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MDS codes with large symbols developed in [3], [4] are ideally
suited to holographic recording. All this, possibly combined with two-
dimensional interleaving [2], provides an extremely powerful coding
scheme for holographic memory systems.
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Abstract— We consider maximum a posteriori (MAP) detection of ‘a
binary asymmetric Markov source transmitted over a binary Markoy
chanrel. Here, the MAP detector observes a long (but finite) sequence of
channel outputs and determines the most probable source sequence. In
some cases, the MAP detector can be implemented by simple rules such
as the “believe what you see’”” rule or the “guess zero (or one) regardless of
what you see” rule. We provide necessary and sufficient conditions under
which this is true. When these conditions are satisfied, the exact bit error
probability of the sequence MAP detector can be determined. We examine
in detail two special cases of the above source: i) binary independent and
identically distributed (i.i.d.) source and ii) binary symmetric Markov
source. In case i), our simulations show that the performance of the
MAP detector improves as the channel noise becomes more correlated.
Furthermore, a comparison of the proposed system with a (substantially
more complex) traditional tandem source-channel coding scheme portrays
superior performance for the proposed scheme at relatively high channel
bit error rates. In case ii), analytical as well as simulation results show
the existence of a “mismatch” between the source and the channel (the
performance degrades as the channel noise becomes more correlated).
This mismatch is reduced by the use of a simple rate-one convolutional
encoder.

Index Terms— Markov source, Markov channel, source redundancy,
MAP detection. :

I. INTRODUCTION AND MOTIVATION

A source with memory as well as a memoryless source with a
nonuniform distribution are sources with. redundancy. For a finite
alphabet of size J, a uniformly distributed independent and identically
distributed (i.i.d.) random process contains a maximal amount of
information and exhibits no redundancy. Its entropy rate is equal
to log,J bits/sample. The total redundancy a stationary ergodic J-
ary alphabet source {X,}52; possesses is equal to the difference
between log,J and its entropy rate Heo(X) [9]: pr = log,J —
H..(X), where

o(X) & lim lH(Xl,Xz,---,Xn).
n—oco 1, :
The redundancy may be attributed to the nonuniform source dis-
tribution or to the source memory (or both). More specifically,
we can write pr = pp + pm where pp = log,J — H(X:)
denotes the redundancy in the form of a nonuniform distribution and
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pm = H(X)) — Hoo(X) denotes the redundancy in the form of
memory [9]. ’

In many practical signal compression schemes, after some transfor-
mation, the transform coefficients are turned into bit streams (binary
source). Due to the suboptimality of the compression algorithm, the
bit stream might contain some redundancy (in the form of memory
and/or nonuniformity). This correspondence addresses the advantages
of using this redundancy in controlling channel noise.

The channel considered is a binary channel with additive noise
modeled according to a finite version of the Polya contagion urn
scheme [1]. The errors in this channel propagate in a fashion similar
to the spread of a contagious disease through a population; the
occurrence of each “unfavorable” event (i.e., an error) increases
the probability of future unfavorable events. The resulting noise
process is a stationary ergodic Markov process with memory order
M. The motivation for the use of such a channel is founded in the
fact that most real-world communication channels have memory;
this contagion-based model offers an interesting and less complex
alternative to the Gilbert model [5] and others [6].

We first investigate the problem of detecting a binary asymmetric
first-order Markov source (pp > 0 and pas > 0) transmitted across
the contagion Markov channel of order one (M = 1). Two maximum
a posteriori (MAP) formulations are considered: a sequence MAP
detection which involves a large delay, and an instantaneous MAP
detection which involves no delay. In sequence MAP detection, we
determine the most probable transmitted sequence or vector given
a received vector. In instantaneous MAP detection, we estimate
the most probable transmitted bit at a particular time given all the
received bits up to that time [10].

In general, the sequence MAP detector is implemented by the
Viterbi algorithm and the instantaneous MAP detector is implemented
recursively. However, in seme special cases, these implementations
are not necessary. For example, the optimal choice may be to
“believe what you see” (singlet decoding) or to always estimate
“zero” regardless of “what you see.” We say, in these cases, that MAP
detection is useless. In this correspondence, we provide necessary
and sufficient conditions under which the sequence MAP detector
is useless. These results are in the same spirit as previous results on
MAP detection of Markov sources over discrete memoryless channels
[3, [10]. :

Two special cases of the above asymmetric Markov source are
considered. In the first case, we consider a binary nonuniform i.i.d.
source (redundancy strictly in the form of nonuniform distribution,
pp > 0 and pys = 0). The above necessary and sufficient
conditions are simplified for this case. Simulation results which
confirm these theoretical conditions are given. We observe that the
performance of the MAP detector improves as the channel noise
becomes more correlated. We also show, via simulations, that for
channels with relatively high bit error rates, the performance of this
scheme (with low complexity) is superior to that of a traditional
tandem source—channel coding scheme where the source and channel
codes are separately designed with the assumption that the Markov
channel is rendered memoryless by means of an interleaver and
de-interleaver.

In the second case, we consider a binary symmetric Markov source
(redundancy strictly in the form of memory, pp = 0 and pas > 0).
Again, we simplify the necessary and sufficient conditions for the
uselessness of the sequence MAP detector. The simplified condition
predicts the existence of a mismatch between the binary symmetric
Markov source and the Markov channel. That is, unlike the first case,
the performance of the MAP detector degrades as the channel noise
becomes more correlated. This is illustrated by simulation results
for the sequence and instantaneous MAP detectors. We reduce the

Fig. 1. - Binary asymmetric Markov source model.

mismatch (which is significant for high values of the noise correlation
parameter) by the use of a sithple rate-one convolutional encoder,
where by rate one, we mean that the encoder outputs as many
bits as it accepts. The purpose of the convolutional encoder is to
convert the symmetric Markov source into a nonuniform i.i.d. random
process, by transforming its redundancy from the form of memory
into redundancy in the form of nonuniform distribution. Simulation
results showing considerable improvement by the use of this simple
code .are obtained.

1I. SOURCE AND CHANNEL MODELS

A. Source Model

Consider a stationary ergodic binary first-order Markov source
{Xn}nz1. Fig. 1 illustrates the Markov chain, where go € (0,1)
and ¢; € (0,1) are the probabilities of remaining in states “zero”
and “one,” respectively. Denote

Pz |2n—1) 2P{X, = an | Xno1 = a1}

and
P(x,) 2 Pr{Xn = 2.}

where zn,2zn—1 € {0,1}. It can be easily shown that
PO)=1-P1)=(1-q)/(2-gq —q)

Note that, in general, the Markov chain is asymmetric and the
source redundancy is in the form of memory as well as in the form
of a nonuniform distribution. We will be particularly interested in
two special cases of the above source.

* Special Case I: go = 1 — ¢ # 1/2. Here, the source becomes a
nonuniform i.i.d. source with distribution P(0) = go. The source
redundancy is strictly in the form of a nonuniform distribution
(ppr = 0 and pp > 0).

s Special Case 2: go = q1 # 1/2. Here, the source becomes a
symmetric Markov chain and the source redundancy is strictly
in the form of memory (pa > 0 and pp = 0).

We will investigate these two cases in Sections IV and V, respec-

tively.

B. Channel Model

The source {X, }72; is transmitted across a binary additive noise
channel described by

Yn =X n D Z n
where @ represents modulo-2 addition, Z,, is the channel noise, and

Y, is the channel output. The noise {Z,}3%, is assumed to be
independent of the source {X, }5=;. Furthermore, we assume that

{Z.}5Z: is generated by the finite-memory contagion urn model
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derived in [1]. According to this model, the noise process is an M th-
order Markov chain in which the noise sample Z, depends on the
past only through the sum of the previous M noise samples. More
specifically, for n > M

Pr{Zn = ].]Zn_M = Zp_ M,

M
5+6zzn~i

=1

1+ M6

3 Lp1 = Znﬁl}

where z,—; € {0,1} fori = 1,2,---, M. Here ¢ = Pr{Z, = 1}
is the channel bit error rate (BER) (we assume that 0 < € < 1 /2)
and 6 is an nonnegative parameter which determines the amount of
correlation in {Z, }5%;. The correlation coefficient of two adjacent
noise samples is §/(1 + §). Note that if § = 0, the noise process
becomes i.i.d. and the resulting additive noise channel becomes a
memoryless binary symmetric channel (BSC) with BER e.

We are particularly interested in the special case where M = 1
(the noise is a first-order Markov process). In this case, we denote

Q(2n | 2n=1) 2 Pr{Zy = 2 | Zn—1 = 2n 1}
and
Qzn) EPr{Zy = 2, ).
Note that

o) S| [RIE 5]

and Q(1) = € = 1 — Q(0). In this correspondence, all theoretical
results are given for this special case. However, some simulation
results will be given for M > 1.

III. MAP DETECTION OF ASYMMETRIC MARKOV SOURCES

We investigate the problem of optimal detection of the binary
asymmetric Markov source when it is transmitted across an additive
Markov channel of memory order one (M = 1). Two maximum a
posteriori (MAP) detection formulations are considered:

* A sequence MAP detection which involves a large delay and

minimizes the sequence probability of error.

* An instantaneous MAP detection which involves no delay and

minimizes the bit probability of error.

A. Sequence MAP Detection

Given that we observe Y™ = y™ = (y1,¥2, - ,¥a) at the output
of the channel,! we desire to determine the most probable transmitted
sequence I" where

" :_argznén(%ﬁ}n Pr{X" =z"|V" =y"}.

It can be easily shown (see [2], [10]) that the above is equivalent to

2" = argzng%é{ll}n — log (Q(Z1>P(.I1))
= > log(Qzk | 26—1) Plak | zx—1) O]
k=2 ) v
where z, = xp @y for k = 1,2,---,n. As expressed in (1),

the sequence MAP detector can be implemented using the Viterbi
algorithm [4]. We let {@x };—; be the state sequence. The trellis has
two states, with two branches leaving and entering each state: For

'In this correspondence, the superscript » denotes a vector of dimension
n. '

et W e e 20 e -

0 %

Fig. 2. Four regions for the parameters (go, ¢1) of the binary asymmetric
Markov source.

a branch leaving state xz5_, at time & — 1 and enterihg state @y -at
time k, the path metric is

—log (Q(yx @ 2 | yr—1 D @p—1) Pk | 25—1)).

The surviving path for each state is the path with the smallest
cumulative metric up to that state.

The sequence MAP detector involves a large delay since it needs
to observe the entire sequence y" at the output of the channel in-
order to estimate z1. For a given sequence length n, this detector
minimizes the sequence probability of error.

B. Instantaneous MAP Detection

Unlike the sequence MAP detector, the instantaneous MAP detec-
tor minimizes the bit probability of error. Furthermore, it carries no
delay; it decodes @, as soon as it observes y,. Here, the problem is
to determine the most probable transmitted bir &, where

Znp =arg max Pr{X,=z,/Y" =q¢y"
" gzne{o,l} {Xa ol v}

max Pr{X, =z, Y" =y"}.

= ar,
grnG{O,l} .

F (@) 2Pr{X, = 2, V" =y}

denote the objcctivé function that we wish to maximize at timfe instant
n. It is straightforward to show that f(")(qrn) can be determined
recursively according to (see [2], [10])

FP(@1) = Qv @ 1) P(ar)
f(n)(‘T'") = Z Q(yn Dy |yn—1 52 xn—l)

zpn_1€{0,1} :
'P(xnlx"‘l)f(n_l)(xn—l)v n=2,3,--.

Instantaneous MAP detection is also referred to in the literature
as MAP filtering.

C. Analytical Results for Sequence MAP Detection

In [10], it was observed that in some instances the output of the
MAP detector is identical to its input, i.e., X, = Y, for all n. In
such cases, we say that the MAP detector is “useless.” That is, the
MAP detector need not be implemented at all. In the following, we
provide necessary and sufficient conditions for the uselessness of the -
sequence’ MAP detector.

Recall that the pair (g0, ¢1) can take values anywhere on the square
(0,1) x (0,1). At this point, it is convenient to partition this square
into four regions, as shown in Fig. 2. We first consider Region I. The
other three regions will be considered subsequently.
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In the following theorem, we will need to assume that the first and
last transmitted bits are not affected by the channel noise. This is
known a priori by the MAP detector. Thus the MAP detector will
assume that the first and last bits are received without error. Any such

" restriction on these two bits will only have a diminishingly small
effect on the system performance as the sequence length becomes
large.

Theorem 1: Given o € [1,1), ¢1 € [1 = qo,90), € € (0,%],
6 >0, and n > 3, assume that Xy = Y; and X,, = Y,. Then

i) X" =Y"isan optimal sequence (MAP) detection rule if

(L—e+8) (1~ qo)(l q1)
e(l—¢) q2 21

2

and
1—€+62>1

e+6 qo ~ 3)

i) If (2) does not hold, then X” = Y” is not an optimal
sequence detection rule.

iii) If (3) does not hold, then 3 ng > 0 such that V n > np
X™ = Y™ is not an optimal sequence detection rule.

Proof: See Appendix L 0.

From the proof of this theorem, it ¢can be easily seen that if one
of the inequalities in (2) and (3) is strict then the sequence MAP
detector is unique and is given by X" =Y™. Inthe remaining part
of this correspondence, we will not emphasize this point since the
uniqueness of the MAP detector will be clear from the context.

Condition iii) can be refered to as an asymptotic “weak” converse
to i), since the counterexample we provided in proving it, utilizes

input and output sequences which yield a nontypical noise sequence
(i.e., the sequence can occur with low probability). If go = ¢1 = 1/2,

(2) and (3) always hold and the MAP detector is useless. This can
be clearly seen from the fact that in this case, the source becomes an
ii.d. uniformly distributed process, hence containing no redundancy.

In Region 11 (q; € (0, £], g0 € [g1,1~¢1]), an analogous theorem
can be proven. The necessary and sufficient conditions for Region
II are

(L1—e+6)° a
>1 4
-9 T-@d-a > @
and
1——6-}—64]1
B LN 5
e+6 qo ®

Note that (5) is identical to (3). For Region III, the conditions are the
same as (4) and (5) except that go and ¢; are interchanged. Finally,
for Region IV, the conditions are the same as (2) and (3) except that
go and g; are interchanged.

When P(0) is close to unity, a reasonable guess is to choose
X™ = 0" regardiess of the observations. The following theorem
prov1des necessary and sufficient conditions under which the rule
X" = 0" is optimal.® Here, we assume that the first and last
transmitted bits are zero.

Theorem 2: Given go € (0,1), ¢1 € (0,1), € € (0,3], § > 0,
and n > 3, assume that X, = X, = 0. Then

i) X™ = 0™ is an optimal sequence (MAP) detection rule if

€l —¢) %
(1—e+6)? (1—q0)(1—<n) ©

and
e+ 6 qo

I—e+b6q = @

2In this correspondence, 0™ denotes the all-zero n-tuple. Similarly, 17
denotes the all-one n-tuple.

Fig. 3. An example of the regions where sequence MAP detection is useless
with € = 0.2 and § = 1. In Region A, X™ = Y™ is optimal. In Region B,
X7 = 0" is optimal. In Region C, X™ = 1" is optimal.

i) If (6) does not hold, then X™ = 0™ is not an optimal sequence
detection rule.
iii) If (7) does not hold, then 3 no > 0 such that ¥ n > no

X™ = 0" is not an opumal sequence detection rule.

Proof: See Appendix II. 4
1t is interesting to note that conditions (6) and (7) are the converses
(with the exception of equality) of (2) and (3), respectively. Note
that Theorem 2 holds for all four regions in Fig. 2. However, in
Regions II and IV, (7) never holds if € < 1/2, and hence X = 0"
is never optimal for large n. This is because, in these regions,
P(0) < % and a better guess would be X™ = 1". The necessary
and sufficient conditions for the optimality of Xr=1" (assuming
that X; = X, = 1) are the same as (6) and (7) except that ¢o and
q1 are interchanged.

It is easier to understand the above theorems by examining (2)—(7)
graphically. - In Fig. 3 we plot, for the case € = 0.2 and § = 1,
the regions of the unit square where sequence MAP detection is
useless. In these regions, we know the bit error probability, é =
Pr{X # Xn}, exactly. In Region A (Xn=v" ), é=e€in chxon
B (){" =0"),é=P(1) = (1 ~q0)/(2 — go — ¢1); and in Region
CX"=1"),é=P0)=(1-aq)/(2~q - q).

For a fixed 6, as € decreases Region A expands while Regions B
and C shrink. This is consistent with our intuition. When the channel
is clean (small €), we would expect to use the singlet decoding rule
(X™ = Y™). When the channel is very noisy (large €), we would
expect to just guess X™ = 0™ or 1" depending on which one is more
probable. On the other hand, for a fixed ¢, as § increases, Region A
shrinks along the g1 = 1 — go axis but expands along the ¢1 = go
axis. This is a rather unexpected result and more will be said about
it in Section V.

The above two theorems are for the sequence MAP detector. We do
not give any theoretical result for the instantaneous MAP detector in
this correspondence. For the BSC (6 = 0), some results are given in
[3]. For the general case, we would conjecture that the instantaneous
MAP detector will be useless whenever the sequence MAP detector
is useless.

IV. SpeCIAL CASE 1: BINARY LILD. SOURCES
We next consider the case where the source transition distributions
go and g are such that go = 1 — q1 # 1/2 (the diagonal line
with slope —1 in Fig. 2). This results in a binary i.i.d. nonuniform
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Sequence MAP Detection (p=0.99)
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Fig. 4. Performance of sequence MAP detector for i.i.d. binary source with
p = 0.99 over the contagion Markov channel (M = 1). € = channel bit
error rate, ¢ = Pr {bit error}, and § = correlation parameter of the channel.

source with probability distribution P(0) = ¢o £ p. We will assume
without loss of generality that p > 1/2.

Using g0 =1 —¢q1 = p > 1/2 in (2) and (3), we obtain that (3)
-implies (2); this yields the following corollary of Theorem 1.

Corollary I: Given p € (3,1), ¢ € (0,3],6 > 0, and » > 3,
assume that X; = Y; and X, = V. Then

i) X" =Y" is an optimal sequence (MAP) detection rule if

1—e4+61—-p
—_— = > 1. 8
e+ 6 p ®
ii)- If (8) does not hold, then 3 no > 0 such that V n > ng
X™ =YY" is not an optimal sequence detection rule.

Remark: Expression (8) is equivalent to

l—€e—p
§<6 25 9
<hE T ©
which holds only if 1 — ¢ > p.
Similarly, we realize that (6) implies (7) if we assume that go =
1—¢; =p > 1/2. A corollary of Theorem 2 is therefore obtained.
Corollary 2: Given p € (%,1), €€ (0,4,6>0,andn > 3,
assume that X; = X,, = 0. Then X" = 0™ is an optimal sequence
(MAP) detection rule if and only if
€(l-¢) p > 1

(I—et621-p~ (19)

A. Simulation Results

In Figs. 4-7, simulation results for the sequence and instantaneous
MAP detectors are plotted. Each simulation was performed on 1000
samples of the i.i.d. source and the experiment was repeated 500
times. In Figs. 4-6, ¢ = Pr{X, # X,.} and the average values of
€ (over the 500 experiments) are plotted versus the channel bit error
rate €. The straight line labeled “w/o MAP” indicates the probability
of bit error when no MAP detection is performed (i.e., € = €). Fig. 7
shows the plot of the average value of ¢ versus the channel correlation
parameter §.

In Figs. 4 and 7, the performances of sequence MAP detection
for the iid source (with p = 0.99 and 0.95, respectively) over the
Markov channel (with M = 1), are presented. We can remark that,
in general, as 6§ increases, the performance of the MAP detector
improves (or at least it does not degrade). This is due to the fact

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 1, JANUARY 1996

Instantaneous MAP Detection (p=0.99)
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Fig. 5. Performance of instantancous MAP detector for i.i.d. binary source
with p = 0.99 over the contagion Markov channel (A = 1). e = channel bit
error rate, € = Pr{bit error}, and § = correlation parameter of the channel.

Sequence MAP Detection (p=0.95; §=1.0)
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Fig. 6. Performance of sequence MAP detector for i.i.d. binary source with
p = 0.95 over the contagion Markov channel of order M with § = 1.0. ¢ =
channel bit error rate and € = Pr {bit error}.

that as & increases, the noise correlation in the channel increases
(hence increasing the channel capacity) which enhances the detector’s
capability in estimating the transmitted sequence. It should be noted
that the more redundant the source is (i.e., the closer to one is p), the
better is the performance of the MAP detector. Additional simulation
results can be found in [2]. )

In Fig. 5, the performance of instantaneous MAP detection for the
i.i.d. source (with p = 0.99) over the Markov channel is presented.
The instantaneous MAP decoder behaves very much like the sequence
MAP detector, except that its performance is slightly inferior to the
later. This is because the instantaneous decoder admits no delay and
decodes bit by bit, while the sequence decoder observes an entire
vector before decoding it. Fig. 6 shows the effect of the order M
of the Markov channel on the performance of the sequence MAP
detection® for a source with p = 0.95 and a channel with-6 = 1.0,

3In the implementation of the sequence MAP detector, the state at time k&
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Sequence MAP Detection (p=0.95; €=0.01)
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Fig. 7. Performance of sequence MAP detector for i.i.d. binary source with
p = 0.95 over the contagion Markov channel (M = 1) with e = 0.01.
& = Pr{bit error}, and 6 = correlation parameter of the channel.

Here again, the performance improves as M increases, since the
channel capacity increases with the memory M.

The analytical results of Corollaries 1 and 2 are illustrated in
Figs. 4 and 7. Corollary 1 is illustrated in Fig. 7 where the perfor-
mance is given versus the values of §. With p = 0.95 and € = 0.01,
the sufficient range on 6 for which the MAP detector is useless (i.e.,
¢=¢=0.01),is 6§ < 6 =0.0444 = 107 "*. As we can note from
Fig. 7, the curve of ¢ diverges from the constant value of é = 1072
for a 6 slightly larger than 6;; this is because Corollary 1 offers
a sufficient condition and an asymptotic converse that relies on a
nontypical noise sequence; it thus has a low chance of occurring in
a simulation.

Furthermore, the simulations shown in Fig. 4 agree with Corollary
2. Corollary 2 offers a necessary and sufficient condition for which the
all-zero sequence is the optimal sequence. Note that (10) is equivalent
to

1
626(6)25[1-1—(1—]))(1—{—25)

— \/p2 —4p6(1 —p)(1 + 5):]

We plot in Fig. 4 the values of €%, ¢ and €2, Note that the
performance curves flatten out exactly at € = e(ﬂ. and € = 1 ~ p.
Finally, note that for § = 10, the all-zero sequence is never the
optimal sequence since (10) does not hold.

B. Comparison with Tandem Source—Channel Coding Schemes

The system we consider in this correspondence can be thought of
as a joint source—channel coding scheme. The MAP detector exploits
the inherent source redundancy to correct channel errors. We now
compare this system against a traditional tandem source—channel
coding scheme where the source and channel codes are. designed
separately.

The traditional approach to handling a channel with memory
is to use an interleaver and a de-interleaver. The purpose of the
interleaver and de-interleaver is to convert the channel with memory
into a memoryless channel. This is because most well-known channel
codes are designed for the memoryless channel. The tandem scheme

consists of the vector (2, Zg_1, "+, Tk p-1). Thus there are 2M states
with two branches entering and leaving each state.

Huffiman Conv. Inter-

Encoder Encoder leaver 1
Markov
Channel

Huff Viterbi De-inter- r

Decoder Decoder leaver .

Fig. 8. Block diagram of the tandem scheme.

MAP Detection Vs. Tandem (p=0.9; 6=10.0)

T T T T
= Tandem Scheme (L=100)

—-0.5 |- -
10 —e— Tandem Scheme (L=1)
—oe— Sequence MAP
10-' p = w/o MAP
10-15
~ 1072
€
10-2.5
10-3
10-38

L
107}

1
1g-0:8

0 10-3% 10-3 10725 1072 10718

Fig. 9. Comparisons of proposed sequence MAP detection system versus
Tandem source—channel coding system. Binary i.i.d. source with p = 0.9.
€ = Pr{bit error}, € = channel bit error rate, § = correlation parameter of
the channel, and L = interleaving length.

considered includes an interleaver/de-interleaver pair as it is depicted
in Fig. 8. It consists of the following:

¢ Huffman encoder: We assume that the i.i.d. source has distribu-

tion p = 0.9; thus its entropy rate is 0.469 bit/sample. Grouping
the source stream in blocks of 4 bits, we encode it using a
fourth-order Huffman code with average code length of 0.492
bits/sample.

* Convolutional encoder: We match the output of the Huffman

encoder to a convolutional encoder of rate —;— It has an input
memory of two and the following tap coefficients (1,0, 1) and
(1,1,1) [71. Its minimum free distance is equal to five.
Interleaver, Markov channel, de-interleaver, decoders: The in-
terleaver renders the channel memoryless; i.e., it transforms the
bursts of errors in the Markov channel into isolated errors and
thus enhances the error-correction capability of the convolutional
code. The interleaver size is I X L. The decoders used are,
respectively, an ML Viterbi decoder {41, (7] and a Huffman
decoder. ’
It is pertinent to point out that the complexity of the proposed
system is substantially lower than that of the tandem scheme: the
tandem scheme contains two decoders (Viterbi and Huffman), two
encoders, an interleaver and a de-interleaver, while the proposed
system contains only a MAP decoder. Furthermore, the use of the
interleaver/de-interleaver in the tandem scheme may lead to a larger
delay.

In Fig. 9, we compare the performance of the proposed scheme
using sequence MAP detection for p = 0.9 and 6 = 10, with
that of two tandem schemes with interleaving lengths L = 100 and
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L = 1 (no interleaving), respectively. We use the same interleaving
procedure as in [7]. The simulations were run 50 times on 10000
samples of the iid. source. We observe that the noninterleaved
tandem scheme (L = 1) behaves very badly; this is expected
because the convolutional code is designed for a memoryless channel,
and hence our need for interleaving. Indeed, the tandem scheme
using interleaving (with L = 100) performs much better than the
noninterleaved scheme.

More importantly, we remark that the proposed scheme outper-
forms the tandem scheme with L = 100. when the channel bit
error rate is high (¢ > 107%). The performance of the tandem
scheme is excellent for very low values of € (all simulation errors
are corrected for € < 10‘2). However, as the channel becomes more
noisy, the tandem scheme breaks down; this is due to the effect of
error propagation in the Huffman decoder. This suggests to us that
for noisy channels with memory at relatively high bit error rates
(e > 1072), the proposed system beats the tandem scheme while
being substantially less complex.

V. SPECIAL CASE 2: BINARY SYMMETRIC MARKOV SOURCES

In this section we consider the case where go = ¢1 = ¢ > 1/2
(the diagonal line with slope 1 in Fig. 2). This results in a binary
symmetric Markov source. With this new condition, Theorem 1 yields
the following corollary.

Corollary 3: Given ¢ € (%,1), e € (0, %], §>0,and n > 3,
assume that X; = Y and X,, = Y,.. Then X” = Y™, is an optimal
sequence (MAP) detection rule if and only if

(1—e+8)*/1—¢g\*
—_— | — > 1. 1
e(l—¢) q 21 an

Remark: Condition (11) is equivalent to
5> 6, 2 (1—3—6)\/6(1—6) +e—1. (12)

Observations:

¢ The above necessary and sufficient condition indicates that for
fixed € and ¢ (hence fixed 82 ), sequence MAP detection becomes
useless for sufficiently large 6 (cf. (12)). Thus the sequence
MAP detector performance will be no better than € = € even
though the noise is highly correlated. This shows that a mismatch
exists between the symmetric Markov source and the Markov
channel which prevents the MAP detector from exploiting th
noise correlation (see Section IV-A). :

* For ¢o = ¢1, Theorem 2 has no corollary since (7) never holds
(f € < 1/2). This can be indeed verified in Fig. 3; the line
go = q1 never intersects with Regions B and C which are the
respective regions for the all-zero and all-one sequences being
the optimal MAP solutions.

A, Simulatiorn Results

In Figs. 10 and 11, we present simulation results for the sequence
MAP detector. We performed each simulation on 1000 samples of
the symmetric Markov source and repeated the experiment 500 times.
We remark from the plots that the performance of the MAP detectors
deteriorates as the value of 6 increases and read a constant value
of é = ¢ for large 4. This is clearly illustrated in Fig. 11, where

" € increases as a function of & and then reaches a constant value
of é = ¢ = 0.01 (MAP is useless) at the point corresponding to
§ =6y = 0.9 = 107°% 45 given by Corollary 3.*

4We note that, contrary to our expectation, the curve in Fig. 11 is not
exactly a zero slope straight line for § > d2; this may be due to some slight
inaccuracies in the simulation.

Sequence MAP Detection (g=0.99)

T T 1 1 T 1

10—0.5 - 72 ..‘
w—— w/0 MAP
jo-r L T =05 R
—e— §=1.0
—hr— §=2.0
10~ | —e— §=10.0 -
~ 1072 -
€
10-2.5 E4
lo—l -
J
0 &, 1 TR R
0 10-%% 10-3 10-25 102 10-'% 10-! 10708
€

Fig. 10. Performance of sequence MAP detector for binary symmetric
Markov source with ¢ = 0.99 over the contagion Markov channel (M = 1).
€ = channel bit error rate, &€ = Pr {bit error}, and § = correlation parameter
of the channel. .

Sequence MAP Detection (¢=0.95; e=0.01)

T T

10-20 [-

‘0—2.2 .

10—2.-1 - .

€

10—2.6 — _

10—2.8 — -

16-390 + b2 -
Ly 1 1 1 Il 1
0 1073 10-2 107t 100 10!

Fig. 11. Performance of sequence MAP detector for binary symmetric
Markov source with ¢ = 0.950ver the contagion Markov channel (M ='1)
with € = 0.01. & = Pr{bit error}, and § = correlation parameter of the
channel.

B. Rate-One Convolutional Encoding

If we directly connect a binary symmetric Markov source to the
Markov channel, a mismatch occurs between the source and channel
as the correlation parameter ‘6 increases. In this section, we atternpt
to reduce this mismatch by the use of a rate-one convolutional code.
More specifically, we attempt to improve the performance of the
sequence: MAP detector for high values of 6. This is achieved by
the use of a simple rate-one convolutional code, where by rate-one
we mean that the convolutional encoder produces as many bits as
it receives. The purpose of this code is not to introduce additional
redundancy but to transform the redundancy in the symmetric Markov
source from the form of memory into redundancy in the form of
nonuniform distribution. This is because, if the source redundancy
is in the form of nonuniform distribution, no such mismatch occurs
between the source and the channel, as seen in Section IV.
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Coded Vs. Uncoded (¢=0.99; §=10)

T T T T T T T T
10-0.5 . A
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€ .
10-25 .
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10-35 F B
~
o, 4 | 1 I 1 1 1]
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€

Fig. 12. Performance of the coded system with sequence MAP detection for
binary symmetric Markov source with ¢ = 0.99 over the contagion Markov
channel (M = 1) with § = 10. & = Pr{bit error}, ¢ = channel bit error
rate, and § = correlation parameter of the channel.

We employ a rate-one convolutional code described by V,, =
Xn®Xn-1,n=1,2,---, where {X, }52, is the symmetric Markov
source studied in this section and {V, }s2, represents the output of
the convolutional encoder. We assume that Xo = 0 almost surely; that
is Vi = X;. It can be easily checked that {V,, } is a nonuniform binary
i.i.d. process with distribution given by Pr{Vix = 0} = ¢ > 1/2.

The new system functions as follows. A sequence of N samples
of the symmetric Markov source X N is fed into the rate-one
convolutional encoder. The output of the encoder is then sent over
the Markov channel. At the receiver, we use the sequence MAP
detector which estimates the most likely transmitted sequence vy
The convolutional decoder is described by Xip = Vi & Xi_1,
k=12,.---,N with X1 = Vl. We therefore obtain X*. Note,
however, that decoding errors in the MAP sequence detector cause
error propagations in the convolutional decoder. We limit the effect of
the propagation by grouping the IV source samples into small blocks
of length n.

The performance of this system for ¢ = 0.99 and 6 = 10 is
shown in Fig. 12. We performed the simulations on N = 500000
source samples with N = n-T where T is the number of trials
and n is the number of source samples transmitted per trial. The
results clearly indicate that the coded system outperforms the uncoded
system. Furthermore, for large e, the performance of the coded system
improves as n decreases, as expected, since for small n the effect of
the error propagation in the convolutional decoder is limited.

VI. CONCLUSION

. In this correspondence, we considered the MAP detection problems
(sequence and instantaneous) of a source with an inherent redundancy
transmitted over a discrete channel with additive Markov noise. The
proposed MAP detectors exploit the source redundancy in order to
combat channel errors. The problem was investigated for three cases:
i) asymmetric Markov - source, ii) nonuniform i.i.d. source, and iii)
symmetric Markov source.” Analytical results giving conditions for
the uselessness of the sequence MAP detector’ as well as simulation
results were presented. For the case of the nonuniform i.i.d. source,
we showed that, for certain source and channel parameters, the
proposed simple system beats a traditional tandem source—channel
coding scheme for high channel bit error rates. A mismatch was

established for case iii) between the source and the channel. This
mismatch was reduced for high values of the channel correlation
parameter by the use of a rate-one convolutional encoder.

Applications of the MAP detection problem in a combined
source—channel coding system are investigated in [8]. Future work
may consist of comparing the results above to those obtained by
detecting sources over the Gilbert channel with applications to
digital cellular channels.

APPENDIX 1

In this appendix, we prove Theorem 1. First, we need to prove
the following lemma which provides a lower bound on the ratio of
probabilities of two binary-sequences which agree on the first and
last bits but disagree everywhere else.

Lemma l: Let g0 € [3,1), @1 € [1 — qo,q], and L > 2.

Assume that z§ = (20,21, -+, 2L) (0,1,1,--+,1,0). Then
vyt e {o,1}
Plyelye—r) o 1—g0)(1—q1) (9_1>L_2 (13)
= 2
- Pz | 2e-1) ¢ )
where 25 = & @y, P(0|0) = go, P(1|0) =1 — g0, P(0|1) =

1— g and P(1|1) = ¢1.

Proof: Write
Plyr | yr—1)
H P(wk|xk 1)
P(y1 | yo P(yi\ye—1) | [Plyr |yr-1)
[P(yxlyo)] HP(yklyk—l) [P(yLI.?L—l)}

where the overbar denotes the binary complement. Note that when
L =2 )
_ Py |yo) P(yz|y1)
P(F1y0) P(y2|91)
the minimum value of which is
- qO)(l —a)
(Io
Thus we may assume w.lLo.g. that L > 2. Now partition the set
K = {2,3,---,L — 1} as follows:
K=Kow U Ko1 U K10 U K11
where
Kab ES {k EK:yk—1=a,yx =b}a a,b € {071}-

We then rewrite s as

. {P(yl lyo) Plyr |:UL—1)]
P(§1|yo) Plyr|gr—1)

y ﬂ}lnul—mool l:l _ qoillKoﬂ‘VClo\
0 l-q )

The first factor in the right-hand side of (14) is defined as u.

14

Case 1: y» = yr—1

Consider the sequence (y1,y2,-*+,yr—1). For every transition
from O to 1, there is a corresponding transition from 1 to 0 (because
y1 = yr—1). Thus |Ko1| = |K1o|- Also, note that |Koo| > 0 and
|K11] < |K] = L — 2. Furthermore, the minimum value of « in this
case is

(- qo)(l - fh)
a3
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Hence

s = a)(l-g) (q_r)“,

a3 g0

Case 2: y1 = 0,yr—1 =1

Here, the minimum value of u is

(1—q)®
qoq1
Also, |Ko1| > 1,v|]C10| = |Ko1| = 1, |Koo| > 0, and K1) < L-3.
Thus
o= [t (o] i)
- qoq 4o l-q

[
[y

Case 3: y1 = 1,yp—1 = 0

The minimum value of u is

(1—q0)®
goqi
Also, [K1of > 1, [Ko1| = |K1o] — 1, liCool 20, and [Ky1| < L -3.
Thus
el ey
Tl qn %o 11-q
_ {Mﬁ} HH
goq1 qo
S {U_—q_o&ﬂ_l)} (q_l)H_
- 5 qo
This completes the proof of the lemma. O

Proof of Theorem 1:
then V"

i) We need to show that if (2) and (3) hold,
4" € {0,1}" with 21y = y1 and 2z, = yn

Pr{X"=2an|Y" =y} =

o

We can rewrite « as
po Y =yt [ X =y P (X" = )
Pr{Y" =y | X" =27} Pr{X" = z"}

[Q(O } H Q(0]0)  P(yx]yr—1)
Q(ZI)PSCI) sz|2k_1)P(a:k]xk_1)

where 2y = 24 Dy, k = 1,2,-- -, n. Note that the first factor above
is unity since x1 = y;. Deﬁmng Qzx | 2um1) 2 (1+6)Q(zx | z£-1),

(ie. QO[0) =1—¢c+6 Q0O[1) =1—¢ Q(1]0) = ¢, and
Q(1]1) = €+ 6), we get
[ 1-c+6 P(yk|yk—1)}
]:‘[|:Q(2k‘zk 1) Plaeelze-1) |

We partition the index set as follows:
K={2,3,...,n}
AE{k €K ap = yb,2x-1 = yr_1}
B2A ={keK: kg A ={keK:zx=1o0rz_; =1}

Thus

o=

1-e+8  Plyr|ye-1)
kg«t [Q(Zk | 25—1) Plax ka_l)}

I P(yklyk—l)}

[ 1—e+46
keB Q'(Zklzk—l) Plak [2e-1)]

By definition of A, the product over A is umty We next partition
B as follows

B= U Bi;
=1

where

175.77 Lwi=1,2,---,N

&ﬂ&:@

Bi = {mi+1,m; +v2,"',mi+Lz’}

Zm; = Zmg+L; =0
Zmi+l = Zmg42 = 00 = Zmy4L, -1 = 1
with N denoting- the number of partitions and L; denoting the
cardinality of B; (L; = |B;|). )
To illustrate the partition above, consider for n = 24 the noise
sequence
= (000111001100001111_010000).
Then ,
B=1{4,5,6,7,9,10,11,15, 16,17,18,19,20,21}
and its partitioning sets are By = {4,5,6,7}, B, = {9,10,11},
= {15,16,17,18,19}, and By = {20,21}. Here N = 4,
Ly =4, Ly =3, Ly =5, and Ly = 2 We mention that this
method of partitioning is possible because of the assumptlon that
21 = Zp = 0.
Thus « can be written as

N
a:Hai
=1

where
om T [t Halua))
ko1 LQ(zk | zk1) Plzk | 2r-1)
[ —e+82][1—c4 5752
Tl oel—¢) e+46
mi+L;
T Pyl yen)
A C L)
since

(Zmiv Zmi4ls Zmg4+2, 0y Zmy+ Ly — 1, Zmi+L1) = (07 1,1,---

,1,0).
Applying Lemma 1 yields ‘

(I—e+68)% (1—q0)(1—q1) l—os+c’5q_1Li"Z
e(l—¢) @ e+6  qo

>1

where the last inequality follows by hypothesis. Hence

N
o = Ha; > L
=1

ii) Suppose that (2) does not hold. Take y™ =

(0,0, -+-, 0,1,
07...’0) and 2™ = (0,0,,0) Then
[1—e+61—qu1—6+5l—ql
o= <1..
] € qo 1—¢ qdo
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iii) Suppose that (3) does not hold. Let y” = (0,1,1,---,1) and
" = (0,0,---,0,1). Then
_ [1—6+51—qg 1—6+'6g_1]"—3[1—6+6 qr }
' € q e+6 qo l—€¢ 1—q |
Then for n sufficiently large « < 1. O
ApPPENDIX I

In this appendix, we prove Theorem 2. The proof is similar to the
proof of Theorem 1 and thus we only give its outline. We will use
the following lemma which is analogous to Lemma 1.

Lemma 2: Lete € (0,3], 6 > 0, and L > 2. Assume that

@y = (20,71, ,21) = (0,1,1,---,1,0).

Then V g € {0,1}1+

o Qyk | yi—) > e(l—e) ( e+6 )L_z
i Qe lzkey) — (L—e+8)2\1—€+6
where 28 = z§ @ v, Q(OIO) 1—¢€¢+34, Q(1|0) = e
QO1) =1—¢ and Q(1]1) = e+ 6.
Proof: The proof of this lemma follows exactly the same line
of reasoning as the proof of Lemma 1. We will omit it for the sake
of brevity.

Proof of Theorem 2: i) We need to show that if (6) and (7) hold,
then Vz",y™ € {0,1}" with 2y = 2, =0

Pr{X"» =g |Y" =y"} =

(15)

We can rewrite 3 as

_ Qyr |yr—1)  P(0]0)
B= kIE—{" [Q(Zklzk_l) P(wk[xlc—l)}

wherezk_ack@ykandl? {k€eK:z,=1orzi_1 =1}. We

now partition B3 as before and write

N
/@=Hﬁi

where
;—2 | mi+Li =
6= { a } [q_or’ ’ Quk | yr-1)
1-q)1-qg)]|ln kemrp1 Qx| 2e1)
since
(mmiv Tm;+1y Tm+25 s Tmy+Li~1 -'Emi+L,-) = (Ov 15 17 ) 17 0)
Applying Lemma 2 yields
5 e(l—¢) 7 }[ €+6 @]L"_Z 1
T -e+8)2(1-gq)(l-q)]|l-e+bm
where the last inequality follows by hypothesis. Hence
N .
p=1[s>1
i=1
ii) Use y™ = (0,0,--+,0,1,0,---,0) = =™ as a counterexample.

iii) Use y™ = (0,1,1,---,1,0) = 2™ = as a counterexample.
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Simple Universal Lossy Data Compression Schemes
Derived from the Lempel-Ziv Algorithm

En-hui Yang and John C. Kieffer, Fellow, IEEE

Abstract— Two universal lossy data compression schemes, one with
fixed rate and the other with fixed distortion, -are presented, based on
the well-known Lempel-Ziv algorithm. In the case of fixed rate R, our
universal lossy data compression scheme works as follows: first pick a
codebook B,, consisting of all reproduction sequences of length » whose
Lempel-Ziv codeword length is < nR, and then use B, to encode
the entire source sequence n-block by n-block. This fixed-rate data
compression scheme is universal in the sense that for any stationary,
ergodic source or for any individual sequence, the sample distortion
performance as n — oo is given almost surely by the distortion rate
function. A similar result is shown in the context of fixed distortion lossy
source coding. :

Index Terms— Universal lossy data compression, Lempel-Ziv algo-
rithm, stationary sources, individual sequences.

1. INTRODUCTION

Universal source coding theory [6], [13], [18], [28] aims at
designing a sequence of codes, whose performance is asymptoticaily
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