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Feedback Does Not Increase the Capacity
of Discrete Channels with Additive Noise

Fady Alajaji

Abstract— We consider discrete-time finite alphabet channels with
additive random noise. We show that output feedback does not increase
the capacity of such ch Is. This result holds in the most general case;
i.e., for arbitrary additive noise processes.

Index Terms— Shannon theory, output feedback, capacity, discrete
channels with memory, additive noise.

I. INTRODUCTION

We consider discrete (discrete-time finite alphabet) channels with
additive random noise. Note that such channels need not be mem-
oryless; in general, they have memory. The Gilbert burst-noise
channel [5], as well as the Polya-contagion channel {1], belong to
the class of such channels. We assume that these channels are each
accompanied by a noiseless, delayless feedback channel with large
capacity. Intuitively, it is plausible that if we use feedback on channels
with memory, then we can use some encoding techniques at the
transmitter end in order to combat the channel noise and hence
increase the channel capacity. However, we reach the seemingly
surprising result that the capacity of the additive channels with
feedback does not exceed their respective capacity without feedback.
This is demonstrated for arbitrary (nonstationary, nonergodic in
general) additive noise processes, using recent results by Verdd and
Han on a general channel capacity formula [10].

For these channels, the capacities with and without feedback
are equal because additive noise channels are symmetric channels.
By this we mean that the inf-information rate between input and
output processes is maximized by an equally likely independent
and identically distributed (iid) input process. Furthermore, this
maximizing equally likely iid input process yields an equally likely
iid output process.

In earlier related work, Shannon [9] showed that feedback does
not increase the capacity of discrete memoryless channels. The
same result was proven to be true for continuous alphabet channels
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with additive white Gaussian noise. Later, Cover and Pombra [4]
and others considered continuous alphabet channels with additive
nonwhite Gaussian noise and showed that feedback increases their
capacity by at most half a bit; similarly, it has been shown [4] that
feedback can at most double the capacity of a nonwhite Gaussian
channel.

II. CAPACITY WITH NO FEEDBACK

Consider a discrete channel with common input, noise, and output
g-ary alphabet 4 where A = {0, 1.---,¢ — 1}, described by the
following equation: Y,, = X,, & Z,,, for n = 1. 2, 3,---, where

* : represents the addition operation modulo ¢.

+ The random variables X, Z,, and Y, are, respectively, the

input, noise, and output of the channel.
{X,} L1 {Z,},ie., the input and noise sequences are indepen-
dent from each other.

e The noise process {Z, }n=7° is an arbitrary random process

(nonstationary, nonergodic in general).

Note that additive channels defined above, are “nonanticipatory”
channels; where by “nonanticipatory” we mean channels with no
input memory (i.e., historyless) and no anticipation (i.e., causal) [6].
A channel is said to have no anticipation if for a given input and a
given input-output history, its current output is independent of future
inputs. Furthermore, a channel is said to have no input memory if
its current output is independent of previous inputs. Refer to [6] for
more rigorous definitions of causal and historyless channels.

We furthermore note that discrete additive noise channels have
a symmetry property. By this we mean that their input—output inf-
information rate is maximized by an equally likely iid input process,
which also yields an equally likely iid output process. This is due
to the facts that the input and noise processes of these channels are
independent from each other, the addition operation (modulo q) is
invertible, and the input and output alphabets are finire and have the
same cardinality.

A channel code with blocklength n and rate R consists of an
encoder’

Fi{l, 2, 2"F) = am
and a decoder

g A" = {1.2,..., 27Ky,
The encoder represents the message V' € {1, 2.---,2"%} with
the codeword f(V) = X" = [Xi, Xs.---,X,] which is then

transmitted over the channel; al the receiver, the decoder observes the
channel output " = [}, Y2, -, Y%], and chooses as its estimate
of the message V=g ). A decoding error occurs if f’,# 1.

For additive channels, Y; = X, & Z, for all i. We assume that
V' is uniformly distributed over {1, 2.---,2""}. The probability of
decoding error? is thus given by

2"H

r 2”RZPr{(] T #EV

A=1

T=kP=Pr{g(¥")#V}

!'The number of messages is 277, If 2"/ is not an integer, then we replace
it with [2" 7. We will however write it as 2" for notational simplicity.

2We consider the average error probability. The analysis remains unchanged
if we work with the maximal error probability since the capacity of a single-
user channel with known statistics is the same under both error probability
criteria.
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We say that a rate R is achievable (admissible) if there exists a
sequence of codes with blocklength n and rate R such that
lim P =0.

The objective is to find an admissible sequence of codes with as
high a rate as possible. The capacity of the channel is defined as the
supremum of the rate over all admissible sequences of codes. We
denote it by C'nr g, to stand for capacity with no feedback.

In [10], Verdd and Han derived a formula for the operational
capacity of arbitrary single-users channels (not necessarily stationary,
ergodic, information-stable, etc.). The (nonfeedback) capacity was
shown to equal the supremum, over all input processes, of the
input-output inf-information rate defined as the liminf in probability
of the normalized information density

Cnpp =sup(X™; V") (¢)]
xn

where X" = (X, Xo,---,X,), forn = 1, 2,---, is the block
input vector and Y = (Y1, Y2,---,Y,) is the corresponding output
sequence induced by X ™ via the channel W(™ = Pynjxn: A" —
B";n =1, 2.---, which is an arbitrary sequence of n-dimensional
conditional output distributions from A" to B", where A and B are
the input and output alphabets, respectively.

The symbol I(X™; Y™) appearing in (1) is the inf-information
rate between X" and Y" and is defined as the liminf in
probability of the sequence of normalized information densities
(1/n)ixny=(X"™: Y™), where

Pynixn(b" | a™)

e @

I',xnyn(an; bn) = 10g2

The liminf in probability of a sequence of random variables is
defined as follows: if A, is a sequence of random variables, then
its liminf in probability is the supremum of all reals o for which
P(A, < a) = 0 as n — oo. Similarly, its limsup in probability is
the infimum of all reals 3 for which P(4, > 3) — 0 as n — oo.
Note that these two quantities are always defined; if they are equal,
then the sequence of random variables converges in probability to a
constant (which is «).

Using (1) as well as the propetties of the inf-information rate
derived in [10], we obtain that the inf-information rate in (1) is
maximized for equiprobable iid X™ (symmetry property), yielding
the following expression for the nonfeedback capacity of our discrete
channel with arbitrary additive noise:

Cnrp =log, (¢) — H(Z") (3)

where Z" = (Z1, Za,---, Zyn) and H(Z™) is the sup-entropy rate
" of the additive noise process {Z,}, which is defined as the limsup
in probability of the normalized noise entropy density

llo !
n 22 Po(27)

III. CAPACITY WITH FEEDBACK

We now consider the corresponding problem for the discrete
additive channel with complete output feedback. By this we mean that
there exists a “return channel” from the receiver to the transmitter;
we assume this return channel is noiseless, delayless, and has
large capacity. The receiver uses the return channel to inform the
transmitter what letters were actually received; these letters are
received at the transmitter before the next letter is transmitted, and
therefore can be used in choosing the next transmitted letter.

A feedback code with blocklength n and rate R consists of a
sequence of encoders

fir{1,2,-,2"Fyx AT S 4
for i = 1, 2,---,n, along with a decoding function
g: A" = {1,2,...,2"F},

The interpretation is simple: If the user wishes to convey message
V € {1,2,--,2"7} then the first code symbol transmitted is X, =
fi(V); the second code symbol transmitted is Xo = fo(V, Y1),
where Y is the channel’s output due to X;. The third code symbol
transmitted is X3 = f3(V, Y1, Y2), where Y3 is the channel’s output
due to Xo. This process is continued until the encoder transmits
Xn = fa(V, Y1, Ya2,---, Y _1). At this point the decoder estimates
the message to be g(Y™), where Y™ = [Y1, Ya,---,Y,].

Assuming our additive channel Y; = X, & Z; where {Z;} is
an arbitrary noise process. Again, we assume that V' is uniformly
distributed over {1, 2,---,2"F}, and we define the probability of
error and achievability as in Section II. ‘

Note, however, that because of the feedback, X" and Z" are no
longer independent; X; may depend on Z‘7'.

We denote the capacity of the channel with feedback by Crp. As
before, Crp is the supremum of all admissible feedback code rates.

We now state the key result [10, Theorem 4] which is a new
converse approach based on a simple new lower bound on the error
probability of an arbitrary channel code as a function of its size.

Lemma: Let (n, M, ¢) represent a channel block code with block-
length n, M codewords, and (average) error probability €. Then every
(n, M, €) code satisfies

1 . n n 1
€> P[;zxnyn(X ;Y"M) < Elog2 M —~| —exp(—ym) @)

for every v > 0, where X ™ places probability mass 1/M on each
codeword.

We now obtain our main result:

Theorem: Feedback does not increase the capacity of discrete
channels with arbitrary additive noise

Crp = Cnrp =log, (q) — H(Z"). )

Proof: We start by noting that the result given in the above
lemma still holds if we replace the input vector X" by the message
random variable V' where V' is uniform over the set of messages
{1, 2,---, M}. That is, every (n, M, €) feedback code satisfies

l n
e> P ;i\;yn(V; Yh < %log2 M —~| —exp(—yn) (6)

for every v > 0, where V is uniform over {1, 2,---, M},

We refer to the sequence (n, M, e,) of feedback codes with
vanishingly small error probability (i.e., ¢» — 0 as n — oo0) as
a reliable feedback code sequence.

Using (6), we first show that

Crg <sup (Vi Y™) O]
Xn
where the supremum is taken over all possible feedback encoding

schemes.’
We prove (7) by contradiction. Assume that for some p > 0

Crp =supI(V:Y")+ 3p. 8)
xn
3sup I(V: Y) = sup I(vViym) =
xn XP=(UV). f2(VF7) o SV 1))
sup

IV Y.
(1 f2fn)
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By definition of capacity, there exists a reliable feedback code
sequence with rate
R=~ log2 M >Crg—p. ®)
Now using (6) (with ¥ = p) along with (8) and (9), we obtain that
the error probability of the sequence (n. M. €,) of feedback codes
must be lower bounded by

Y™y <supI(V: Y™
‘\""l

)+ p pn).

(10)
However, by definition of I(V'; ¥") the probability in the right side
of (10) cannot vanish.asymptotically; therefore, contradicting the fact
that ¢, — 0 as n — oc. Thus (7) is proved.
Now using the properties of the inf-information rate in {10], we
can write

1 .
€n > Pi—tvyn (¥ —exp(—
n

IV YY) < F(Y.l) H(Yﬂ | (Yn l V).

(1)

) < log, (q) —

The conditional sup-entropy rate H(Y™" | 1)
probability (according to Pyy =) of
Viogy o+
n OB Py (Y [V

is the limsup in

That is, H(Y" | V)

1 i
Pr{-log, ——
’{u & P (Y V)

But we can write

is the infimum of all reals ;3 such that

> ;3} — 0,

as n — oC.

1
{ 08gs Py ”I‘ ) n l ‘_ =v)

SR>
>

Yy P(Y n=yn | V=

PY" =
v)<2—nd

vV = ).

Now, letting

fi 2 fileoy'™h

and
FORA0) folvogn)e oo filo g T = [fie fou oo ]
we have
P =y" |V =)
= ﬁP(Y =y Y =y V=)
:H W Zi=y |V =y V=0, Xi=f)
- (12)
S[PZ =y - £ YT =gV =0 X = f)
- a3
= fIP(Z =y - LY T =y T V=0,
h e T TR
=H Zi=gi—fi| 27 =y T T (15)
= ;(Z" =y — ). (16)

Here
+ Equation (12) follows from the fact that

Xi=filV. Y1, Y1)

due to feedback.

« Equation (13) holds since P(Z®@ X =y | X =a)=P(Z =
y—x | X =ux).

+ Equation (14) follows from the fact that given V" and Y~ ', we
know all the previous transmitted letters X, X2,--+. X;—1 and
thus we can recover all the previous noise letters Z; = Y; — X,
(mod ¢) for j = 1,2,---,i — L.

+ Equation (15) follows from the fact that Z; and (V) Yl XY
are conditionally independent given Z -1

Hence

1
Pr< — — >
r{n 10g2 PY" 17,, | V) }

=Y PV =v) >

ynvp(Zn:yn_fn)SQ—n@
SRV =0

Z P(Z" =:")
>

2mP(Zn=z2m)<2 1B
i P(Zn=2n)<2— "8

Il

P(Z" =:").

il

Therefore, we obtain that

HY" |V)y=H(Z"). (17)

Thus from (7), (11), and (17) we conclude that

Crp < log, (¢) — H(Z") = Cnrs. (18)

But by definition of a feedback code, Crg > Cnrp since a
nonfeedback code is a special case of a feedback code. Thus we get
-H(z").

Crp = Cnrp = log, (q) (19)

]

Corollary 1: If the noise process is stationary, then its sup-entropy

rate is equal to the supremum over the entropies of almost every

ergodic component of the stationary noise [10]. Thus (19) reduces to
the formula derived by Parthasarathy [8] and Kieffer 7]

Cre = Cnrr = log, (q) — esse sup h(Zo)

where

* h(Zg) is the entropy rate of the 6 th ergodic component of the
stationary noise process

R(Zs) 2 lim %Hn(z;‘)

with

A

H(Zi) & = 3 PY(:")log, P (")

ineAn
» and the essential supremum is defined by
esso sup £(6) 2 inf[r: dG(f(8) < 1) =1]

where G is a probability measure defined on the event space of
O, the set of the ergodic components of the noise process.

4where the modulo ¢ difference between two vectors a®
and b = (by,---.b,) is defined as ™ — b"

=(a1.---.an)
A
=(ag —bi.---an —by).
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Corollary 2: If the noise process is stationary ergodic, then its
sup-entropy rate is equal to the entropy rate of the noise (by the
Shannon—-McMillan theorem). Thus (19) reduces to the familiar
expression of Shannon

. 1 T
Crp =Cnrp =log, () — r}g{; 'n-H(Z )

where H(Z") is the entropy of the noise vector Z".

Corollary 2 can be directly proven (in a similar way as for the
general case of arbitrary noise) using Fano's inequality [3]. Corollary
1 can also be proven using the Ergodic Decomposition Theorem for
stationary processes and the properties of averaged channels [3].

Observation: The reason why output feedback potentially in-
creases the capacity of additive nonwhite Gaussian channels [4] is be-
cause for continuous alphabet channels we have power constraints on
the input, which upon optimization may increase lim, —.. %H (Y™
(assuming, for example, that the noise is stationary-ergodic) when
feedback is used; while for discrete channels this quantity is up-
perbounded by log, (¢) and cannot be increased with feedback. In
particular for discrete additive channels, the output entropy rate
is equal to log, (¢) without feedback (symmetry property). It is
therefore suspected that feedback might increase the capacity of
discrete additive channels if we impose power constraints on the
input.’

IV. CONCLUSIONS

In this work, we considered a discrete additive noise channel with
output feedback. We showed that the capacity of the channel without
feedback equals its capacity with feedback. This was shown for
arbitrary additive noise processes.

In [2], 3], we introduce the notion of symmetric channels with
memory. These channels are obtained by combining an input process
with an arbitrary noise process that is independent of the input, and
possess the symmetry property defined earlier. We show that feedback
does not also increase the capacity-of these channels. Additive noise
channels belong to the class of symmetric channels. The effect of
feedback on the capacity of additive noise channels that are subject
to average cost constraints on their input sequences is also addressed
in [2], [3]. In this case, it is shown that the capacity—cost function
can be increased by feedback.

Future studies may involve the investigation of the capacity of
nonsymmetric channels with feedback, like the “AND” channel (the
multiplicative channel with alphabet {0, 1}) or the real adder channel.
It is conjectured that feedback does cause an increase in capacity for
such channels.
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New Bounds on the Information Rate
of Secret Sharing Schemes

Carlo Blundo, Alfredo De Santis, Member, IEEE,
Antonio Giorgio Gaggia, and Ugo Vaccaro

Abstract—A secret sharing scheme permits a secret to be shared among
participants in such a way that only qualified subsets of participants can
recover the secret, but any nonqualified subset has abselutely no infor-
mation on the secret. In this correspondence we derive new limitations
on the information rate of secret sharing sch that how
much information is being distributed as shares as compared to the size
of the secret key, and the average information rate, that is the ratio
between the secret size and the arithmetic mean of the size of the shares.
By applying the substitution technique, we are able to construct many
new examples of access structures where the information rate is bounded
away from 1. The substitution technique is a method to obtain a new
access structure by replacing a participant in a previous structure with
a new access structure.

Index Terms—Data security, cryptography, secret sharing, information
rate, entropy.

I. INTRODUCTION

A secret sharing scheme is a method to distribute a secret s among
a set of participants P in such a way that only qualified subsets of
P can reconstruct the value of s whereas any other (nonqualified)
subset of 7 cannot determine anything about the value of the secret.

Blakley [3] and Shamir [20] initiated the study of secret sharing
schemes, giving algorithm to realize (k, n) threshold schemes. A
(k. n) threshold scheme allows a secret to be shared among n
participants in such a way that any % of them can recover the

Manuscript received April 6, 1993; revised October 10, 1994.-This work
was partially supported by the Italian Ministry of University and Scientific
Research in the framework of the project “Algoritmi, Modelli di Calcolo
e Structure Informative” and by the National Council of Research. Part
of the work was performed while one of the authors (C. Blundo) was
visiting the Department of Computer Science and Engineering, University
of Nebraska—Lincoln.

The authors are with Dipartimento di Informatica ed Applicazioni, Univer-
sita di Salerno, 84081 Baronissi (SA), Italy.

IEEE Log Number 9408642,

0018-9448/95$04.00 © 1995 IEEE



