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A Communication Channel Modeled on Contagion
Fady Alajaji and Tom Fuja

Abstract—We introduce a binary additive communication channel
with memory. The noise process of the channel is generated according to
the contagion model of G. Polya; our motivation is the empirical obser-
vation of Stapper et al. that defects in semiconductor memories are well
described by distributions derived from Polya’s urn scheme. The result-
ing channel is stationary but not ergodic, and it has many interesting
properties. We first derive a maximum likelihood (ML) decoding algo-
rithm for the channel; it turns out that ML decoding is equivalent
to decoding a received vector onto either the closest codeword or the
codeword that is farthest away, depending on whether an “apparent
epidemic” has occurred. We next show that the Polya-contagion channel
is an “averaged” channel in the sense of Ahlswede (and others) and that
its capacity is zero. Finally, we consider a finite: y version of the
Polya-contagion model; this channel is (unlike the original) ergodic with
a nonzero capacity that increases with increasing memory.

Index Terms—Channels with memory, additive noise, capacity, maxi-
mum likelihood decoding.

1. INTRODUCTION: COMMUNICATION VIA CONTAGION

We consider a discrete communication channel with memory
in which errors spread in a fashion similar to the spread of a
contagious disease through a population. The errors propagate
through the channel in such a way that the occurrence of each
“unfavorable” event (i.e., an error) increases the probability of
future unfavorable events.

One motivation for the study of such channels is the “cluster-
ing” of defects in silicon; Stapper ef al. [1] have shown that the
distribution of defects in semiconductor memories fits the
Polya-Eggenberger (PE) distribution much better than the com-
monly used Poisson distribution. The PE distribution is one
of the “contagious” distributions that can be generated by G.
Polya’s urn model for the spread of contagion [2], [3] More
generally, real-world communication channels often have mem-
ory; a contagion-based model offers an interesting alternative to
the Gilbert model and others [4].

We begin by introducing a communication channel with addi-
tive noise modeled by the Polya contagion urn scheme; the
channel is stationary but not ergodic. We then present a maxi-
mum likelihood (ML) decoding algorithm for the channel; ML
decoding for the Polya-contagion channel is carried out by
mapping the received vector onto either the codeword that is
closest to the received vector or the codeword that is farthest
away—depending on which possibility is more extreme. We then
show that the Polya-contagion channel is in fact an “averaged”
channel [5], [6], i.e., its block transition probability is the average
of those of a class of binary symmetric channels, where the
expectation is taken with respect to the beta distribution. Using
De Finetti’s results on exchangeability, we note that binary
channels with additive exchangeable noise processes are aver-
aged channels with binary symmetric channels as components.
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We show that the capacity of the Polya channel is zero, and
we also obtain the e-capacity of the channel. We note that the
zero capacity result provides a counter-example to the adage
“memory can only increase capacity.”

Finally, we consider a finite-memory version of the Polya-con-
tagion model. The resulting channel is a stationary ergodic
Markov channel with memory M; its capacity is positive and
increases with M. As M grows, the n-fold conditional distribu-
tion of the finite-memory channel converges to the n-fold condi-
tional distribution of the original Polya channel; however the
capacity of the finite-memory channel does not converge to the
capacity of the Polya channel.

II. PoLyA-CoNTAGION COMMUNICATION CHANNEL

Consider a discrete binary additive communication channel,
i.e., a channel for which the /th output Y; € {0, 1} is the modulo-
two sum of the ith input X; € {0,1} and the ith noise symbol
Z, € {0, 1}; more succinctly, Y; = X; & Z;, for i = 1,2,3,---.

We assume that the input and noise sequences are indepen-
dent of each other. The noise sequence {ZJ is drawn accord-
ing to the Polya contagion urn scheme [7], as follows: an urn
originally contains T balls, of which R are red and § are black
(T=R+S8);let p=R/T and o=1-p=S/T. We make
successive draws from the urn; after each draw, we return to the
urn 1 + A balis of the same color as was just drawn. Note that if
A =0, we get the classic case of independent drawings with
replacement. In our problem we will assume that A > 0 (conta-
gion case) and that p < o, ie, p <1/2. Furthermore, we
denote & = A/T. Our sequence {Z;} corresponds to the out-
comes of the draws from our Polya urn with parameters p and

if the ith ball drawn is red

8, where
z,={b
i 0, if the ith ball drawn is black.
In Polya’s model, a red ball in the urn represents a sick person

in the population and a black ball in the urn represents a
healthy person.

A. Block Transition Probability of the Channel

Definition 1 (Channel State): We define the state of the chan-
nel after the nth transmission to be the total number of red balls
drawn after n trials:

S, 2Z +Zy++Z2,=85,,+2Z,, S =0
The possible values of S, are the elements of the set {0, 1, ny.
Furthermore, the sequence of states {S,};_, forms a Markov
chain, i.e.,
P(Sn = Snlsnfl =Sh-1s Sn72 =Sp-200 Sl = sl)
= P(S, = 5,18,

For a given input block X = [X,, X,+, X,] and a given output
block Y = [¥,,Y,,, Y,], the block (or n-fold) transition proba-
bility of the channel is given by

_—'S",]).

n
P(Z=X\Z(=)_f) = TTP(Y = ylX; = x5, =5.1)

i=1

where
PY, =ylX; =x;,8_1= s5i_1)
p+s;_86 1P [o+i-1-s5._,8 1= 6ox)
=[m] [ 1+G-1s
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We thus obtain
P(Y=ylX =x)

_p(p+8) - (pHd=18)a(a+8) - (o+(n—d ~15)
B A +6)1+28)—(+((n—18)

(1)

or

P(Y=ylX=2x)= (/8 (p/6+ Dl (o/6+n—d)
TN T T TG or (o80T /8 + )

@

where d = d(y, x) = weight (z =y ®x) =s, and T'() is the
gamma function, T'(x) = [5t*"'e"dt for x > 0. To obtain (2)
from (1), we used the fact that T'(x + 1) = xT'(x), which leads to
the following identity:

n—1

. I'( +n)
n(a+jﬁ)=ﬁni/u
j=0

I'(a/B)

B. Properties of the Channel

We first define a discrete channel to be stationary if for every
stationary input process {X,}_,, the joint input-output process
{(X,, Y)Y, is stationary. Furthermore, a discrete channel is
ergodic if for every ergodic input process {X}_,, the joint
input—output process {(X;, Y=, is ergodic [10], [19].

Before analyzing the characteristics of the channel, we state
from [8] the following definitions and lemma.

Definition 2: A finite sequence of random variables {Z;,
Z,,+, Z,} is said to be exchangeable if the joint distribution of
{Z,,Z,,~, Z,} is invariant with respect to permutations of the
indexes 1,2,---, n.

Definition 3: An infinite sequence of random variables {Z;}_
is said to be exchangeable if for every finite n, the collection
{2,,Z;,+,Z; } is exchangeable.

Lemma 1: Exchangeable random processes are strictly station-
ary.

Exchangeability was investigated by De Finetti (1931), who
recognized its fundamental role for Bayesian statistics and mod-
ern probability. The main interest in adopting this concept is to
use exchangeable random variables as an alternative to indepen-
dent and identically distributed (i.i.d) random variables. Note
that ii.d. random variables arc exchangeable. However, ex-
changeable random variables are dependent in general but sym-
metric in their dependence. We now can study the properties of
the channel.

1) Symmetry: The channel is symmetric. By this we mean that
P(Y = y|X = x) depends only on x @y since P(Y =y|X =x)
=P(Z =y & x). Due to the symmetry, if we want to maximize
the mutual information I(X;Y) over all input distributions on
X, the result is maximized for equiprobable input n-tuples.

2) Stationarity: From (1) and the above definitions, we can
conclude that the noise process {Z}_, forms an exchangeable
random process. The noise process is thus strictly stationary (by
Lemma 1) and thus identically distributed. We get

P(Z,=1)=p=1-P(Z,=0) Vi=1,2,3,-"
and the correlation coefficient
Cov(Z;,Z) B
Cor(Z;,Z)) = - = >0 Vi#j
YVar(Z)Var(z) 1+

indicates the positive correlation among the random variables of
the noise process.
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3) Nonergodicity: It is shown in [7], [9] that Z & lim,, .. S, /n
exists almost surely, where Z has the beta distribution with
parameters p/8 and o/8. Thus the noise process (Z)_, is not
ergodic since its sample average does not converge to a constant.

111, Maximum LikeLinoop (ML) DEcopING

Suppose M codewords are possible inputs to the channel with
transition probability P(Y = y|X = x), the codebook is given by
& = {x,, X2, Xy}, with each x, € {0,1}". For a given received
vector y € {0, 1} the maximum likelihood estimate of the trans-
mitted codeword is

x = argmax (P(Y = y|X = x): 1, € #).

From (2), we can rewrite the transition probability of the chan-
nel as

P(Y=ylX=x)= g[d()_c,y)]
where g:[0,n] — [0, 1] is defined by

g(d)=A-F(g+d)-F(%+n—d)

and A is a constant depending on #n, p, and 3.

Recall that a positive-valued function f(-) is log—convex if
log[ f()] is a convex function; log—-convex functions are convex
functions, and they are closed under addition and multiplication.
Furthermore, T'(-) is strictly log—convex, meaning that g(-) de-
fined above is strictly log—convex on the interval [0, n]. This
observation leads to the following result.

Proposition 1: The transition probability function P(Y =ylX
=x) of the Polya-contagion channel is strictly log—convex in
d(x, y) and has a unique minimum at
n 1-2p
-+
2 28
Furthermore, P(Y = y|X = x) is symmetric in d(x, y) about d,.

Proof- As above, define g(d) = P(Y = y|X = x) forany x,y
such that d(x,y)=d; then g()) is strictly log-convex. For
dy = (ny2) + (I — 2p)/28], we obtain

dy =

n 1 n 1
= —_ = _— —_— —_— + —_—
gldy + €) =gldy — €) AF( 5 + 75 + e)F( >+ 75 e)

for any €; therefore g(-) is symmetric about dq and the strict
convexity of g(-) means that a unique minimum occurs there. O

Decoding Algorithm: From the results above, the ML decoding
algorithm for the channel is as follows.

1) For a given n-tuple y received at the channel output,
compute d; 2 d(y, x,), for i = 1,+-, M. Compute also dp &
max, c;<m {dx} aﬁd dmm 2 minl <isM {d:}

D If |d,,, — dol < |d i — dgl, map y onto a codeword x;,
for which d; = d;,. In this case ML decoding < minimum
distance decoding.

3)If |d,,,, — dy| > |dy, — dol map y onto a codeword x;,
for which d; = d,. In this case ML decoding ¢ maximum
distance decoding.

Observations:

o Insight into the decoding rule: we can rewrite d, as d, =
n/2 + (1/AXT/2 — R). Note that n/2 is (of course) the dis-
tance the received n-tuple would be from the transmitted code-
word if half of the bits get flipped; note also that (T/2 — R) is
the initial offset from having an equal number of red and black
balls in the urn. Thus d, may be thought of as an equilibrium
point. The best estimate is then specified by the value of d; that
is farthest away from the equilibrium point d,. In other words,
the best decision is based on the following reasoning: either
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Fig. 1. Transition probability function versus Hamming distance, where a = g(0) and b = g(n).

many errors occurred during transmission—an apparent epi-
demic, to use the contagion interpretation—or very few errors
occurred—an apparently healthy population.

e We note that if d,>n — 0.5, then condition 2) in the
above algorithm is always satisfied—meaning minimum distance
decoding is optimal. The requirement dy, > n — 0.5 is equivalent
to the condition &6 < (1 —2p)/(n — 1), so if the parameter
8= A/T is sufficiently small, ie., there is sufficiently little
memory in the system, minimum distance decoding is optimal. In
particular, if = 0, the draws from the urn are independent and
the channel reduces to a binary symmetric channel with crossover
probability p. Thus this observation is consistent with the fact
that, for a BSC with crossover probability less than one-half,
minimum-distance decoding is maximum-likelihood decoding.

1V. AVERAGED COMMUNICATION CHANNELS

Averaged channels with discrete memoryless components were
first introduced by Jacobs [5] and then were analyzed by Ahlswede
[6] and Kieffer [10]l. We will show that the Polya-contagion
channel is an averaged channel with components that are binary
symmetric channels (BSC’s).

Consider a family of stationary channels parameterized by 6:

{(Wim(y =ylx =x),0€ 0} |
where Y and X are, respectively, the input and output blocks of
the channel, each of length n. W")(:) is the n-fold transition
probability of the channel specified by 6 € ©.

Definition 4: We say a channel is an “averaged” channel with
stationary ergodic components if its block transition probability
is the expected value of the transition probabilities of a class of
stationary channels parameterized by 6, i.., if it is of the form

WY = y1X =x) = [ WO = y1X =) dG(6)

=E6[~%<n)(2=2,|/_\/=)_c)] 3)

for some distribution G(-) on 6.

Note that if a channel is averaged with stationary components
then it is stationary, and it may have memory. One way an
averaged channel may be realized is as follows. From among the
components, nature selects one according to some probability
distribution G. This component is then used for the entire

transmission. However, the selection is unknown to both the
encoder and the decoder.

We will show that the Polya channel—and indeed any addi-
tive channel—belongs to this class of channels. First we need to
recall some results from [11], [12], [15].

Notation: Consider a discrete-time random process with al-
phabet D; let o(D”) denote a o-field consisting of subsets of
D*, and let u be a probability measure such that (D*, a(D™), w)
forms a probability space. Finally, let U,: D” - D denote a
sampling function defined by U,(u) = u,. Then the sequence of
random variables {U,; n = 1,2,--+} is a discrete-time random
process, to be denoted [D, u, UL

Lemma 2 (Ergodic Decomposition): Let [D, p, U] be a station-
ary, discrete-time random process. There exists a class of sta-
tionary ergodic measures { u,; 6 € ®} and a probability measure
G on an event space of © such that for every event F C o (D7)
we can write

u(F) = f@ue(F)dG(e).

Remark: The ergodic decomposition theorem states that, in
an appropriate sense, all stationary nonergodic random pro-
cesses are mixtures of stationary ergodic processes; by directly
applying the ergodic decomposition theorem we get the follow-
ing result.

Proposition 2: Any discrete channel with stationary (nonergod-
ic) additive noise is an averaged channel whose components are
channels with additive stationary ergodic noise.

Proof- Let {Z;} be the (nonergodic) noise sequence. Then
the ergodic decomposition theorem states that P(Z=2)=
P(Z, =z, Z, = Z,) may be written as the expected value of
the distribution of a class of stationary ergodic processes; since
the noise and input sequences are independent, we have W (Y
—ylX=x)=P(Z=y—x) and so W(Y =ylX =x) may
likewise be expressed as the expected value of the transition
probabilities of a class of channels with stationary ergodic addi-
tive noise. O

Proposition 3: The binary Polya-contagion channel is an aver-
aged channel; its components are BSC’s with crossover probabil-
ity 6, where 6 is a beta-distributed random variable with param-
eters p/6 and o/3.

Proof- We showed in Proposition 2 that the Polya channel
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is an averaged channel whose components are channels with
additive stationary ergodic noise. To prove the rest of the
proposition we just note that, if we let fo(8) be the pdf of a
beta-distributed ( p/8, o/8) random variable:

T(1/8)
I (p/8)(c/8)

0, otherwise

8/ 1(1-0)7°"", ifo<o<1

f@(e) =

then
[loe20 = 0)" 1Y e(0) db = PLY = yIX =)
0 4

where P(Y = y|X = x) describes the Polya-contagion channel as
in ). B |

Observation: We could have proved part of Proposition 3 by
using De Finetti’s results on exchangeability, since the additive
noise process of the Polya channel is a binary exchangeable
random process. De Finetti’s results are summarized below [9],
[13}.

Theorem 1 (De Finetti): For an infinite sequence of random
variables, the concept of exchangeability is equivalent to that of
conditional independence with a common marginal distribution,
ie.,if Z,,Z,, - is an infinite sequence of exchangeable random
variables, then there exists a o-field & and a distribution G such
that, given &, the random variables Z,, Z,, -+ are conditionally
independent with distribution function G.

Corollary 1: For every infinite sequence of exchangeable ran-
dom variables {Z;} such that Z; € {0, 1}, there corresponds a
probability distribution G concentrated on the interval (0, 1D
such that

P(Zy = e, Zy = ey Zy = e,) = [ 641 = 0)" " dG(8)
0

where k =e; + e, + - +e, and ¢; € {0,1} for i = 1,2,--, n.
This brings us to the following more general result.
Proposition 4: Any binary channel with an exchangeable addi-

tive noise process is an averaged channel with binary symmetric

channels (BSC’s) as its components.

V. CaraciTy OF THE PoLya CHANNEL

Consider a discrete (not necessarily memoryless) channel with
input alphabet A and output alphabet B; let W(Y = y|X = x)
be the n-fold transition probability describing the channel.

Definition 5: An (M, n, €) code has M codewords, each with
blocklength 7, and average error probability not larger than e.
R > 0 is an e-achievable rate if for every y > 0 there exists, for
sufficiently large n, (M, n, €) codes with rate (1/n)log, (M) >
R — . The maximum e-achievable rate is called the e-capacity
C.. The channel capacity C is the maximum rate that is e
achievable for all 0 < e < 1. It follows immediately from the
definition that C = lim_ , , C,.

In [21], Verdd and Han derived a formula for the capacity of
arbitrary single-users channels (not necessarily stationary, er-
godic, information stable, etc.).

Lemma 3: The channel capacity C is given by

C = supl(X;Y) @
X

where the symbol I(X;Y) is the inf-information rate between X
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and Y and is defined as the liminfin probability' the sequence of
normalized information densities (1/n)iy, y(X' ;Y), where

Py (bla)

oD 5)

ix;y(a;b) =log,

Using the above lemma as well as the properties of the

inf-information rate derived in [21], we obtain that the inf-

information rate in (4) is maximized when the input process is

equally likely Bernoulli (symmetry property), yielding the follow-
ing expression for the capacity of the Polya channel:

Craya = 1~ H(Z)

where H(Z) is the sup-entropy rate of the additive Polya noise
process {Z,), defined as the limsup in probability of (1/
n)log, (1/PS(Z)). Since the noise process is stationary, we
obtain that the sup-entropy rate is equal to the supremum over
the entropies of almost every ergodic component of the noise
process [10], [21]:

Cpolya = 1 — €58 SUP h(W,) 6)

where the noise entropy rate h(W,) is given by

1
h(W,) = — lim — ) Wyl Q™ (x) log, W™ (ylx)
n

SER L
and the essential supremum is defined by
essg sup f(8) 2 inf[r: dG(f(6) <7) = 1].

We know that the stationary ergodic components of the Polya
channel are BSC’s with crossover probability 6; therefore the
noise entropy rate is given by H(W;) = h,(8), where hy(x) =
—xlog, (x) — (1 — x)log, (1 — x). Equation (6) then yields the
capacity of the channel:

Cpopa = 1 — €556 sup A, (8).

Polya

Since 6 has the beta distribution on [0, 1], we obtain
essg sup h1,(8) = 1 and so Cpgy, = 0.

eCapacity of the Polya Channel: Since the stationary Polya
noise process {Z,} is a mixture of Bernoulli(#) processes where
the parameter 9 is beta-distributed (p/8, a/8), it can be shown
using the ergodic decomposition theorem [12], [19] that (1/n)
log, (1/PY"(Z)) converges in L' and almost surely (hence in
distribution) to the random variable V 2 h,(U), where U is
beta-distributed ( p/8, 0/8). The cumulative distribution func-
tion (cdf) of V' is given by

Fo(a) 2 P(V < a) = Fylhy (@] + 1 = Fy[l = b, (@] (D)

where h, '(a) €[0,1/2] is the smallest root of the equation
a = hy(u), and Fy,(-) is the cdf of U. Note that since U is beta
distributed, F,(-) is strictly increasing in the interval fo,13; it
therefore admits an inverse Fj;'(-). Now, applying the formula
for e-capacity in [21, Theorem 6] we obtain

C,=1-F;'(1—e). (8)

Note that lim, ,,C. = 1 — Fy'(1) = 1 — 1 = 0, as expected.
Observations:
o The zero capacity of the Polya channel is due to the fact
that 6 can occur in any neighborhood of the point 1/2 with
positive probability. This channel behaves like a compound

"It A, is a sequence of random variables, then its liminf in probability
is the supremum of all reals a for which P(A, < a)—>0as n— =
Similarly, its limsup in probability is the infimum of all reals B8 for which
P(A, = B) > 0as n - =[21].
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channel with BSC’s as components and the capacity of such a
compound channel is equal to the infimum of the capacities of
the BSC’s.

e In [14], Pinsker and Dobrushin showed that “for a wide
class” of channels, the capacity of a channel with memory is not
less than the capacity of the “equivalent” memoryless channel.
By “a wide class of channels,” they meant channels that are
causal, historyless, and information stable. Information stable
channels have the property that the input that maximizes mutual
information and its corresponding output behave ergodically
[20], [21]. In [16], Ahlswede showed that there are averaged
channels for which the introduction of memory decreases capac-
ity. The Polya-contagion channel is such a channel.

e The zero capacity result suggests that the Polya channel
might not be a good model for a realistic channel. However, in
Section VI we will consider a finite-memory channel that ap-
proximates the Polya channel as memory increases, but with a
capacity that does not approach zero.

VI. FinitE-MEMORY CoNTAGION CHANNEL

An unrealistic aspect of the Polya channel is its infinite
memory. Consider, for instance, the millionth ball drawn from
Polya’s urn; the very first ball drawn from the urn and the
999999th ball drawn from the urn have an identical effect on
the outcome of the millionth draw. In the context of a communi-
cation channel, this is not reasonable; we would assume that the
effects of the “disease” fade in time. We now consider a more
realistic model for a contagion channel with finite memory,
where the noise in the additive channel is generated according
to a modified version of the Polya urn scheme.

Assume once again that the channel output Y; is the modulo-
two sum of the input X; and the noise Z; as for the Polya
channel, assume that the input and noise sequences are inde-
pendent. Then {Z,J", is drawn according to the following urn
scheme: an urn initially contains 7 balls—R red and S black
(T = R + S). At the jth draw, j = 1,2,--, we select a ball from
the urn and replace it with 1 + A balls of the same color
(A > 0); then, M draws later—after the (j + M)th draw—we
retrieve from the urn A balls of the color picked at time j. Once
again let p=R/T<1/2, 0=1-p=S5/T and §=A/T.
Then the noise process {Z;} corresponds to the outcomes of the
draws from the urn, where

/L
7= (1

Observation: With this modification of the original Polya urn
scheme, the number of balls in the urn is constant (T + MA
balls) after an initialization period of M draws. It also limits the
effect of any draw to M draws in the future.

if the ith ball drawn is red
if the ith ball drawn is black.

A. The Distribution of the Noise

During the initialization period (n < M), the process {Z;} of
the finite-state channel is identical to the Polya noise process
discussed earlier. We now study the noise process forn = M + 1.

Let R, be the number of red balls in the urn after n draws, T,

be the total number of balls in the urn after n draws, and
r,=R,/T, Then T, = T + MA for n = M + 1, and so

R4(Z, +Z,_ 1+ +Z, . A

g T + MA
pH(Z, +Z, o+ 7,y 1)B
1+ M8 ’
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We now have that
P(Z,=1Z =e," 2,
p+le, ;te, o+ +e, )8 _

1+ M8
=P(Z,=WZ,_ =€y Zp-1= €,-1)

=e,_)

T

where ¢; € {0,1}. Thus the noise process {Z_ 4, is a ‘Markov
process of order M. We shall refer to the resulting channel as
the finite-memory contagion channel.

For an input block X = [X;, X;,-+, X,] and an output block
Y = [Y, Y, Y,], the block transition probability of the result-
ing binary channel is as follows.

e For blocklength n < M, the block transition probability of
this channel is identical to that of the Polya-contagion channel
given by (1) and (2).

e For n > M + 1, we obtain

PM(Z=¥|X=J_V)

=P(Z=¢)
= l_.[P(Zl = e:'Zi—l =€ Ziy= e,_M)
i=1
" +5,,81 o+ (M~—s,_,)8 1
=L H p 1 i (9)
i=M+1 1+ Mé 1+ Mé
where
T150 Cp + iOIM, (o +j8)
B 1M1+ 18)
e, =x, 0y, k=e + - +ey and s, =e¢_;+ ey

We thus see that the noise process {and so the channel) is
stationary.

We now consider the properties of the noise process {Z.}).
Define {¥,} to be the process obtained by M-step blocking {z,},
ien W, =(Zy Zys1sZysrr s Zyoy-1)- Then {W,} is a one-step
Markov process with 2 states; we denote each state by its
decimal representation; i.e., state 0 corresponds to state (0 -+ 00),
state 1 corresponds to state Q-+ 01),---, and state 2™ — 1)
corresponds to state (1 -+ 11).

Tedious calculations [17] reveal the following properties about
the process {W,}.

e (W)} is a homogeneous stationary Markov process with
stationary distribution I = [mg, 74,7, v _4), where a; is com-
puted as follows. Let w(i) denote the number of 1's in the binary
representation of the decimal integer i. Then

e tCp + i OY (o + k8)
i 1711+ 16) '

e If we let {p;;} be the one-step transition probabilities, then

+[M—w()]s
o M- wlld ) (modulo 2™)

1+ Ms
Py =1 p+wi)s
U iaiian if j = (2i + 1) (modulo 2™)
1+ Mo
0, otherwise.

(10)

We have thus shown that the Markov process {W,} is irre-
ducible and aperiodic; therefore it is strongly mixing and hence
ergodic. Since the additive noise process is stationary and mix-
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ing, the resulting additive noise channel is ergodic [19], [20].
Observation: For M =1 the one-step transition probability
matrix of {Z,} is

m=

#[”5 a1

1-0
1+38 a 1—-—o+8]
Clearly one can choose § and o to “match” the transition
probabilities of an arbitrary irreducible two-state Markov chain.

B. Capacity of the Finite-Memory Contagion Channel

Using the results in the previous section, we arrive at the
following proposition.

Proposition 5: The capacity C,, of M-memory contagion
channel is nondecreasing in M. It is given by

- Bl

_— (12)
k=0 1+ Mé

Cy=
where

L 1520 Cp + jOTTM (o + 18)

k EREEED) ’

and /1,(+) is the binary entropy function.

Proof: The capacity is given by

Cy=1 —H(ZMHIZM,ZM,,,--‘,ZI)
2M
=1+ Z i Pij log, p;;
i,j=0
M
=1- VL hl —— .
k);ﬂ(k) « ”(1+M5 (13)

The monotonicity of C,, in M follows from (13) because the

Markov noise process is stationary and conditioning can only

decrease entropy. O
Proposition 6: The following equality holds:

lim Cy=1-— folhb(z)fz(z)dz (14)

M- %

where f,(z) is the beta( p/8, o/8) pdf and h,(-) is the binary
entropy function.

Proof: If we examine the quantity (IZI)Lk in the formula of

C,;, we note that it is equal to the probability that S, =k,
where S,, is the state of the original Polya-contagion channel
after the Mth draw, as defined in Section II-A. Thus we have

M
p+k§S
h| —— =
EO ”(1+M5)P(SM k)
M+ 76 S
h,,(————p/ )P(—M = T)
w V1Mt 8 M

1- )y
el

Cy=1-

]

relk/M:k=0,1,-,
/M + 6

where Ty, = S,,/M. We know by the nonergodicity property 3)
in Section II-B, that T, = S,,/M converges almost surely to a
beta-distributed random variable Z with parameters p/& and
o /8. Furthermore, since h,(+) is bounded and continuous, the
“weak equivalence” theorem [18] implies that

[ (p/M+ (SM/M):S)]
h| ——————

im Ex, 1/M+6

M- =

= E,lhy(2)] = [Q%,,(z)fz(z)dz. o
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Observation: As the memory M grows, P{(-) = P, (), but
the capacity C,, of the finite-memory channel does not converge
to the capacity of the Polya-contagion channel (which is zero).
On the contrary, C,, increases in M and converges to 1 —
[ih(2)f,(2) dz. In addition, it can be shown [17] that, if we let
1(X:Y) denote the mutual information between the input vector
X and output vector Y connected over the original (nonergodic)
Polya channel, then

1
lim —sup/(X;Y)=1- flhb(z)fz(z)dz. (15)
0

n—->x*n y

VII. SUMMARY

In this correspondence we considered a discrete channel with
memory in which errors “spread” like the spread of a contagious
disease through a population; the channel is based on Polya’s
model for contagion. The channel is stationary and nonergodic.
We first presented a maximum-likelihood (ML) decoding algo-
rithm for the channel, and then showed that this channel is in
fact an “averaged” channel, and its capacity is zero. Using De
Finetti’s results on exchangeability, we noted that binary chan-
nels with additive exchangeable noise processes are averaged
channels with binary symmetric channels as components. The
zero capacity result illustrates a counter-example to the adage
“memory can only increase capacity.”

Finally, we considered a finite-memory version of the Polya-
contagion model. The resulting channel is a stationary ergodic
Markov channel with memory M; its capacity is positive and
increases with M. As M increases, the n-fold transition distribu-
tion of the finite-memory contagion channel converges to the
n-fold transition distribution of the original Polya-contagion
channel, but its capacity does not converge to the capacity of the
Polya channel.
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Coding Theorems for a Continuous-Time Gaussian
Channel with Feedback

Shunsuke Ihara

Abstract—The main aim of the present paper is to prove a coding
theorem for a continuous-time Gaussian channel with feedback, under
an average power constraint. In the case of discrete-time, the coding
theorem for the feedback G ian ch 1 has been shown by Cover
and Pombra.

Index Terms—Channel coding theorem, Feedback capacity, Gaussian
channel with feedback.

I. INTRODUCTION

The main aim of the present paper is to prove a coding
theorem for a continuous-time Gaussian channel (GC) with
feedback. The model of the GC is given by

Y()=X()+2Z2(t), 0<t<T 1)

where the noise Z = {Z(¢); 0 <t < T} is a zero-mean Gaussian
process, X = {X(#)} is a channe! input and Y = {Y(#)} is the
corresponding output. We assume that an average power con-
straint (in a generalized sense) is imposed on the channel inputs.
The capacity C; of the GC with feedback is defined as the
supremum of mutual information one can transmit over the
channel.

The channel coding theorem to be proved is stated as follows:
i) an information transmission rate R less than C; is achievable;
and conversely, ii) a rate R greater than C; is not achievable.
The capacity C, is sometimes called the information capacity. On
the other hand, the supremum of achievable rates is said to be
the coding capacity. Thus the coding theorem means that the
coding capacity is equal to the information capacity.

The coding theorem has been studied for various communica-
tion channels, mostly for channels without feedback. Recently,
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Cover and Pombra [3] proved the coding theorem for a discrete-
time GC with feedback. For the continuous-time GC with feed-
back, however, no proof of the coding theorem in full generality
has been known. Indeed, the information capacity and the
coding capacity have been studied rather separately. Some previ-
ous work [1), [6], [8], [9], [12] examined the information capacity,
while the coding capacity was studied in [2], [15].

The statement of our coding theorem will be given in Section
1l (Theorem 1). It is known that the capacity of the GC is
attained by sending a Gaussian message and using linear feed-
back [8] (see Theorem 2). This fact enables us to prove the
coding theorem for the continuous-time GC with feedback.

11. CopiNG THEOREM

We consider the GC (1) with feedback and assume that the
terminal time 7 is finite. A message 6, to be transmitted, is a
random variable taking values in an arbitrary measurable space
(Q,, B,). We assume that the feedback channel is noiseless and
without time delay, so that the channel input X is a nonantici-
pative process with respect to Y, ie., X is of the form

X(1) =x(¢,0,Y3) )

where Y{ stands for the path Y(s),0 < s <1, and x(t,0,y)is a
measurable functional of ¢ €[0,T], 6 € Q, and y = {y(s);
0 < s < T}. More precisely, we assume the following conditions
(A.D-(A3) (cf. [12], [14]):

(A.1) the message 8 is independent of the noise Z;

(A2) for almost all §€ Q,, X()=x(1,0,Y)) is oY)
measurable at any moment #, where o,(Y) is the o-field
generated by {Y(s); s < t};

(A.3) the stochastic equation (1) has a unique strong solution
Y = {Y()}.

Let us impose on the channel inputs a constraint that is given
in terms of the covariance function. Let £ be a class of
covariance functions on the time interval [0,T]. A stochastic
process X with covariance function Ty(-,-) is possible to be
input if

G, e 3
Define a class &() of all admissible pairs (6, X) by
A 2) = {(8, X); (6, X) satisfies (A.1)-(A.3) and (3)}.

Then, under the constraint (3), the capacity Ce= Cf(ﬂ’") of the
GC (1) with feedback is defined by

C () = sup 1(6,Y{): (6, X) € /(P)} (4

where 1(8,Y]) denotes the mutual information between the
message 6 and the output Y,l. Note that the mutual information
can be written in the form

1(8,Y) = flog e(x,y)dpgy (x,¥)

where

dupyy

—(x,y) )
dpy X py Y

olx,y) =
is the Radon—Nikodym derivative of g,y with respect t0 pg X
wy. Here pg, py, and p,y denote the probability distributions
of 6, Y, and (8,Y), respectively. The capacity Co = Co(#) of
the same GC without feedback is defined in the same way. We
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