$, the BSC reliability function $E(R) \triangleq \lim \sup _{n \rightarrow \infty}-\frac{1}{n} \log a_{n}\left(\mathcal{C}_{n}^{a *}\right)$ satisfies $E(R)=\lim \sup _{n \rightarrow \infty}-\frac{1}{n} \log b_{n}\left(\mathcal{C}_{n}^{b *}\right)$ and can hence be determined via a sequence of codes that minimizes $b_{n}\left(\mathcal{C}_{n}\right)$ (without considering ties) instead of $a_{n}\left(\mathcal{C}_{n}\right)$.

The related problem of exactly characterizing the channel reliability function at low rates remains a long-standing open problem; in-depth studies on this focal information-theoretic function and related problems include the classical papers [6]-[9] and texts [10]-[13] and the more recent works [14]-[25] (see also the references therein). In [1], Poor and Verdú conjectured that their original error lower bound for multihypothesis testing, which yields an upper bound on the channel coding reliability function, is tight for all rates and arbitrary channels. The conjecture was disproved in [26], where the bound was shown to be loose for the BEC at low rates. Furthermore, Polyanskiy showed in [17] that the original

[^0]Poor-Verdú bound [1] coincides with the sphere-packing error exponent bound for discrete memoryless channels (and is hence loose at low rates for this entire class of channels). Our result in (1) which holds for arbitrary sequence of codes $\left\{\mathcal{C}_{n}\right\}_{n \geq 1}$, while not explicitly determining the reliability function for the BSC, provides an alternative approach for studying it.

The rest of the paper is organized as follows. The error bound b_{n} is analyzed for the channel coding problem over the memoryless BSC in Section II. The proof of the main theorem is provided in detail in Section III. Finally, conclusions are drawn in Section IV.
Throughout the paper, we denote $[M] \triangleq\{1,2, \ldots, M\}$ for any positive integer M.

II. Analysis of Lower Bound b_{n} FOR AN Arbitrary Sequence of Binary Codes $\left\{\mathcal{C}_{n}\right\}_{n \geq 1}$

Consider an arbitrary binary code $\mathcal{C}_{n} \in\{0,1\}^{n}$ with blocklength n and size $\left|\mathcal{C}_{n}\right|=M$ to be used over the BSC with crossover probability $0<p<\frac{1}{2}$. It is shown in [3, Eq. (5)] that the generalized Poor-Verdú error lower bound b_{n} to the minimum probability of decoding error a_{n} (obtained under maximum-likelihood decoding) is given by

$$
\begin{align*}
b_{n}= & P_{X^{n}, Y^{n}}\left\{\left(x^{n}, y^{n}\right) \in \mathcal{X}^{n} \times \mathcal{Y}^{n}:\right. \\
& \left.P_{X^{n} \mid Y^{n}}\left(x^{n} \mid y^{n}\right)<\max _{u^{n} \in \mathcal{C}_{n} \backslash\left\{x^{n}\right\}} P_{X^{n} \mid Y^{n}}\left(u^{n} \mid y^{n}\right)\right\}, \tag{3}
\end{align*}
$$

where $P_{X^{n}, Y^{n}}$ is the joint input-output distribution that X^{n} is sent over the BSC (via n uses) and Y^{n} is received, and $P_{X^{n} \mid Y^{n}}$ is the corresponding posterior conditional distribution of X^{n} given Y^{n}. Indeed, by recalling that the (optimal) maximum a posteriori (MAP) estimate of $x^{n} \in \mathcal{C}_{n}$ from observing $y^{n} \in \mathcal{Y}^{n}$ at the channel output is given by

$$
\begin{equation*}
e\left(y^{n}\right)=\arg \max _{x^{n} \in \mathcal{C}_{n}} P_{X^{n} \mid Y^{n}}\left(x^{n} \mid y^{n}\right) \tag{4}
\end{equation*}
$$

the right-hand-side (RHS) of (3) is nothing but the error probability under a "genie" MAP decoder that correctly resolves ties. We demonstrate that the lower bound b_{n} in (3), upon scaling it by the affine linear term $(1+c n)$, where $c=(1-p) / p$, becomes an upper bound for a_{n}, and hence is asymptotically exponentially tight with a_{n} (i.e., $\lim \sup _{n \rightarrow \infty} \frac{1}{n} \log \frac{a_{n}}{b_{n}}=0$) for arbitrary sequences of block codes sent over the BSC. The exponential tightness result follows directly from the following theorem, which is the main contribution of the paper.

Theorem 1: For any sequence of codes $\left\{\mathcal{C}_{n}\right\}_{n \geq 1}$ of blocklength n and size $\left|\mathcal{C}_{n}\right|=M$ with $\mathcal{C}_{n} \subseteq \mathcal{X}^{n} \triangleq\{0,1\}^{n}$, let a_{n} denote the minimum probability of decoding error for transmitting \mathcal{C}_{n} over the BSC with crossover probability $0<p<1 / 2$, under a uniform distribution $P_{X^{n}}$ over \mathcal{C}_{n}, where X^{n} is the n-tuple $\left(X_{1}, \ldots, X_{n}\right)$. Then,

$$
\begin{equation*}
b_{n} \leq a_{n} \leq\left(1+\frac{(1-p)}{p} n\right) b_{n} \tag{5}
\end{equation*}
$$

where b_{n} is given in (3).
In Theorem 1, it is implicitly assumed that all M codewords are distinct as the codebook is defined as $\mathcal{C}_{n} \in \mathcal{X}^{n}$, with \mathcal{X}^{n}
containing all (distinct) binary sequences of length n. Note that if identical codewords are allowed in \mathcal{C}_{n}, decoder ties may become dominant in the minimum error probability a_{n} and the right inequality (5) in Theorem 1 no longer holds. Theorem 1 reveals that for any arbitrary sequence of block codes $\left\{\mathcal{C}_{n}\right\}_{n \geq 1}$ used over the BSC, the relative deviation, $\left(a_{n}-b_{n}\right) / b_{n}$, of the minimum probability of decoding error a_{n} from b_{n} is at most linear in the blocklength n. It is worth mentioning that this conclusion cannot be applied for the BEC for any code \mathcal{C}_{n} because decoder ties are the only source of decoding errors on the BEC, which gives $b_{n}=0$ since (3) ignores ties.

Overview of the Proof of Theorem 1: Before providing the full proof of Theorem 1 in Section III, we introduce the necessary notation and highlight how we prove (5).
Because the channel input distribution $P_{X^{n}}$ is uniform over \mathcal{C}_{n}, the code's minimal probability of error a_{n} is achieved under ML decoding. For the BSC, the ML estimate based on any received n-tuple y^{n} at the channel output is obtained via the Hamming distances $\left\{d\left(x^{n}, y^{n}\right)\right\}_{x^{n} \in \mathcal{C}_{n}, y^{n} \in \mathcal{Y}^{n}}$. Define the set of output n-tuples y^{n} which definitely lead to an ML decoder error when $x_{(i)}^{n} \in \mathcal{C}_{n}$ is transmitted as

$$
\begin{equation*}
\mathcal{N}_{i} \triangleq\left\{y^{n} \in \mathcal{Y}^{n}: d\left(x_{(i)}^{n}, y^{n}\right)>\min _{u^{n} \in \mathcal{C}_{n} \backslash\left\{x_{(i)}^{n}\right\}} d\left(u^{n}, y^{n}\right)\right\}, \tag{6}
\end{equation*}
$$

and the set of output n-tuples y^{n} that induce a decoder tie when transmitting $x_{(i)}^{n} \in \mathcal{C}_{n}$ as

$$
\begin{equation*}
\mathcal{T}_{i} \triangleq\left\{y^{n} \in \mathcal{Y}^{n}: d\left(x_{(i)}^{n}, y^{n}\right)=\min _{u^{n} \in \mathcal{C}_{n} \backslash\left\{x_{(i)}^{n}\right\}} d\left(u^{n}, y^{n}\right)\right\} . \tag{7}
\end{equation*}
$$

For the BSC with crossover probability $0<p<\frac{1}{2}$, we have $P_{Y^{n} \mid X^{n}}\left(y^{n} \mid x_{(i)}^{n}\right)=\left(\frac{p}{1-p}\right)^{d\left(x_{(i)}^{n}, y^{n}\right)}(1-p)^{n}$. Thus, $d\left(x_{(i)}^{n}, y^{n}\right)>\min _{u^{n} \in \mathcal{C}_{n} \backslash\left\{x_{(i)}^{n}\right\}} d\left(u^{n}, y^{n}\right)$ if and only if $P_{Y^{n} \mid X^{n}}\left(y^{n} \mid x_{(i)}^{n}\right)<\max _{u^{n} \in \mathcal{C}_{n} \backslash\left\{x_{(i)}^{n}\right\}} P_{Y^{n} \mid X^{n}}\left(y^{n} \mid u^{n}\right)$, and therefore

$$
\begin{align*}
b_{n} & =\sum_{i=1}^{M} P_{X^{n}}\left(x_{(i)}^{n}\right) P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right) \\
& =\frac{1}{M} \sum_{i \in[M]} P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right) \tag{8}
\end{align*}
$$

Similarly, $P_{Y^{n} \mid X^{n}}\left(y^{n} \mid x_{(i)}^{n}\right)=\left(\frac{p}{1-p}\right)^{d\left(x_{(i)}^{n}, y^{n}\right)}(1-p)^{n}$ implies that the probability of decoder ties, denoted by δ_{n}, satisfies

$$
\begin{align*}
\delta_{n} & =\sum_{i=1}^{M} P_{X^{n}}\left(x_{(i)}^{n}\right) P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i} \mid x_{(i)}^{n}\right) \\
& =\frac{1}{M} \sum_{i \in[M]} P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i} \mid x_{(i)}^{n}\right) . \tag{9}
\end{align*}
$$

We thus obtain the following relationship:

$$
\begin{equation*}
b_{n} \leq a_{n} \leq b_{n}+\delta_{n}=\left(1+\frac{\delta_{n}}{b_{n}}\right) b_{n} \tag{10}
\end{equation*}
$$

Note if $\delta_{n}=0,{ }^{2}$ then (10) is tight and (5) holds trivially; so without loss of generality, we will assume in the proof that

[^1]$\delta_{n}>0$. We then have that
\[

$$
\begin{align*}
& \frac{\delta_{n}}{b_{n}}=\frac{\sum_{i \in[M]} P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i} \mid x_{(i)}^{n}\right)}{\sum_{i \in[M]} P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right)} \tag{11}\\
& \leq \frac{\sum_{i \in[M]: \mathcal{T}_{i} \neq \emptyset} P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i} \mid x_{(i)}^{n}\right)}{\sum_{i \in[M]: \mathcal{T}_{i} \neq \emptyset} P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right)} \tag{12}\\
& \leq \frac{1}{\sum_{i \in[M]: \mathcal{T}_{i} \neq \emptyset} P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right)} \\
& \sum_{i \in[M]: \mathcal{I}_{i} \neq \emptyset}\left(P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right)\right. \\
& \left.\max _{i^{\prime} \in[M]: \mathcal{T}_{i^{\prime}} \neq \emptyset} \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i^{\prime}} \mid x_{\left(i^{\prime}\right)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i^{\prime}} \mid x_{\left(i^{\prime}\right)}^{n}\right)}\right) \tag{13}\\
& =\max _{i^{\prime} \in[M]: \mathcal{T}_{i^{\prime}} \neq \emptyset} \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i^{\prime}} \mid x_{\left(i^{\prime}\right)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i^{\prime}} \mid x_{\left(i^{\prime}\right)}^{n}\right)}, \tag{14}
\end{align*}
$$
\]

where (12) holds because the assumption of $\delta_{n}>0$ guarantees the existence of at least one non-empty set \mathcal{I}_{i} for $i \in[M]$. With (10) and (14), the upper bound in (5) follows by proving that

$$
\begin{equation*}
\frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i} \mid x_{(i)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right)} \leq \frac{(1-p)}{p} n \text { for non-empty } \mathcal{T}_{i} \tag{15}
\end{equation*}
$$

To achieve this objective, we will construct a number of disjoint covers of \mathcal{T}_{i} and also construct the same number of disjoint subsets of \mathcal{N}_{i} such that a one-to-one correspondence between the \mathcal{T}_{i}-covers and the \mathcal{N}_{i}-subsets exists. Since $P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i} \mid x_{(i)}^{n}\right)>0$ guarantees the existence of at least one non-empty \mathcal{T}_{i}-cover, a similar derivation to (14) yields that $\frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{I}_{i} \mid x_{(i)}^{n}\right)}{\left.P_{Y^{n} \mid X^{n}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right)}\right)}$ is upper-bounded by the maximum ratio of the probabilities of the \mathcal{T}_{i}-cover-versus- \mathcal{N}_{i}-subset pairs. The final step (i.e., Proposition 4 in Section III-D) is to enumerate the probabilities of the \mathcal{T}_{i}-cover-versus- \mathcal{N}_{i}-subset pairs and show that it is bounded from above by $\frac{(1-p)}{p} n$. The full details are given in the next section.

III. The Proof of Theorem 1

We divide the proof into four parts. In Section III-A, we obtain a coarse disjoint covering of (non-empty) \mathcal{T}_{i} and the corresponding disjoint subsets of \mathcal{N}_{i}. In Sections III-B and III-C, we refine the covers of \mathcal{T}_{i} just obtained by further partitioning each of them in a systematic manner, and the same number of disjoint subsets of \mathcal{N}_{i} are also constructed. In Section III-D, we enumerate the refined covering sets of \mathcal{T}_{i} and the corresponding subsets of \mathcal{N}_{i}, which enable us to obtain the desired upper bound for δ_{n} / b_{n}. Since we consider the memoryless BSC in this paper, we assume without loss of generality that $x_{(1)}^{n}$ is the all-zero codeword. We also assume for notational convenience that $i=1$ and $\mathcal{T}_{1} \neq \emptyset$.
For ease of reference, we first summarize in Table I all main symbols used in the proof. We also illustrate in Fig. 1 all sets defined in Table I, based on the code of Example 1 below.

A. A Coarse Disjoint Covering of Non-Empty \mathcal{I}_{1} and the Corresponding Disjoint Subsets of \mathcal{N}_{1}

Before providing a coarse disjoint covering of non-empty \mathcal{T}_{1} and corresponding disjoint subsets of \mathcal{N}_{1}, we elucidate the idea behind them.

Note from its definition in (7) that \mathcal{I}_{1} consists of all minimum distance ties when $x_{(1)}^{n}$ is sent. To obtain disjoint covers of \mathcal{T}_{1}, we first collect all channel outputs y^{n} that are equidistant from $x_{(1)}^{n}$ and $x_{(2)}^{n}$ and we place them in $\mathcal{T}_{2 \mid 1}$. We next place into $\mathcal{T}_{3 \mid 1}$ those outputs y^{n} that have not been included in $\mathcal{T}_{2 \mid 1}$, and that are at equal distance from $x_{(1)}^{n}$ and $x_{(3)}^{n}$. We iterate this process sequentially to obtain $\mathcal{T}_{j \mid 1}$ for $j=4,5, \ldots, M$ by picking y^{n} tuples that have not yet been included in all previous collections, and that are equidistant from $x_{(1)}^{n}$ and $x_{(j)}^{n}$. This completes the construction of the disjoint covers $\left\{\mathcal{T}_{j \mid 1}\right\}_{j=2}^{M}$ of \mathcal{T}_{1}. Note that for non-empty \mathcal{I}_{1}, we have at least one $\mathcal{T}_{j \mid 1}$ that is non-empty.

The $(M-1)$ disjoint subsets of \mathcal{N}_{i} are constructed as follows. Suppose $\mathcal{T}_{2 \mid 1}$ is non-empty. Given a channel output u^{n} in $\mathcal{T}_{2 \mid 1}$ (that is at equal distance from $x_{(1)}^{n}$ and $x_{(2)}^{n}$), we can flip a zero component of u^{n} to obtain a v^{n} to fulfill $d\left(x_{(1)}^{n}, v^{n}\right)-$ $1=d\left(x_{(1)}^{n}, u^{n}\right)=d\left(x_{(2)}^{n}, u^{n}\right)=d\left(x_{(2)}^{n}, v^{n}\right)+1$, imply$\operatorname{ing} d\left(x_{(1)}^{n}, v^{n}\right)>d\left(x_{(2)}^{n}, v^{n}\right) \geq \min _{z^{n} \in \mathcal{C}_{n} \backslash\left\{x_{(1)}^{n}\right\}} d\left(z^{n}, v^{n}\right)$. Therefore, it follows from the definition in (6) that $v^{n} \in \mathcal{N}_{1}$. Collecting all such v^{n} from every $u^{n} \in \mathcal{I}_{2 \mid 1}$, we form $\mathcal{N}_{2 \mid 1}$. This construction provides an operational connection between $\mathcal{T}_{2 \mid 1}$ and $\mathcal{N}_{2 \mid 1}$. Iterating this process for $j=3,4, \ldots, M$ in this order and deliberately avoiding repeated collections give the desired disjoint subsets of \mathcal{N}_{1}. Here, we force $\mathcal{N}_{j \mid 1}=\emptyset$ whenever $\mathcal{T}_{j \mid 1}$ is an empty set.
The above constructions are formalized in the following definition.

Definition 1: Define for $j \in[M] \backslash\{1\}$,

$$
\left\{\begin{align*}
& \mathcal{T}_{j \mid 1} \triangleq\left\{y^{n} \in \mathcal{Y}^{n}: d\left(x_{(1)}^{n}, y^{n}\right)=d\left(x_{(j)}^{n}, y^{n}\right)\right. \tag{16a}\\
&\left.<\min _{r \in[j-1] \backslash\{1\}} d\left(x_{(r)}^{n}, y^{n}\right)\right\} \\
& \mathcal{N}_{j \mid 1} \triangleq\left\{y^{n} \in \mathcal{Y}^{n}:\right. \\
& d\left(x_{(1)}^{n}, y^{n}\right)-1=d\left(x_{(j)}^{n}, y^{n}\right)+1 \\
& \neq d\left(x_{(r)}^{n}, y^{n}\right) \\
&+1 \text { for } r \in[j-1] \backslash\{1\}\}
\end{align*}\right.
$$

To better understand the terms just introduced, we provide the following example.

Example 1: Suppose $M=3$ and $\mathcal{C}_{4}=\left\{x_{(1)}^{4}, x_{(2)}^{4}\right.$, $\left.x_{(3)}^{4}\right\}=\{0000,1100,0110\}$. Then, $\mathcal{T}_{1}=\{0100,1000,0101$, $1001,1010,1011,0010,0011\}$ and $\mathcal{N}_{1}=\{1100,0110,0111$, 1101, 1110, 1111\}. Furthermore, we have $\mathcal{T}_{2 \mid 1}=\{0100$, $1000,0101,1001,1010,1011,0110,0111\}$ and $\mathcal{T}_{3 \mid 1}=\{0010$, $0011\}$. Note that the last two elements in $\mathcal{T}_{2 \mid 1}$ satisfy both $d\left(x_{(1)}^{n}, y^{n}\right)=d\left(x_{(2)}^{n}, y^{n}\right)$ and $d\left(x_{(1)}^{n}, y^{n}\right)>d\left(x_{(3)}^{n}, y^{n}\right)$, and hence they result in ties but not in minimum distance ties as required for \mathcal{T}_{1} in (7), indicating that $\mathcal{T}_{2 \mid 1} \cup \mathcal{T}_{3 \mid 1}$ is a proper covering of \mathcal{T}_{1} as shown in Fig. 1. On the other hand, we have

TABLE I
Summary of All Main Symbols Used in the Proof

Symbol	Description	Definition
[M]	A shorthand for $\{1,2, \ldots, M\}$	
\mathcal{C}_{n}	The code $\left\{x_{1}^{(n)}, x_{2}^{(n)}, \ldots, x_{M}^{(n)}\right\}$ with $x_{1}^{(n)}$ being the all-zero codeword	
$d\left(u^{n}, v^{n} \mid \mathcal{S}\right)$	The Hamming distance between the portions of u^{n} and v^{n} with indices in \mathcal{S}	
All terms below are functions of \mathcal{C}_{n} (this dependence is not explicitly shown to simplify notation)		
\mathcal{N}_{j}	The set of channel outputs y^{n} that lead to an ML decoder error when $x_{(i)}^{n}$ is sent	(6)
\mathcal{T}_{j}	The set of channel outputs y^{n} that induce a decoder tie when $x_{(i)}^{n}$ is sent	(7)
$\mathcal{T}_{j \mid 1}$	The set of channel outputs y^{n} that are at equal distance from $x_{(1)}^{n}$ and $x_{(j)}^{n}$ and that are not included in $\mathcal{T}_{i \mid 1}$ for $2 \leq i \leq j-1$	(16a)
$\mathcal{N}_{j \mid 1}$	The set of channel outputs y^{n} that satisfy $d\left(x_{(1)}^{n}, y^{n}\right)-1=d\left(x_{(j)}^{n}, y^{n}\right)+1$ and that are not included in $\mathcal{N}_{i \mid 1}$ for $2 \leq i \leq j-1$	(16b)
\mathcal{S}_{j}	The set of indices for which the components of $x_{(j)}^{n}$ equal one	
ℓ_{j}	The size of \mathcal{S}_{j}, i.e., $\left\|\mathcal{S}_{j}\right\|$	
$\mathcal{S}_{r ; \lambda_{r}}$	It is equal to \mathcal{S}_{r} if $\lambda_{r}=1$, and $\mathcal{S}_{r}^{\text {c }}$ if $\lambda_{r}=0$ (only used in (19) to define $\mathcal{S}_{j}^{(m)}$)	
$\mathcal{S}_{j}^{(m)}$	The subset of \mathcal{S}_{j} defined according to whether each index in \mathcal{S}_{j} is in each of $\mathcal{S}_{2}, \ldots, \mathcal{S}_{j-2}$	(19)
$\mathscr{S}_{j}^{(m)}$	The union of $\mathcal{S}_{j}^{(1)}, \mathcal{S}_{j}^{(2)}, \ldots, \mathcal{S}_{j}^{(m)}$	(20)
$\ell_{j}^{(m)}$	The size of $\mathscr{S}_{j}^{(m)}$, i.e., $\left\|\mathscr{S}_{j}^{(m)}\right\|$	
$\sigma(\cdot)$	The mapping from $\left\{0,1, \ldots, \ell_{j}-1\right\}$ to $\left[2^{j-2}\right]$ for partitioning $\mathcal{T}_{j \mid 1}$ into ℓ_{j} subsets $\left\{\mathcal{T}_{j \mid 1}(k)\right\}_{0 \leq k<\ell_{j}}$	(24)
$\mathcal{T}_{j \mid 1}(k)$	The k th partition of $\mathcal{T}_{j \mid 1}$ for $k=0,1, \ldots, \ell_{j}-1$	(25a)
$\mathcal{N}^{\text {j\|1 }}$ (k)	The k th subset of $\mathcal{N}_{j \mid 1}$ for $k=0,1, \ldots, \ell_{j}-1$	(25b)
$\mathcal{U}_{j \mid 1}(k)$	The group of representative elements in $\mathcal{T}_{j \mid 1}(k)$ for defining the partitions of $\mathcal{T}_{j \mid 1}(k)$	
$\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$	The partition of $\mathcal{T}_{j \mid 1}(k)$ associated with $u^{n} \in \mathcal{U}_{j \mid 1}(k)$	(30a)
$\mathcal{N}^{j \mid 1}$ ($\left.u^{n} ; k\right)$	The subset of $\mathcal{N}_{j \mid 1}(k)$ associated with $u^{n} \in \mathcal{U}_{j \mid 1}(k)$	(30b)

Fig. 1. An illustration of the sets defined in Table I, based on the setting in Example 1, where $\mathcal{T}_{2 \mid 1}(0)=\mathcal{T}_{3 \mid 1}(0)=\mathcal{N}_{2 \mid 1}(0)=\mathcal{N}_{3 \mid 1}(0)=\emptyset$, $\mathcal{U}_{2 \mid 1}(1)=\{0100,0101,0110,1011\}$ and $\mathcal{U}_{3 \mid 1}(1)=\{0010,0011\}$.
$\mathcal{N}_{2 \mid 1}=\{1100,1101,1110,1111\}$ and $\mathcal{N}_{3 \mid 1}=\{0110,0111\}$, showing that they are disjoint subsets of \mathcal{N}_{1}.

The observations we made from Example 1 are proved in the next proposition.

Proposition 1: For nonempty \mathcal{T}_{1}, the following two properties hold.
i) The collection $\left\{\mathcal{T}_{j \mid 1}\right\}_{j \in[M] \backslash\{1\}}$ forms a disjoint covering of \mathcal{T}_{1}.
ii) $\left\{\mathcal{N}_{j \mid 1}\right\}_{j \in[M] \backslash\{1\}}$ is a collection of disjoint subsets of \mathcal{N}_{i}.

Proof: The strict inequality in (16a) and the non-equality condition in (16b) guarantee no multiple inclusions of an element from the previous collections; therefore, $\left\{\mathcal{T}_{j \mid 1}\right\}_{j \in[M] \backslash\{1\}}$ are disjoint and so are $\left\{\mathcal{N}_{j \mid 1}\right\}_{j \in[M] \backslash\{1\}}$. Now for any $y^{n} \in$ \mathcal{T}_{1}, we have $d\left(x_{(1)}^{n}, y^{n}\right)=d\left(x_{(m)}^{n}, y^{n}\right)$ for some $m \neq 1$; therefore, this y^{n} must be collected in $\mathcal{T}_{j \mid 1}$ for some $j \leq m$, confirming that $\left\{\mathcal{T}_{j \mid 1}\right\}_{j \in[M] \backslash\{1\}}$ forms a covering of \mathcal{T}_{1}. Next, for any $y^{n} \in \mathcal{N}_{j \mid 1}$, we have $d\left(x_{(1)}^{n}, y^{n}\right)-1=d\left(x_{(j)}^{n}, y^{n}\right)+$ $1 \geq \min _{u^{n} \in \mathcal{C}_{n} \backslash\left\{x_{(1)}^{n}\right\}} d\left(u^{n}, y^{n}\right)+1$, leading to $d\left(x_{(1)}^{n}, y^{n}\right)>$ $d\left(x_{(j)}^{n}, y^{n}\right) \geq \min _{u^{n} \in \mathcal{C}_{n} \backslash\left\{x_{(1)}^{n}\right\}} d\left(u^{n}, y^{n}\right)$; hence, this y^{n} must be contained in \mathcal{N}_{1}, confirming that $\left\{\mathcal{N}_{j \mid 1}\right\}_{j \in[M] \backslash\{1\}}$ are subsets of \mathcal{N}_{i}.

From Proposition 1, we have that

$$
\begin{align*}
\frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{1} \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{1} \mid x_{(1)}^{n}\right)} & \leq \frac{P_{Y^{n} \mid X^{n}}\left(\bigcup_{j \in[M] \backslash\{1\}} \mathcal{T}_{j \mid 1} \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\bigcup_{j \in[M] \backslash\{1\}} \mathcal{N}_{j \mid 1} \mid x_{(1)}^{n}\right)} \\
& =\frac{\sum_{j \in[M] \backslash\{1\}} P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1} \mid x_{(1)}^{n}\right)}{\sum_{j \in[M] \backslash\{1\}} P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1} \mid x_{(1)}^{n}\right)}, \tag{17}
\end{align*}
$$

which implies, using the same method to derive (14), that

$$
\begin{equation*}
\frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{1} \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{1} \mid x_{(1)}^{n}\right)} \leq \max _{j \in[M] \backslash\{1\}: \mathcal{T}_{j \mid 1} \neq \emptyset} \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1} \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1} \mid x_{(1)}^{n}\right)} \tag{18}
\end{equation*}
$$

for non-empty \mathcal{T}_{1}.
In the next section, we continue decomposing non-empty $\mathcal{T}_{j \mid 1}$ and its corresponding $\mathcal{N}_{j \mid 1}$.

B. A Partition of Non-Empty $\mathcal{T}_{j \mid I}$ and the Corresponding Disjoint Subsets of $\mathcal{N}_{j \mid 1}$

For the enumeration analysis in Section III-D, further decompositions of $\mathcal{I}_{j \mid 1}$ and $\mathcal{N}_{j \mid 1}$ are needed in order to facilitate the identification of which portions of $x_{(r)}^{n}$ are ones and which portions of $x_{(r)}^{n}$ are zeros for every $r \in[j]$. Let \mathcal{S}_{j} denote the set of indices for which the (bit) components of $x_{(j)}^{n}$ equal one.

Now as an example, if we decompose \mathcal{S}_{3} into $\mathcal{S}_{2}^{\mathrm{c}} \bigcap \mathcal{S}_{3}$ and $\mathcal{S}_{2} \bigcap \mathcal{S}_{3}$, then we are certain that the portions of $x_{(2)}^{n}$ with indices in $\mathcal{S}_{2}^{\mathrm{c}} \bigcap \mathcal{S}_{3}$ are zeros, and those with indices in $\mathcal{S}_{2} \bigcap \mathcal{S}_{3}$ are ones. Furthermore, when considering the portions of $x_{(4)}^{n}$ that are ones, \mathcal{S}_{4} can be decomposed into $\mathcal{S}_{2}^{\mathrm{c}} \bigcap \mathcal{S}_{3}^{\mathrm{c}} \bigcap \mathcal{S}_{4}, \mathcal{S}_{2}^{\mathrm{c}} \cap \mathcal{S}_{3} \bigcap \mathcal{S}_{4}, \mathcal{S}_{2} \bigcap \mathcal{S}_{3}^{\mathrm{c}} \bigcap \mathcal{S}_{4}$ and $\mathcal{S}_{2} \bigcap \mathcal{S}_{3} \bigcap \mathcal{S}_{4}$, and the values of $x_{(2)}^{n}$ and $x_{(3)}^{n}$ are known exactly when considering their portions with indices in any of these four sets. In general, we shall partition S_{j} into 2^{j-2} subsets based on $\mathcal{S}_{2}, \mathcal{S}_{3}, \ldots, \mathcal{S}_{j-1}$ and their respective complements. As such, \mathcal{S}_{4} is partitioned into $2^{j-2}=4$ subsets (here $j=4$). For convenience, we use the positive integer $m \triangleq 1+\sum_{r=2}^{j-1} \lambda_{r}$. 2^{r-2}, where $1 \leq m \leq 2^{j-2}$, to enumerate the 2^{j-2} joint
intersections, where $\lambda_{r}=0$ implies $\mathcal{S}_{r}^{\mathrm{c}}$ is involved in the joint intersections, while $\lambda_{r}=1$ implies \mathcal{S}_{r} is taken instead. Thus, with $j=4$, the four sets $\mathcal{S}_{2}^{\mathrm{c}} \cap \mathcal{S}_{3}^{\mathrm{c}} \cap \mathcal{S}_{4}, \mathcal{S}_{2} \bigcap \mathcal{S}_{3}^{\mathrm{c}} \cap \mathcal{S}_{4}$, $\mathcal{S}_{2}^{\mathrm{c}} \bigcap \mathcal{S}_{3} \bigcap \mathcal{S}_{4}$ and $\mathcal{S}_{2} \bigcap \mathcal{S}_{3} \bigcap \mathcal{S}_{4}$ are respectively indexed by $m=1,2,3$ and 4 , which correspond to $\left(\lambda_{2}, \lambda_{3}\right)=(0,0)$, $(1,0),(0,1)$ and $(1,1)$, respectively.

For $j \in[M] \backslash\{1\}$, partition \mathcal{S}_{j} into 2^{j-2} subsets according to whether each index in \mathcal{S}_{j} is in $\mathcal{S}_{2}, \ldots, \mathcal{S}_{j-2}$ or not as follows:

$$
\begin{align*}
\mathcal{S}_{j}^{(m)} \triangleq & \left(\bigcap_{r=2}^{j-2} \mathcal{S}_{r ; \lambda_{r}}\right) \bigcap \mathcal{S}_{j} \\
& \text { for } 1 \leq m=1+\sum_{r=2}^{j-1} \lambda_{r} \cdot 2^{r-2} \leq 2^{j-2} \tag{19}
\end{align*}
$$

where $\mathcal{S}_{r ; 1} \triangleq \mathcal{S}_{r}$ and $\mathcal{S}_{r ; 0} \triangleq \mathcal{S}_{r}^{\mathrm{c}}$, and each $\lambda_{r} \in\{0,1\}$. Define incrementally $\mathscr{S}_{j}^{(0)} \triangleq \emptyset$ and

$$
\begin{equation*}
\mathscr{S}_{j}^{(m)} \triangleq \bigcup_{q=1}^{m} \mathcal{S}_{j}^{(q)}, \quad m \in\left[2^{j-2}\right] \tag{20}
\end{equation*}
$$

Let $\ell_{j} \triangleq\left|\mathcal{S}_{j}\right|$ and $\ell_{j}^{(m)} \triangleq\left|\mathscr{S}_{j}^{(m)}\right|$ denote the sizes of \mathcal{S}_{j} and $\mathscr{S}_{j}^{(m)}$, respectively. Then, as mentioned at the beginning of this section, for all $r \in[j]$, the components of $x_{(r)}^{n}$ with indices in $\mathcal{S}_{j}^{(m)}$ can now be unambiguously identified and are all equal to λ_{r}. As a result, with $x_{(1)}^{n}$ being the all-zero codewords,

$$
d\left(x_{(1)}^{n}, x_{(r)}^{n} \mid \mathcal{S}_{j}^{(m)}\right)= \begin{cases}\left|\mathcal{S}_{j}^{(m)}\right|, & \lambda_{r}=1 \tag{21}\\ 0, & \lambda_{r}=0\end{cases}
$$

where $d\left(u^{n}, v^{n} \mid \mathcal{S}\right)$ denotes the Hamming distance between the portions of u^{n} and v^{n} with indices in \mathcal{S}, and by convention, we set $d\left(u^{n}, v^{n} \mid \mathcal{S}\right)=0$ when $\mathcal{S}=\emptyset$. We will see later in the proof of Proposition 4 that (21) facilitates our evaluation of $d\left(x_{(r)}^{n}, y^{n}\right)$ for channel output y^{n}.

We illustrate the sets and quantities just introduced in the following example.

Example 2: Suppose $\mathcal{C}_{6}=\left\{x_{(1)}^{6}, x_{(2)}^{6}, x_{(3)}^{6}\right\}=\{000000$, $111100,001111\}$. Then, from (16a) and (16b), we obtain $\mathcal{T}_{3 \mid 1}=\{001010,001001,000110,000101,000011,010011$, $100011\}$ and $\mathcal{N}_{3 \mid 1}=\{000111,001011,001101,001110$, 101011, 011011, 100111, 010111, 111101, 111110\}. Next, it can be seen that $\mathcal{S}_{2}=\{1,2,3,4\}, \mathcal{S}_{3}=\{3,4,5,6\}$ and $\ell_{2}=\ell_{3}=4$. In addition, by varying $m=1+\lambda_{2}$ for $\lambda_{2} \in\{0,1\}, \mathcal{S}_{3}$ can be partitioned into $2^{3-1}=2$ sets, which are:

$$
\mathcal{S}_{3}^{(m)}= \begin{cases}\mathcal{S}_{2 ; 0} \bigcap \mathcal{S}_{3}=\{5,6\}, & m=1 \tag{22}\\ \mathcal{S}_{2 ; 1} \bigcap \mathcal{S}_{3}=\{3,4\}, & m=2\end{cases}
$$

Hence,

$$
\mathscr{S}_{3}^{(m)}= \begin{cases}\mathcal{S}_{3}^{(1)}=\{5,6\}, & m=1 \tag{23}\\ \mathcal{S}_{3}^{(1)} \cup \mathcal{S}_{3}^{(2)}=\{3,4,5,6\}, & m=2\end{cases}
$$

and $\ell_{3}^{(1)}=\left|\mathscr{S}_{3}^{(1)}\right|=2$ and $\ell_{3}^{(2)}=\left|\mathscr{S}_{3}^{(2)}\right|=4$.
We are now ready to describe how we partition $\mathcal{T}_{j \mid 1}$ and construct the corresponding disjoint subsets of $\mathcal{N}_{j \mid 1}$. Recall from Section III-A that we can flip a zero component of u^{n} in
$\mathcal{T}_{j \mid 1}$ to recover a v^{n} in $\mathcal{N}_{j \mid 1}$. This observation indicates that the number of zero components (equivalently, the number of one components) of $u^{n} \in \mathcal{T}_{j \mid 1}$ with indices in $\mathscr{S}_{j}^{(m)}$ can be used as a factor to relate each partition of $\mathcal{T}_{j \mid 1}$ to its corresponding subset of $\mathcal{N}_{j \mid 1}$. As $x_{(1)}^{n}$ is assumed all-zero, this factor can be parameterized via $d\left(x_{(1)}^{n}, u^{n} \mid \mathscr{S}_{j}^{(m)}\right)=k$ for $0 \leq k<\ell_{j}^{(m)}$.

Irrespective of the construction of disjoint subsets of $\mathcal{N}_{3 \mid 1}$, one may improperly infer from Example 2 that $\mathcal{T}_{3 \mid 1}$ can be subdivided into ℓ_{3} partitions according to $d\left(x_{(1)}^{6}, u^{6} \mid \mathscr{S}_{3}^{(1)}\right)=$ k for each $0 \leq k<\ell_{3}^{(1)}$, and then according to $d\left(x_{(1)}^{6}, u^{6} \mid \mathscr{S}_{3}^{(1)}\right)=\ell_{3}^{(1)}$ and $d\left(x_{(1)}^{6}, u^{6} \mid \mathscr{S}_{3}^{(2)}\right)=k$ for $\ell_{3}^{(1)} \leq$ $k<\ell_{3}^{(2)}=\ell_{3}$. However, the above setup could have two u^{6} tuples, in respectively two different partitions of $\mathcal{T}_{3 \mid 1}$, recover the same v^{6}, leading to two non-disjoint subsets of $\mathcal{N}_{3 \mid 1}$. For example, flipping the last bit of 000110 that belongs to the partition constrained by $d\left(x_{(1)}^{6}, 000110 \mid \mathscr{S}_{3}^{(1)}\right)=1$, and flipping the 4th bit of 000011 that is included in the partition constrained by $d\left(x_{(1)}^{6}, 000011 \mid \mathscr{S}_{3}^{(1)}\right)=\ell_{3}^{(1)}$ and $d\left(x_{(1)}^{6}, 000011 \mid \mathscr{S}_{3}^{(2)}\right)=2$ yield identical tuples given by $v^{6}=000111$; hence, the two partitions, indexed respectively by $k=1$ and $k=2$, recover two non-disjoint subsets of $\mathcal{N}_{3 \mid 1}$. To avoid repetitive constructions of the same v^{6} from distinct partitions of $\mathcal{T}_{3 \mid 1}$, we note that multiple constructions of the same v^{6} could happen only when the flipped zero component of u^{6} is the only zero component in $\mathscr{S}_{3}^{(1)}$, i.e. $d\left(x_{(1)}^{6}, u^{n} \mid \mathscr{S}_{3}^{(1)}\right)=\ell_{3}^{(1)}-1$. A solution is to place all u^{6} tuples that result in multiple constructions of the same v^{6} in one partition, based on which for $k \geq 2$, we refine the constraint of the k th partition as $\ell_{3}^{(1)}-1 \leq \bar{d}\left(x_{(1)}^{6}, u^{6} \mid \mathscr{S}_{3}^{(1)}\right) \leq$ $d\left(x_{(1)}^{6}, u^{6} \mid \mathscr{S}_{3}^{(2)}\right)=k$. In this manner, 000110 and 000011 are both included in the partition indexed by $k=2$.

As a generalization, we constrain the k th partition of $\mathcal{T}_{j \mid 1}$ by $\ell_{j}^{(m-1)}-1 \leq d\left(x_{(1)}^{n}, u^{n} \mid \mathscr{S}_{j}^{(m-1)}\right) \leq d\left(x_{(1)}^{n}, u^{n} \mid \mathscr{S}_{j}^{(m)}\right)=$ k for $\ell_{j}^{(m-1)}-1 \leq k<\ell_{j}^{(m)}-1$. After flipping a zero component of u^{n} in the k th partition of $\mathcal{T}_{j \mid 1}$, the resulting v^{n} that belongs to the k th subset of $\mathcal{N}_{j \mid 1}$ satisfies $\ell_{j}^{(m-1)}=$ $d\left(x_{(1)}^{n}, v^{n} \mid \mathscr{S}_{j}^{(m-1)}\right) \leq d\left(x_{(1)}^{n}, v^{n} \mid \mathscr{S}_{j}^{(m)}\right)=k+1$. To simplify our set constructions in the following definition, we define the mapping from the partition index k to the number m satisfying $\ell_{j}^{(m-1)}-1 \leq k<\ell_{j}^{(m)}-1$, which designates the set $\mathscr{S}_{j}^{(m)}$ the flipped zero component of u^{n} is located in, as follows:

$$
\sigma(k) \triangleq\left\{\begin{array}{l}
m, \quad \text { for } \ell_{j}^{(m-1)}-1 \leq k<\ell_{j}^{(m)}-1 \tag{24}\\
\min \left\{m: \ell_{j}^{(m)}=\ell_{j}\right\}, \quad \text { for } k=\ell_{j}-1
\end{array}\right.
$$

Definition 2: Define for $k=0,1, \ldots, \ell_{j}-1$,

$$
\left\{\begin{array}{c}
\mathcal{T}_{j \mid 1}(k) \triangleq\left\{y^{n} \in \mathcal{T}_{j \mid 1}:\right. \tag{25a}\\
\ell_{j}^{(m-1)}-1 \leq d\left(x_{(1)}^{n}, y^{n} \mid \mathscr{S}_{j}^{(m-1)}\right) \\
\left.\leq d\left(x_{(1)}^{n}, y^{n} \mid \mathscr{S}_{j}^{(m)}\right)=k\right\} \\
\mathcal{N}_{j \mid 1}(k) \triangleq\left\{y^{n} \in \mathcal{N}_{j \mid 1}:\right. \\
\ell_{j}^{(m-1)}=d\left(x_{(1)}^{n}, y^{n} \mid \mathscr{S}_{j}^{(m-1)}\right) \\
\left.\leq d\left(x_{(1)}^{n}, y^{n} \mid \mathscr{S}_{j}^{(m)}\right)=k+1\right\}
\end{array}\right.
$$

where $m=\sigma(k)$ is given in (24).

An example to illustrate the $\mathcal{T}_{j \mid 1}$-partitions and $\mathcal{N}_{j \mid 1}$-subsets is given below.

Example 3: Using the setting of Example 2, we show how we partition $\mathcal{T}_{3 \mid 1}$ according to $\mathscr{S}_{3}^{(1)}$ and $\mathscr{S}_{3}^{(2)}$ and construct the corresponding disjoint subsets of $\mathcal{N}_{3 \mid 1}$. From (25a) and (25b), we can obtain the partition $\left\{\mathcal{I}_{3 \mid 1}(k)\right\}_{0 \leq k<\ell_{3}}$ and disjoint subsets $\left\{\mathcal{N}_{3 \mid 1}(k)\right\}_{0 \leq k<\ell_{3}}$ as follows:

$$
\mathcal{T}_{3 \mid 1}(k)= \begin{cases}\emptyset, & k=0,1,3 \tag{26}\\ \mathcal{T}_{3 \mid 1}, & k=2,\end{cases}
$$

and

$$
\mathcal{N}_{3 \mid 1}(k)= \begin{cases}\emptyset, & k=0,1,3 ; \tag{27}\\ \mathcal{N}_{3 \mid 1}, & k=2,\end{cases}
$$

as a result of the mapping

$$
\sigma(k)=\left\{\begin{array}{l}
\left.1, \quad \ell_{3}^{(0)}-1 \leq k<\ell_{3}^{(1)}-1 \text { (equiv. } k=0\right) \tag{28}\\
\left.2, \quad \ell_{3}^{(1)}-1 \leq k<\ell_{3}^{(2)}-1 \text { (equiv. } k=1,2\right) \\
2, \quad k=\ell_{3}-1=3
\end{array}\right.
$$

With the above definition, we next verify the partitions of non-empty $\mathcal{T}_{j \mid 1}$ and the corresponding disjoint subsets of $\mathcal{N}_{j \mid 1}$.

Proposition 2: For non-empty $\mathcal{T}_{j \mid 1}$, the following two properties hold.
i) $\left\{\mathcal{T}_{j \mid 1}(k)\right\}_{0 \leq k<\ell_{j}}$ forms a partition of $\mathcal{T}_{j \mid 1}$;
ii) $\left\{\mathcal{N}_{j \mid 1}(k)\right\}_{0 \leq k<\ell_{j}}$ is a collection of disjoint subsets of $\mathcal{N}_{j \mid 1}$.
Proof: It can be seen from the definitions of $\left\{\mathcal{T}_{j \mid 1}(k)\right\}_{0 \leq k<\ell_{j}}$ and $\left\{\mathcal{N}_{j \mid 1}(k)\right\}_{0 \leq k<\ell_{j}}$ that they are collections of mutually disjoint subsets of $\mathcal{T}_{j \mid 1}$ and $\mathcal{N}_{j \mid 1}$, respectively. It remains to show that $\mathcal{T}_{j \mid 1}=\bigcup_{0 \leq k<\ell_{j}} \mathcal{T}_{j \mid 1}(k)$. Recall that $\mathscr{S}_{j}^{(m)}$ is a subset of \mathcal{S}_{j} and every element y^{n} in $\mathcal{T}_{j \mid 1}$ must satisfy $\ell_{j}>d\left(x_{(1)}^{n}, y^{n} \mid \mathcal{S}_{j}\right)=d\left(x_{(j)}^{n}, y^{n} \mid \mathcal{S}_{j}\right)=$ $\frac{\ell_{j}}{2} \geq d\left(x_{(1)}^{n}, y^{n} \mid \mathscr{S}_{j}^{(m)}\right)$; hence, no element in $\mathcal{T}_{j \mid 1}$ can fulfill $d\left(x_{(1)}^{n}, y^{n} \mid \mathscr{S}_{j}^{(m)}\right)=\ell_{j}$. This confirms that in defining $\mathcal{T}_{j \mid 1}(k)$ in (25a), we can exclude the case of $k=\ell_{j}$. Since every element in $\mathcal{T}_{j \mid 1}$ must satisfy the two constraints in $\mathcal{T}_{j \mid 1}(k)$ for exactly one $0 \leq k<\ell_{j},\left\{\mathcal{T}_{j \mid 1}(k)\right\}_{0 \leq k<\ell_{j}}$ forms a partition of $\mathcal{T}_{j \mid 1}$.

By applying a similar technique that leads to (14) and (18), Proposition 2 results in the following inequality:

$$
\begin{align*}
& \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1} \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1} \mid x_{(1)}^{n}\right)} \\
& \quad \leq \max _{0 \leq k<\ell_{j}: \mathcal{T}_{j \mid 1}(k) \neq \emptyset} \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1}(k) \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1}(k) \mid x_{(1)}^{n}\right)} \tag{29}
\end{align*}
$$

for non-empty $\mathcal{T}_{j \mid 1}$. We further decompose non-empty $\mathcal{T}_{j \mid 1}(k)$ and its corresponding $\mathcal{N}_{j \mid 1}(k)$ in the next section.

C. A Fine Partition of $\mathcal{T}_{j \mid I}(k)$ and the Corresponding Disjoint Subsets of $\mathcal{N}_{j \mid 1}(k)$

The final decomposition of $\mathcal{T}_{j \mid 1}(k)$ and $\mathcal{N}_{j \mid 1}(k)$ is a little involved. We elucidate its underlying concept via an example before formally presenting it. The idea is to further partition
$\mathcal{T}_{j \mid 1}(k)$ using a group of representative elements in $\mathcal{T}_{j \mid 1}(k)$ and construct the corresponding subsets of $\mathcal{N}_{j \mid 1}(k)$ based on the same group of representative elements.

Pick an arbitrary element from $\mathcal{T}_{3 \mid 1}(2)$ in Example 3 as the first representative element, say $u^{6}=001010$. We collect all outputs y^{6} in $\mathcal{T}_{3 \mid 1}(2)$ such that its components with indices outside $\mathscr{S}_{3}^{(\sigma(2))}$ are exact duplications of the components of u^{6} at the same positions, and place them in $\mathcal{T}_{3 \mid 1}\left(u^{6} ; 2\right)$. In other words, we require $d\left(u^{6}, y^{6} \mid\left(\mathscr{S}_{3}^{(2)}\right)^{\mathrm{c}}\right)=0$. With $\left(\mathscr{S}_{3}^{(2)}\right)^{\mathrm{c}}=\{1,2\}$, we have $\mathcal{T}_{3 \mid 1}\left(u^{6} ; 2\right)=\mathcal{T}_{3 \mid 1}(001010 ; 2)=$ $\{000011,001010,001001,000110,000101\}$, where the first two bits of each tuple in $\mathcal{T}_{3 \mid 1}\left(u^{6} ; 2\right)$ must be equal to the first two bits of $u^{6}=001010$. Analogously, $\mathcal{N}_{3 \mid 1}\left(u^{6} ; 2\right)$ collects all elements in $\mathcal{N}_{3 \mid 1}(2)$ satisfying $d\left(u^{6}, y^{6} \mid\left(\mathscr{S}_{3}^{(2)}\right)^{\mathrm{c}}\right)=0$, and is given by $\mathcal{N}_{3 \mid 1}(001010 ; 2)=$ $\{000111,001011,001101,001110\}$.

We can further pick another element 100011 in $\mathcal{T}_{3 \mid 1} \backslash$ $\mathcal{T}_{3 \mid 1}(001010 ; 2)$ as the second representative to construct $\mathcal{T}_{3 \mid 1}(100011 ; 2)=\{100011\}$ and the corresponding $\mathcal{N}_{3 \mid 1}(100011 ; 2)=\{101011,100111\}$, where the first two bits of elements in the two sets must equal 10 . Continuing this process to construct $\mathcal{T}_{3 \mid 1}(010011 ; 2)=\{010011\}$ and $\mathcal{N}_{3 \mid 1}(010011 ; 2)=\{011011,010111\}$, we can see that all elements in $\mathcal{T}_{3 \mid 1}(2)$ have been exhausted. Thus, $\mathcal{U}_{3 \mid 1}(2)=$ $\{001010,100011,010011\}$ is exactly the required group of representatives.

We formalize the above set constructions in the following definition and proposition, whose proof is omitted, being a direct consequence of the construction process.

Definition 3: Define for $u^{n} \in \mathcal{T}_{j \mid 1}(k)$ with $m=\sigma(k)$,

$$
\left\{\begin{array}{c}
\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right) \triangleq\left\{y^{n} \in \mathcal{T}_{j \mid 1}(k):\right. \tag{30a}\\
\left.d\left(u^{n}, y^{n} \mid\left(\mathscr{S}_{j}^{(m)}\right)^{\mathrm{c}}\right)=0\right\} \\
\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right) \triangleq\left\{y^{n} \in \mathcal{N}_{j \mid 1}(k):\right. \\
\left.d\left(u^{n}, y^{n} \mid\left(\mathscr{S}_{j}^{(m)}\right)^{\mathrm{c}}\right)=0\right\}
\end{array}\right.
$$

Proposition 3: For non-empty $\mathcal{T}_{j \mid 1}(k)$, there exists a group of representative $\mathcal{U}_{j \mid 1}(k) \subseteq \mathcal{T}_{j \mid 1}(k)$ such that the following two properties hold.
i) $\left\{\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)\right\}_{u^{n} \in \mathcal{U}_{j \mid 1}(k)}$ forms a (non-empty) partition of $\mathcal{T}_{j \mid 1}(k)$;
ii) $\left\{\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)\right\}_{u^{n} \in \mathcal{U}_{j \mid 1}(k)}$ is a collection of (non-empty) disjoint subsets of $\mathcal{N}_{j \mid 1}(k)$.
Again, by applying a similar technique to derive (14), Proposition 3 yields that for non-empty $\mathcal{T}_{j \mid 1}(k)$,

$$
\begin{align*}
& \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1}(k) \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1}(k) \mid x_{(1)}^{n}\right)} \\
& \quad \leq \max _{u^{n} \in \mathcal{U}_{j \mid 1}(k)} \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)} \tag{31}
\end{align*}
$$

What remains to confirm is that $\frac{(1-p)}{p} n$ is an upper bound on $\frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)}$; this will be shown in the next section.

D. Characterization of a Linear Upper Bound for δ_{n} / b_{n}

The constraints of $\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$ in (30a) and $\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)$ in
 we only need to consider those bits with indices in $\mathscr{S}_{j}^{(m)}$ with $m=\sigma(k)$ because the remaining bits of all tuples in $\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$ and $\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)$ have identical values as u^{n}. Since elements in $\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$ with indices in $\mathscr{S}_{j}^{(\sigma(k))}$ have exactly k ones, and those in $\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)$ with indices in $\mathscr{S}_{j}^{(\sigma(k))}$ have exactly $k+1$ ones, we can immediately infer that

$$
\begin{align*}
& \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)} \\
& \quad=\frac{p^{k}(1-p)^{n-k}}{p^{k+1}(1-p)^{n-(k+1)}} \cdot \frac{\left|\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)\right|}{\left|\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)\right|} \tag{32}\\
& \quad=\frac{(1-p)}{p} \cdot \frac{\left|\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)\right|}{\left|\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)\right|} \tag{33}
\end{align*}
$$

The desired upper bound can thus be established by proving that $\frac{\left|\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)\right|}{\left|\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)\right|} \leq n$, as shown in the next proposition.

Proposition 4: For non-empty $\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$, we have

$$
\begin{equation*}
\frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)} \leq \frac{(1-p)}{p} n . \tag{34}
\end{equation*}
$$

Proof: Recall from (16a), (25a) and (30a) that $y^{n} \in$ $\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$ with $m=\sigma(k)$ if and only if

$$
\left\{\begin{array}{l}
d\left(x_{(1)}^{n}, y^{n}\right)=d\left(x_{(j)}^{n}, y^{n}\right) \tag{35a}\\
d\left(x_{(1)}^{n}, y^{n}\right)<\min _{r \in[j-1] \backslash\{1\}} d\left(x_{(r)}^{n}, y^{n}\right) \\
\ell_{j}^{(m-1)}-1 \leq d\left(x_{(1)}^{n}, y^{n} \mid \mathscr{S}_{j}^{(m-1)}\right) \\
\quad \leq d\left(x_{(1)}^{n}, y^{n} \mid \mathscr{S}_{j}^{(m)}\right)=k \\
d\left(u^{n}, y^{n} \mid\left(\mathscr{S}_{j}^{(m)}\right)^{\mathrm{c}}\right)=0
\end{array}\right.
$$

Thus, we can enumerate the number of elements in $\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$ by counting the number of channel outputs y^{n} fulfilling the above four conditions.

We then examine the number of y^{n} satisfying (35c) and (35d). Nothing that these y^{n} have either $\ell_{j}^{(m-1)}-1$ ones or $\ell_{j}^{(m-1)}$ ones with indices in $\mathscr{S}_{j}^{(m-1)}$, we know there are

$$
\begin{align*}
\binom{\ell_{j}^{(m-1)}}{\ell_{j}^{(m-1)}-1} & \binom{\ell_{j}^{(m)}-\ell_{j}^{(m-1)}}{k-\left(\ell_{j}^{(m-1)}-1\right)} \\
& +\binom{\ell_{j}^{(m-1)}}{\ell_{j}^{(m-1)}}\binom{\ell_{j}^{(m)}-\ell_{j}^{(m-1)}}{k-\ell_{j}^{(m-1)}} \tag{36}
\end{align*}
$$

of y^{n} tuples satisfying (35c) and (35d). ${ }^{3}$ Considering the additional two conditions in (35a) and (35b), we get that the number of elements in $\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$ is upper-bounded by (36).

[^2]On the other hand, from (16b), (25b), (30b) and $\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right) \subseteq \mathcal{N}_{j \mid 1}(k) \subseteq \mathcal{N}_{j \mid 1}$, we obtain that $w^{n} \in$ $\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)$ if and only if

$$
\left\{\begin{array}{l}
d\left(x_{(1)}^{n}, w^{n}\right)-1=d\left(x_{(j)}^{n}, w^{n}\right)+1 \tag{37a}\\
d\left(x_{(1)}^{n}, w^{n}\right)-1 \neq d\left(x_{(r)}^{n}, w^{n}\right)+1 \\
\quad \text { for } r \in[j-1] \backslash\{1\} \\
\ell_{j}^{(m-1)}=d\left(x_{(1)}^{n}, w^{n} \mid \mathscr{S}_{j}^{(m-1)}\right) \\
\leq d\left(x_{(1)}^{n}, w^{n} \mid \mathscr{S}_{j}^{(m)}\right)=k+1 ; \\
d\left(u^{n}, w^{n} \mid\left(\mathscr{S}_{j}^{(m)}\right)^{\mathrm{c}}\right)=0
\end{array}\right.
$$

We then claim that any w^{n} satisfying (37c) and (37d) should automatically validate (37a) and (37b). Note that the validity of the claim, which we prove in Appendix IV, immediately implies that the number of elements in $\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)$ can be determined by (37c) and (37d), and hence

$$
\begin{equation*}
\left|\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)\right|=\binom{\ell_{j}^{(m)}-\ell_{j}^{(m-1)}}{k+1-\ell_{j}^{(m-1)}} . \tag{38}
\end{equation*}
$$

Under this claim, we complete the proof of the proposition using (33), (36) and (38) as follows:

$$
\begin{aligned}
& \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{j \mid 1}\left(u^{n} ; k\right) \mid x_{(1)}^{n}\right)} \\
& \leq \frac{(1-p)}{p}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{(1-p)}{p}\left(\ell_{j}^{(m-1)}+\frac{k+1-\ell_{j}^{(m-1)}}{\ell_{j}^{(m)}-k}\right) \tag{39}\\
& \leq \frac{(1-p)}{p}\left(\ell_{j}^{(m-1)}+\frac{\ell_{j}^{(m)}-\ell_{j}^{(m-1)}}{1}\right) \tag{41}\\
& \leq \frac{(1-p)}{p} n,
\end{align*}
$$

where (41) holds because $\ell_{j}^{(m-1)}-1 \leq k \leq \ell_{j}^{(m)}-1$ by (24), and (42) follows from $\ell_{j}^{(m)} \leq \ell_{j} \leq n$.

Using (18), (29), (31) and Proposition 4, we obtain

$$
\begin{equation*}
\frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{1} \mid x_{(1)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{1} \mid x_{(1)}^{n}\right)} \leq \frac{(1-p)}{p} n \tag{43}
\end{equation*}
$$

We close this section by remarking that the same inequality as (43), i.e.,

$$
\begin{equation*}
\frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i} \mid x_{(i)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right)} \leq \frac{(1-p)}{p} n, \tag{44}
\end{equation*}
$$

can be analogously established for all $i \in[M]$ with $\mathcal{T}_{i} \neq \emptyset$. Consequently, (14) implies

$$
\begin{equation*}
\frac{\delta_{n}}{b_{n}} \leq \max _{i \in[M]: \mathcal{T}_{i} \neq \emptyset} \frac{P_{Y^{n} \mid X^{n}}\left(\mathcal{T}_{i} \mid x_{(i)}^{n}\right)}{P_{Y^{n} \mid X^{n}}\left(\mathcal{N}_{i} \mid x_{(i)}^{n}\right)} \leq \frac{(1-p)}{p} n . \tag{45}
\end{equation*}
$$

IV. CONCLUSION

In this paper, the generalized Poor-Verdú error lower bound of [3] was considered in the classical channel coding context over the BSC. We proved that the bound is exponentially tight in blocklength as a direct consequence of a key inequality, showing that for any block code with distinct codewords used over the BSC, the relative deviation of the code's minimum probability of error from the lower bound grows at most linearly in blocklength.

Even though the exact determination of the reliability function of the BSC at low rates remains a daunting open problem, our results offer potentially a new perspective or tool for subsequent studies. Other future work includes investigating sharp bounds for codes with small-to-moderate blocklengths (e.g., see [5], [27], [28]) used over symmetric channels. As our counting analysis for the binary symmetric channel relies heavily on the equivalence between ML decoding and minimum Hamming distance decoding, which does not hold for non-symmetric channels, extending our results to general channels may require more sophisticated enumerating techniques.

Appendix

The Proof of (37c) AND (37d) Implying (37a) AND (37b)
We validate the claim via the construction of an auxiliary $v^{n} \in \mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)$ from $u^{n} \in \mathcal{T}_{j \mid 1}\left(u^{n} ; k\right)$. This auxiliary v^{n} will be defined differently according to whether $d\left(x_{(1)}^{n}, u^{n} \mid \mathscr{S}_{j}^{(m-1)}\right)$ equals $\ell_{j}^{(m-1)}$ or $\ell_{j}^{(m-1)}-1$ as follows.
i) $d\left(x_{(1)}^{n}, u^{n} \mid \mathscr{S}_{j}^{(m-1)}\right)=\ell_{j}^{(m-1)}$: Since in this case, u^{n} has no zero components with indices in $\mathscr{S}_{j}^{(m-1)}$, we flip a zero component of u^{n} with its index in $\mathscr{S}_{j}^{(m)} \backslash$ $\mathscr{S}_{j}^{(m-1)}=\mathcal{S}_{j}^{(m)}$ to construct a v^{n} such that

$$
\begin{equation*}
d\left(x_{(1)}^{n}, v^{n}\right)=d\left(x_{(1)}^{n}, u^{n}\right)+1 \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
d\left(x_{(j)}^{n}, v^{n}\right)=d\left(x_{(j)}^{n}, u^{n}\right)-1 \tag{47}
\end{equation*}
$$

where the existence of such v^{n} is guaranteed by $k \leq$ $\ell_{j}^{(m)}-1$. Then, v^{n} must fulfill (37a), (37c) and (37d) (with w^{n} replaced by v^{n}) as u^{n} satisfies (35a), (35c) and (35d). We next prove v^{n} also fulfills (37b) by contradiction. Suppose there exists a $r \in[j-1] \backslash\{1\}$ satisfying

$$
\begin{equation*}
d\left(x_{(1)}^{n}, v^{n}\right)-1=d\left(x_{(r)}^{n}, v^{n}\right)+1 \tag{48}
\end{equation*}
$$

We then recall from (21) that $d\left(x_{(1)}^{n}, x_{(r)}^{n} \mid \mathcal{S}_{j}^{(m)}\right)$ is either 0 or $\left|\mathcal{S}_{j}^{(m)}\right|$. Thus, (48) can be disproved by differentiating two cases: 1) $d\left(x_{(1)}^{n}, x_{(r)}^{n} \mid \mathcal{S}_{j}^{(m)}\right)=0$, and 2) $d\left(x_{(1)}^{n}, x_{(r)}^{n} \mid \mathcal{S}_{j}^{(m)}\right)=\left|\mathcal{S}_{j}^{(m)}\right|$.

In case 1), v^{n} that is obtained by flipping a zero component of u^{n} with index in $\mathcal{S}_{j}^{(m)}$ must satisfy $d\left(x_{(1)}^{n}, v^{n}\right)=d\left(x_{(1)}^{n}, u^{n}\right)+1$ and $d\left(x_{(r)}^{n}, v^{n}\right)=$ $d\left(x_{(r)}^{n}, u^{n}\right)+1$. Then, (48) implies $d\left(x_{(1)}^{n}, u^{n}\right)-1=$ $d\left(x_{(r)}^{n}, u^{n}\right)+1$. A contradiction to the fact that u^{n}
satisfies (35b) is obtained. In case 2), the flipping manipulation on u^{n} results in $d\left(x_{(1)}^{n}, v^{n}\right)=d\left(x_{(1)}^{n}, u^{n}\right)+1$ and $d\left(x_{(r)}^{n}, v^{n}\right)=d\left(x_{(r)}^{n}, u^{n}\right)-1$. Therefore, (48) implies $d\left(x_{(1)}^{n}, u^{n}\right)=d\left(x_{(r)}^{n}, u^{n}\right)$, which again contradicts (35b). Accordingly, v^{n} must also fulfill (37b); hence, $v^{n} \in \mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)$.
With this auxiliary v^{n}, we are ready to prove that every w^{n} satisfying (37c) and (37d) also validates (37a) and (37b). This can be done by showing $d\left(x_{(r)}^{n}, w^{n}\right)=$ $d\left(x_{(r)}^{n}, v^{n}\right)$ for every $r \in[j]$, which can be verified as follows:

$$
\begin{align*}
& d\left(x_{(r)}^{n}, w^{n}\right) \\
&= d\left(x_{(r)}^{n}, w^{n} \mid \mathscr{S}_{j}^{(m-1)}\right)+d\left(x_{(r)}^{n}, w^{n} \mid \mathcal{S}_{j}^{(m)}\right) \\
&+d\left(x_{(r)}^{n}, w^{n} \mid\left(\mathscr{S}_{j}^{(m)}\right)^{\mathrm{c}}\right) \tag{49}\\
&= d\left(x_{(r)}^{n}, v^{n} \mid \mathscr{S}_{j}^{(m-1)}\right)+d\left(x_{(r)}^{n}, v^{n} \mid \mathcal{S}_{j}^{(m)}\right) \\
&+d\left(x_{(r)}^{n}, v^{n} \mid\left(\mathscr{S}_{j}^{(m)}\right)^{\mathrm{c}}\right) \tag{50}\\
&= d\left(x_{(r)}^{n}, v^{n}\right) \tag{51}
\end{align*}
$$

where the substitution in the first term of (50) holds because both v^{n} and w^{n} satisfy (37c), implying all components of v^{n} and w^{n} with indices in $\mathscr{S}_{j}^{(m-1)}$ are equal to one; the substitution in the 2 nd term of (50) holds because when considering only those portions with indices in $\mathcal{S}_{j}^{(m)}, x_{(r)}^{n}$ are either all ones or all zeros according to (21), and both w^{n} and v^{n} have exactly $k+1-\ell_{j}^{(m-1)}$ ones according to (37c); and the substitution in the 3 rd term of (50) is valid since both v^{n} and w^{n} satisfy (37d).
$d\left(x_{(1)}^{n}, u^{n} \mid \mathscr{S}_{j}^{(m-1)}\right)=\ell_{j}^{(m-1)}-1$: Now we let v^{n} be equal to u^{n} in all positions but one in $\mathscr{S}_{j}^{(m-1)}$ such that $d\left(x_{(1)}^{n}, v^{n} \mid \mathscr{S}_{j}^{(m-1)}\right)=\ell_{j}^{(m-1)}$. Then, v^{n} must fulfill (37a), (37c) and (37d) as u^{n} satisfies (35a), (35c) and (35d). With the components of $x_{(r)}^{n}$ with respect to $\mathcal{S}_{j}^{(m)}$ being either all zeros or all ones, the same contradiction argument after (48) can disprove the validity of (48) for this v^{n} and for any $r \in[j-1] \backslash\{1\}$. Therefore, v^{n} also fulfills (37b), implying $v^{n} \in \mathcal{N}_{j \mid 1}\left(u^{n} ; k\right)$. With this auxiliary v^{n}, we can again verify (51) via the same derivation in (51). The claim that w^{n} satisfying (37c) and (37d) validates (37a) and (37b) is thus confirmed.

ACKNOWLEDGMENT

The authors sincerely thank the Associate Editor and the reviewers for their insightful and constructive comments which were quite instrumental in improving the manuscript.

References

[1] H. V. Poor and S. Verdú, "A lower bound on the probability of error in multihypothesis testing," IEEE Trans. Inf. Theory, vol. 41, no. 6, pp. 1992-1994, Nov. 1995.
[2] P.-N. Chen and F. Alajaji, "A generalized Poor-Verdú error bound for multihypothesis testing," IEEE Trans. Inf. Theory, vol. 58, no. 1, pp. 311-316, Jan. 2012.
[3] L.-H. Chang, P.-N. Chen, F. Alajaji, and Y. S. Han, "The asymptotic generalized Poor-Verdú bound achieves the BSC error exponent at zero rate," in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Los Angeles, CA, USA, Jun. 2020, pp. 2131-2136.
[4] S. Verdú and T. S. Han, "A general formula for channel capacity," IEEE Trans. Inf. Theory, vol. 40, no. 4, pp. 1147-1157, Jul. 1994.
[5] G. Vazquez-Vilar, A. T. Campo, A. G. I. Fábregas, and A. Martinez, "Bayesian M-ary hypothesis testing: The meta-converse and Verdúhan bounds are tight," IEEE Trans. Inf. Theory, vol. 62, no. 5, pp. 2324-2333, May 2016.
[6] R. G. Gallager, "A simple derivation of the coding theorem and some applications," IEEE Trans. Inf. Theory, vol. 11, no. 1, pp. 3-18, Jan. 1965.
[7] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, "Lower bounds to error probability for coding on discrete memoryless channels. I," Inf. Control, vol. 10, no. 1, pp. 65-103, Jan. 1967.
[8] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, "Lower bounds to error probability for coding on discrete memoryless channels. II," Inf. Control, vol. 10, no. 5, pp. 522-552, May 1967.
[9] R. J. McEliece and J. K. Omura, "An improved upper bound on the block coding error exponent for binary-input discrete memoryless channels (Corresp.)," IEEE Trans. Inf. Theory, vol. 23, no. 5, pp. 611-613, Sep. 1977.
[10] R. G. Gallager, Information Theory and Reliable Communication. New York, NY, USA: Wiley, 1968.
[11] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding. New York, NY, USA: McGraw-Hill, 1979.
[12] I. Csiszár and J. Körner, Information Theory: Coding Theorems for Discrete Memoryless Systems. New York, NY, USA: Academic, 1981.
[13] R. Blahut, Principles and Practice of Information Theory. Reading, MA, USA: Addison-Wesley, 1988.
[14] S. Litsyn, "New upper bounds on error exponents," IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 385-398, Mar. 1999.
[15] A. Barg and A. McGregor, "Distance distribution of binary codes and the error probability of decoding," IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4237-4246, Dec. 2005.
[16] E. A. Haroutunian, M. E. Haroutunian, and A. N. Harutyunyan, "Reliability criteria in information theory and in statistical hypothesis testing," in Foundations and Trends in Communications and Information Theory, vol. 4. New York, NY, USA: Now, Jan. 2007, pp. 97-263.
[17] Y. Polyanskiy, "Saddle point in the minimax converse for channel coding," IEEE Trans. Inf. Theory, vol. 59, no. 5, pp. 2576-2595, May 2013.
[18] M. Dalai, "Lower bounds on the probability of error for classical and classical-quantum channels," IEEE Trans. Inf. Theory, vol. 59, no. 12, pp. 8027-8056, Dec. 2013.
[19] J. Scarlett, A. Martinez, and A. Guillén i Fàbregas, "Mismatched decoding: Error exponents, second-order rates and saddlepoint approximations," IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2647-2666, May 2014.
[20] J. Scarlett, L. Peng, N. Merhav, A. Martinez, and A. G. I. Fàbregas, "Expurgated random-coding ensembles: Exponents, refinements, and connections," IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4449-4462, Aug. 2014.
[21] Y. Altuğ and A. B. Wagner, "Refinement of the random coding bound," IEEE Trans. Inf. Theory, vol. 60, no. 10, pp. 6005-6023, Oct. 2014.
[22] M. V. Burnashev, "On the BSC reliability function: Expanding the region where it is known exactly," Problems Inf. Transmiss., vol. 51, no. 4, pp. 307-325, Oct. 2015.
[23] A. Tandon, V. Y. F. Tan, and L. R. Varshney, "The bee-identification problem: Bounds on the error exponent," IEEE Trans. Commun., vol. 67, no. 11, pp. 7405-7416, Nov. 2019.
[24] A. Tandon, V. Y. F. Tan, and L. R. Varshney, "On the bee-identification error exponent with absentee bees," 2019, arXiv:1910.10333.
[25] N. Merhav, "A Lagrange-dual lower bound to the error exponent of the typical random code," IEEE Trans. Inf. Theory, vol. 66, no. 6, pp. 3456-3464, Jun. 2020.
[26] F. Alajaji, P.-N. Chen, and Z. Rached, "A note on the Poor-Verdú upper bound for the channel reliability function," IEEE Trans. Inf. Theory, vol. 48, no. 1, pp. 309-313, Jan. 2002.
[27] Y. Polyanskiy, H. V. Poor, and S. Verdú, "Channel coding rate in the finite blocklength regime," IEEE Trans. Inf. Theory, vol. 56, no. 5, pp. 2307-2359, May 2010.
[28] P.-N. Chen, H.-Y. Lin, and S. M. Moser, "Optimal ultrasmall block-codes for binary discrete memoryless channels," IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 7346-7378, Nov. 2013.

Ling-Hua Chang (Associate Member, IEEE) received the B.S. and Ph.D. degrees in electrical engineering from National Chiao Tung University, Taiwan, in 2010 and 2016, respectively. She is currently an Assistant Professor with the Department of Electrical Engineering (Group A), Yuan Ze University, Taiwan. Her research interests include signal processing, linear algebra, and information theory.

Po-Ning Chen (Senior Member, IEEE) received the B.S. and M.S. degrees in electrical engineering from National Tsing Hua University, Taiwan, in 1985 and 1987, respectively, and the Ph.D. degree in electrical engineering from the University of Maryland, College Park, in 1994.

From 1985 to 1987, he was with the Image Processing Laboratory, National Tsing Hua University, where he worked on the recognition of Chinese characters. In 1989, he was with Star Tech, Inc., where he focused on the development of finger-print recognition systems. After 1994, he joined Wan Ta Technology Inc., as the Vice General Manager, conducting several projects on point-of-sale systems. In 1995, he became a Research Staff with the Advanced Technology Center, Computer and Communication Laboratory, Industrial Technology Research Institute, Taiwan, where he led a project on java-based network managements. Since 1996, he has been an Associate Professor with the Department of Communications Engineering, National Chiao Tung University (NCTU), Taiwan, where he was promoted to a Full Professor in 2001, served as the Chairperson for the Department of Communications Engineering from 2007 to 2009, was the Associate Chief Director of the Microelectronics and Information Systems Research Center from 2012 to 2015, and became the Associate Dean of the College of Electrical and Computer Engineering in 2017. His research interests generally lie in information and coding theory, large deviation theory, distributed detection, and sensor networks.

Dr. Chen received the Annual Research Awards from the National Science Council, Taiwan, from 1996 to 2000, and the 2000 Young Scholar Paper Award from Academia Sinica, Taiwan. His Experimental Handouts for the course of the Communication Networks Laboratory have been awarded the Annual Best Teaching Materials for Communications Education by the Ministry of Education, Taiwan, in 1998. He has been selected as the Outstanding Tutor Teacher of NCTU in 2002, 2013, and 2014. He was also a recipient of the Distinguished Teaching Award from the College of Electrical and Computer Engineering, NCTU, in 2003 and 2014; and the Outstanding Teaching Award of NCTU in 2020. He was elected to be the Chair of the IEEE Communications Society Taipei Chapter in 2006 and 2007, during which the IEEE ComSoc Taipei Chapter won the 2007 IEEE ComSoc Chapter Achievement Awards (CAA) and the 2007 IEEE ComSoc Chapter of the Year (CoY).

Fady Alajaji (Senior Member, IEEE) received the B.E. degree (Hons.) in electrical engineering from the American University of Beirut, Lebanon, in 1988, and the M.Sc. and Ph.D. degrees in electrical engineering from the University of Maryland, College Park, in 1990 and 1994, respectively,

He held a post-doctoral appointment in 1994 at the Institute for Systems Research, University of Maryland. In 1995, he joined the Department of Mathematics and Statistics, Queen's University, Kingston, ON, Canada, where he is currently a Professor of mathematics and engineering. Since 1997, he has also been cross-appointed with the Department of Electrical and Computer Engineering, Queen's University. From 2013 to 2014, he served as the Acting Head for the Department of Mathematics and Statistics. From 2003 to 2008 and from 2018 to 2019, he served as the Chair for the Queen's Mathematics and Engineering Program. His research interests include information theory, digital communications, error control coding, data compression, joint source-channel coding, network epidemics, generativeadversarial networks, and data privacy and fairness in machine learning.

Dr. Alajaji received the Premiers Research Excellence Award from the Province of Ontario. He is also an Associate Editor of Shannon Theory for the IEEE Transactions on Information Theory. He served as an Area Editor for Source-Channel Coding and Signal Processing (from 2008 to 2015) and an Editor for Source and Source-Channel Coding (from 2003 to 2012) for the IEEE Transactions on Communications. He served as an organizer and a technical program committee member of several international conferences and workshops.

Yunghsiang S. Han (Fellow, IEEE) was born in Taipei, Taiwan, in 1962. He received the B.Sc. and M.Sc. degrees in electrical engineering from National Tsing Hua University, Hsinchu, Taiwan, in 1984 and 1986, respectively, and the Ph.D. degree from the School of Computer and Information Science, Syracuse University, Syracuse, NY, USA, in 1993.

From 1986 to 1988, he was a Lecturer with the Ming-Hsin Engineering College, Hsinchu. He was a Teaching Assistant from 1989 to 1992 and a Research Associate from 1992 to 1993 with the School of Computer and Information Science, Syracuse University. From 1993 to 1997, he was an Associate Professor with the Department of Electronic Engineering, Hua Fan College of Humanities and Technology, Taipei, Taiwan. He was with the Department of Computer Science and Information Engineering, National Chi Nan University, Nantou, Taiwan, from 1997 to 2004. He was promoted to a Professor in 1998. He was a Visiting Scholar with the Department of Electrical Engineering, University of Hawaii at Manoa, HI, USA, from June 2001 to October 2001; the SUPRIA Visiting Research Scholar with the Department of Electrical Engineering and Computer Science and CASE Center, Syracuse University, from September 2002 to January 2004 and July 2012 to June 2013; and a Visiting Scholar with the Department of Electrical and Computer Engineering, The University of Texas at Austin, TX, USA, from August 2008 to June 2009. He was with the Graduate Institute of Communication Engineering, National Taipei University, Taipei, from August 2004 to July 2010. From August 2010 to January 2017, he was with the Department of Electrical Engineering, National Taiwan University of Science and Technology, as a Chair Professor. From February 2017 to February 2021, he was with the School of Electrical Engineering and Intelligentization, Dongguan University of Technology, China. He is currently with the Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China. He has been a Chair Professor with National Taipei University since February 2015. His research interests are in error-control coding, wireless networks, and security. He was the Winner of the 1994 Syracuse University Doctoral Prize. One of his papers won the prestigious 2013 ACM CCS Test-of-Time Award in cybersecurity.

[^0]: ${ }^{1}$ Note that a_{n} and b_{n}, as well as the notations introduced in Table I, are all functions of the adopted code \mathcal{C}_{n}. For ease of notation, we drop their dependence on \mathcal{C}_{n} throughout the paper (except in (2) and the discussion related to it).

[^1]: ${ }^{2}$ A straightforward example for which $\delta_{n}=0$ is \mathcal{C}_{n} consisting of only two codewords whose Hamming distance is an odd number.

[^2]: ${ }^{3}$ To unify the expression, when $m=1$, in which case $\ell_{j}^{(0)}=0$, we assign $\binom{0}{-1}=0$ and $\binom{0}{0}=1$ in (36). Similarly, when $k=\ell_{j}^{(m-1)}-1$, we set $\binom{\ell_{j}^{(m)}-\ell_{j}^{(m-1)}}{k-\ell_{j}^{(m-1)}}=\binom{\ell_{j}^{(m)}-\ell_{j}^{(m-1)}}{-1}=0$.

