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Capacity of Burst Noise-Erasure Channels With
and Without Feedback and Input Cost

Lin Song, Fady Alajaji , Senior Member, IEEE, and Tamás Linder , Fellow, IEEE

Abstract— A class of burst noise-erasure channels which incor-
porate both errors and erasures during transmission is studied.
The channel, whose output is explicitly expressed in terms of its
input and a stationary ergodic noise-erasure process, is shown
to have a so-called “quasi-symmetry” property under certain
invertibility conditions. As a result, it is proved that a uniformly
distributed input process maximizes the channel’s block mutual
information, resulting in a closed-form formula for its non-
feedback capacity in terms of the noise-erasure entropy rate
and the entropy rate of an auxiliary erasure process. The
feedback channel capacity is also characterized, showing that
the feedback does not increase capacity and generalizing prior
related results. The capacity-cost function of the channel with and
without feedback is next investigated. A sequence of finite-letter
upper bounds for the capacity-cost function without feedback is
derived. Finite-letter lower bonds for the capacity-cost function
with feedback are obtained using a specific encoding rule.
Based on these bounds, it is demonstrated both numerically and
analytically that feedback can increase the capacity-cost function
for a class of channels with Markov noise-erasure processes.

Index Terms— Channels with burst errors and erasures, chan-
nels with memory, channel symmetry, non-feedback and feedback
capacities, non-feedback and feedback capacity-cost functions,
input cost constraints, stationary ergodic and Markov processes.

I. INTRODUCTION

THE stationary memoryless binary erasure channel (BEC)
and the binary symmetric channel (BSC) play fundamen-

tal roles in information theory, since they model two types
of common channel distortions in digital communications.
In a BEC, at each time instance, the transmitter sends a bit
(0 or 1) and the receiver either gets the bit correctly or as
an erasure denoted by the symbol “e.” The BEC models
communication systems where signals are either transmitted
noiselessly or lost. The loss may be caused by packet col-
lisions, buffer overflows, excessive delay, or corrupted data.
In a BSC, the transmitter similarly sends a bit, but the receiver
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obtains it either correctly or flipped. The BSC is a standard
model for binary communication systems with noise. For
example, in a memoryless additive Gaussian noise channel
used with antipodal signaling and hard-decision demodulation,
when the noise level is high, a decision error may occur
at the receiver which is characterized by flipping the trans-
mitted bit in the system’s BSC representation. As opposed
to the BSC, the BEC is, in a sense, noiseless. However in
realistic systems, erasures and errors usually co-exist and
often occur in bursts due to their time-correlated statistical
behavior. In this paper, we introduce the q-ary noise-erasure
channel (NEC) with memory which incorporates both era-
sures and noise. This model, which subsumes both the BEC
and the BSC, as well as their extensions with non-binary
alphabets and memory, provides a useful model for real-world
channels, where data packets can be corrupted or dropped
in a bursty fashion. Such channels include wireless systems
where the receiver can identify deep fades and designate
them as erasure bursts (while less detrimental fades are
treated as regular error-prone transmissions), hybrid internet-
wireless communications and magnetic storage and recording
devices [2]–[4].

A. The Burst Erasure and Additive Noise Channels

Given integer q ≥ 2, let Xi ∈ X = {0, 1, 2, .., q − 1} � Q
denote the channel input at time i and Yi ∈ Y = Q∪{e} denote
the corresponding channel output (we assume throughout that
e �∈ Q). For the general q-ary burst erasure channel (EC),
the input-output relationship can be expressed by

Yi = Xi · 1{Z̃i �= e} + e · 1{Z̃i = e}, for i = 1, 2, . . . ,

where {Z̃i }∞i=1 is a correlated erasure process (which is inde-
pendent of the message conveyed by the input sequence) with
alphabet {0, e}, 1(·) is the indicator function, and by definition
a + 0 = a, a · 0 = 0, and a · 1 = a for all a ∈ Q ∪ {e}.
When {Z̃i}∞i=1 is stationary memoryless (i.e., independent and
identically distributed) and q = 2, the channel reduces to
the BEC. The above burst EC also includes the Gilbert-
Elliott erasure model (e.g., [5]–[7]) as a special instance.
In this case, the erasure process {Z̃i } is a hidden Markov
source driven by a two-state Markov chain according to
the well-known Gilbert-Elliott model [8]–[10] (where each
state is governed by a BEC). The performance of coding
techniques for burst ECs has been extensively studied; see
for example [2], [4]–[7], [11]–[13] and the references therein.
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Channel capacity studies include [14] and [15], where the
feedback and non-feedback capacities of BECs with no-
consecutive-ones at the input were respectively investigated.
Furthermore, explicit computations of the feedback and non-
feedback capacities of energy harvesting BECs were given
in [16], where it was shown that feedback increases the
capacity of such channels.

A discrete q-ary additive noise channel (ANC) with memory
has identical input and output alphabets X = Y = Q and
is described as Yi = Xi ⊕q Zi for i = 1, 2, · · · , where
{Zi }∞i=1 is a q-ary correlated noise process (that is independent
of the input message) and ⊕q denotes modulo-q addition.
The BSC is a special case of the ANC: when {Zi }∞i=1 is
binary-valued and memoryless, the ANC reduces to the BSC.
Furthermore, the Gilbert-Elliott burst noise channel [8]–[10]
(whose states are each governed by a BSC) and the more
recent infinite and finite-memory Polya contagion channel [17]
and its queue-based variation [18] are interesting instances
of the ANC, which have been used to model time-correlated
fading channels (e.g., see [19], [20] and related work). In [21],
it was shown that feedback does not increase the capacity of
ANCs with arbitrary noise memory. In particular, denoting
the capacity with and without feedback by CANC

F B and CANC,
respectively, it is proved in [21] that CANC = CANC

F B =
log q − Hsp(Z), where H sp(Z) denotes the spectral sup-
entropy rate [22], [23] of the noise process Z = {Zi }∞i=1. The
result of [21], which can also be proved for a larger class of
channels [24], was recently extended in [25] to the family of
compound channels with additive noise. Furthermore, it was
shown in [26] that feedback can increase the capacity-cost
function of an ANC with Markov noise.

B. NEC Model: A Burst Channel for Both Errors and
Erasures

In this paper, we consider the NEC, a channel with both
burst erasures and errors whose output Yi ∈ Y = Q ∪ {e} at
time i is given by

Yi = h(Xi , Zi ) · 1{Zi �= e} + e · 1{Zi = e} � θ(Xi , Zi ) (1)

where Xi ∈ X = Q is the input, {Zi }n
i=1 � Z is a noise-

erasure process with alphabet Z = {0, . . . , q � − 1} ∪ {e} �
Q� ∪ {e}, 1 ≤ q � ≤ q , which is independent of the input
message, and h : Q × Q� → Q is a deterministic function.
Note that strictly speaking, h(xi , zi ) is undefined when zi = e.
However, since 1{zi �= e} = 0 when zi = e, this is remedied
by setting the product of an undefined quantity and zero as
equal to zero. Indeed, (1) means that

Yi =
�

h(Xi , Zi ), if Zi �= e,

e, if Zi = e.

Setting q � = 1 and h(x, z) = x for all z ∈ Z , reduces the
NEC to the EC. Setting q � = q , h(x, z) = x ⊕q z, and
PZi (e) = 0, turns the NEC into the ANC. Also, a Gilbert-
Elliott burst model combining (in general non-binary) errors
with erasures is an example of an NEC (in such model,
each state is governed by a memoryless channel whose inputs
can be received in error or erased). Finally, we note that

the NEC resembles the cascade channel of [4], where its
non-feedback capacity is derived and its performance under
low-density parity-check coding is analyzed. This cascade
channel is motivated by magnetic data storage systems and
it consists of a concatenation of an indecomposable finite-
state channel with a burst erasure channel where symbols
are erased consecutively in each output sequence. The NEC
differs from the cascade model of [4] in a number of aspects,
including the fact that the NEC is governed via an explicit
input-output functional relationship in terms of a single noise-
erasure process as given in (1) without requiring consecutive
erasures in the output sequences while the cascade model has
independent error and erasure processes emanating from its
separate channel components.

We study the non-feedback and feedback capacities and
capacity-cost functions of the NEC under certain invertibility
conditions on the function h in (1). The class of NECs
satisfying these conditions readily include the ANC, the EC,
the discrete symmetric channel of [24] (with identical input,
noise and output alphabets) and the following channel which
differs significantly from the latter three channels.

Data Storage Channel: This channel is described by (1)
where we set q � = 2, q to be a power of 2, and the function
h(·, ·) to be

h(x, z) = x · 1{z = 0} + (q − 1 − x) · 1{z = 1}. (2)

This channel can model storage devices with errors and
erasures where the data is stored in binary form, using a
natural binary code (NBC) of length log2 q bits. When z = e,
an erasure occurs. In the non-erasure mode, if z = 0, no error
occurs and the storage device returns x perfectly, and if
z = 1, a hard failure occurs causing the storage device to flip
all the NBC bits representing x , which is equivalent to the
operation q − 1 − x .

In general, the capacity of well-behaving channels with
memory (such as stationary information stable channels)
is given as the limit of the n-fold mutual informa-
tion sequence [22], [27]–[29], while the feedback capac-
ity is expressed via the limit of the n-fold directed
information [30]–[34]. For some special cases, single-letter
expressions or exact values of such capacities can be obtained.
Examples of channels where the feedback capacity is explicitly
determined include the ANC [21], the finite-state channel with
states known at both transmitter and receiver [35], the trapdoor
channel [36], the Ising channel [37], the symmetric finite-state
Markov channel [38], and the BEC [14] and the binary-input
binary-output channel [39] with both channels subjected to a
no consecutive ones input constraint.

C. Contributions

In this paper, we introduce an auxiliary erasure process
{Z̃i}∞i=1 � Z̃, a binary process defined via the noise-erasure
process Z = {Zi }∞i=1, and we prove that the non-feedback
capacity of the NEC with a stationary ergodic noise-erasure
process is given by (1−ε) log q−[H̄(Z)− H̄(Z̃)] (Theorem 1),
where H̄(·) denotes entropy rate and ε = PZi (e) is the
probability of an erasure which is defined in Section III.
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The proof consists of showing, via two intermediate lemmas
(Lemmas 7 and 8) that make use of the structure of the
channel function h in (1), that the n-fold NEC is quasi-
symmetric (as per Definition 6) and hence its n-fold mutual
information is maximized by a uniformly distributed input
process. The derived NEC capacity formula recovers the
capacity expressions of the ANC and the EC, when the NEC
is specialized to the latter channels. We briefly explore the
calculation of the capacity for Markov noise-erasure processes.
We further show that, unlike the EC, for which memory in the
erasure process does not increase capacity (e.g., see [5], [11]),
the capacity of the NEC is strictly larger than the capac-
ity of its memoryless counterpart (i.e., a channel with a
memoryless noise-erasure process with identical marginal
distribution as the NEC’s stationary ergodic noise-erasure
process) for non-trivial correlated noise-erasure processes such
as non-degenerate stationary, irreducible and aperiodic Markov
processes. We also investigate the NEC with ideal output
feedback. We prove a converse for the feedback capacity
and show that the feedback capacity coincides with the non-
feedback capacity (Theorem 2). This shows that feedback does
not increase the capacity of the NEC and generalizes the
feedback capacity results of [21] and [24].

The capacity-cost functions of the NEC with and without
feedback is next investigated. We establish a sequence of
finite letter upper bounds on the capacity-cost function without
feedback (Theorem 3) and a sequence of finite letter lower
bounds on the capacity-cost function with feedback based on a
constructive feedback encoding rule and an achievability result
(Theorem 4). For a class of NECs with stationary irreducible
and aperiodic Markov noise-erasure processes with transition
probability matrices satisfying some uniformity conditions
for one of their rows and for the column corresponding to
the erasure state, we prove that feedback does increase the
capacity-cost function in a certain cost range (Theorem 5).
This result, which generalizes a similar result in [26] for the
ANC, is further demonstrated to hold for more general NECs
by numerically comparing the lower bound of the capacity-cost
function with feedback and the upper bound of the capacity-
cost function without feedback. Finally, we point out that the
proof techniques of this paper are significant extensions of the
methods used for the ANC in the derivation of the feedback
capacity [21] and the study of the capacity-cost function with
and without feedback [26]. We note that, in addition to allow-
ing for erased output symbols, the NEC can significantly differ
from the ANC as its noise alphabet can be much smaller than
the input alphabet (e.g., see the data storage example in (2)).
Furthermore, while the ANC is symmetric [45], the NEC
satisfies a considerably weaker notion of symmetry, quasi-
symmetry. These differences necessitate a technically more
sophisticated approach for proving the capacity results.

The rest of this paper is organized as follows. We first
provide preliminary results in Section II. In Section III,
we present the invertibility properties imposed on the NEC
and derive the NEC non-feedback capacity. We also examine
the calculation of the capacity expression under Markov noise-
erasure processes and the effect of memory on the NEC
capacity. In Section IV, we study the feedback capacity of the

NEC and show that feedback does not increase capacity. We
investigate the NEC capacity-cost functions with and without
feedback in Sections V and VI, respectively. We conclude the
paper in Section VII.

II. PRELIMINARIES

A. Non-Feedback/Feedback Channel Capacity and
Capacity-Cost Function

We use capital letters such as X, Y , and Z to denote
random variables and the corresponding script letters X , Y ,
and Z to denote their alphabets. The distribution of X is
denoted by PX , where the subscript may be omitted if there
is no ambiguity. In this paper, all random variables have
finite alphabets. A channel W with input alphabet X and
output alphabet Y is statistically modeled as a sequence of
conditional distributions W = {W n(·|·)}∞n=1, where W n(·|xn)
is a probability distribution on Yn for every xn ∈ X n , which
we call the n-fold channel of W . Finally, let Xn and Y n denote
the n-fold channel’s input and output sequences, respectively,
where Xn = (X1, X2, . . . , Xn) and Y n = (Y1, Y2, . . . , Yn).

Definition 1: A feedback channel code with block length n
and rate R ≥ 0 consists of a sequence of encoding functions
f (n)
i : M × Y i−1 → X for i = 1, . . . , n and a decoder

g(n) : Yn → M, where M = {1, 2, . . . , 2nR} is the message
set.

When there is no feedback, the sequence of encoders
simplifies to the sequence f (n) : M → X n of encoders
whose domain is just the message set. The encoder con-
veys message M , which is uniformly distributed over M,
by sending the sequence Xn over the channel which in turn
is received as Y n at the receiver. For the non-feedback case,
Xn = f (n)(M), while for the feedback case, the encoder
takes into account the previously received channel outputs and
sends Xi = f (n)

i (M, Y i−1) for i = 1, · · · , n. Upon estimating
the sent message via g(n)(Y n), the resulting decoding error
probability is P(n)

e = Pr(g(n)(Y n) �= M).
In general, the use of the channel is not free. For example,

a binary on-off keyed physical channel emits a pulse signal
when sending the bit 1 (which requires a certain expenditure of
energy) and stays idle (using no energy) when sending the bit 0
(e.g., [40]); this results in different cost constraints on the input
alphabet of the equivalent discrete channel. Let b : X → R

be a cost function and define the cost of an input n-tuple xn

as b(xn) =�n
i=1 b(xi) [41].

Definition 2: A channel code with block length n and rate
R for the n-fold channel of W is β-admissible if b(xn) ≤ nβ
for all codewords xn in the codebook C which, when there is
no feedback, is given by

C =
�

xn ∈ X n : xn = f (n)(m) for some m ∈ M
�

,

while, when there is feedback, is given by

C =
�

xn ∈ X n : xi = f (n)
i (m, yi−1), i = 1, . . . , n,

m ∈ M, yn ∈ Yn, W n(yn|xn) �= 0
�
.

Definition 3: The feedback capacity-cost function of a
channel, denoted by CF B(β), is the supremum of all rates R
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for which there exists a sequence of β-admissible feedback
channel codes with block length n and rate R, such that
limn→∞ P(n)

e = 0.
The non-feedback capacity-cost function, feedback capacity,
and non-feedback capacity are defined similarly and are
denoted by C(β), CF B , and C , respectively. When there is
no cost constraint, or equivalently β = ∞, the capacity-cost
function (with or without feedback) reduces to the capacity
(with or without feedback).

Recall that the channel W is memoryless if W n(yn|xn) =
�n

i=1W 1(yi |xi) for all n ≥ 1, xn ∈ X n and yn ∈ Yn , when
there is no feedback. Thus, a memoryless channel is defined
by its input alphabet X , output alphabet Y , and transition
probabilities W 1(y|x), x ∈ X and y ∈ Y . For memoryless
channels, the superscript “1” is usually omitted. Shannon’s
channel coding theorem [42] establishes that

C = max
PX

I (X; Y ) (3)

for memoryless channels, where I (X; Y ) is the mutual infor-
mation between X and Y . This coding theorem can be
extended to show that (e.g., see [22], [27]–[29], [43])

C = sup
n

Cn = lim
n→∞ Cn (4)

for stationary and information stable channels,1 where

Cn = max
PXn

1

n
I (Xn; Y n).

For memoryless channels, the feedback and non-feedback
capacities are equal [44]. In general, CF B ≥ C , since the class
of feedback codes includes non-feedback codes as a special
case, and CF B > C for certain channels with memory.

Definition 4: The average cost of sending a random input
vector Xn with distribution PXn over the channel is

E[b(Xn)] =
�
xn

PXn (xn)b(xn) =
n�

i=1

E[b(Xi)].

Definition 5: The distribution PXn of input Xn that satisfies

1

n
E[b(Xn)] ≤ β

is called a β-admissible input distribution. We denote the set
of n-dimensional β-admissible input distributions by τn(β):

τn(β) =
�

PXn : 1

n
E[b(Xn)] ≤ β

�
.

The capacity-cost function of stationary information stable
channels is given by (e.g., [26], [41])

C(β) = sup
n

Cn(β) = lim
n→∞ Cn(β), (5)

1In this paper we focus on stationary and information stable channels.
A channel is stationary if every stationary channel input process results
in a stationary joint input-output process. Furthermore, loosely speaking,
a channel is information stable if the input process that maximizes the
channel’s block mutual information yields a joint input-output process that
behaves ergodically (see for example [27], [28], [43] for a precise definition).
Note that supn Cn = limn→∞ Cn holds since the sequence {nCn}∞n=1 is
superadditive in light of the channel stationarity (e.g., see [29, Lemma 2,
pp. 112-113]).

where Cn(β) is the nth capacity-cost function given by

Cn(β) � max
PXn ∈τn (β)

1

n
I (Xn; Y n). (6)

Lemma 1 [41, p. 51]: The nth capacity-cost function
Cn(β) is concave and strictly increasing in β for βmin ≤ β ≤
β

(n)
max and is equal to Cn for β ≥ β

(n)
max , where

βmin � min
x∈X

b(x),

and

β(n)
max � min

PXn

�1

n
E[b(Xn)] : 1

n
I (Xn; Y n) = Cn

�
.

Lemma 2 [26, Lemma 2]: The capacity-cost function C(β)
given by (5) is concave and strictly increasing in β for βmin ≤
β ≤ βmax, and is equal to C for β ≥ βmax, where

βmax � min
PX

�
lim

n→∞
1

n
E[b(Xn)] : lim

n→∞
1

n
I (Xn; Y n) = C

�
and X denotes the random process {Xi }∞i=1.

B. Quasi-Symmetry

In general, the optimization problem in (3) is difficult
to solve analytically. However, it is shown in [29], [41],
and [45] that when the channel satisfies certain “symmetry”
properties, the optimal input distribution in (3) is uniform and
the channel capacity can be expressed in closed-form. This
result was further extended to so-called “quasi-symmetric”
channels in [46].

The transition matrix of a discrete memoryless channel
(DMC) with input alphabet X , output alphabet Y , and transi-
tion probabilities {W (y|x)} is the |X |× |Y| matrix Q with the
entry W (y|x) in the x th row and yth column. For simplicity,
let px,y � W (y|x) for all (x, y) ∈ X × Y .

A DMC is symmetric if the rows of its transition matrix Q

are permutations of each other and the columns of Q are
permutations of each other. The DMC is weakly-symmetric
if the rows of Q are permutations of each other and all the
column sums of Q are identical [41], [45].

Lemma 3 ([41], [45]): The capacity of a weakly-
symmetric DMC is attained by the uniform input distribution
and is given by C = log |Y| − H (p1, p2, . . . , p|Y |),
where (p1, p2, . . . , p|Y |) is an arbitrary row of Q and
H (p1, p2, . . . , p|Y |) = −�|Y |

i=1 pi log pi .
It readily follows that a symmetric DMC is weakly-

symmetric. We also note that Gallager’s notion for a symmetric
channel [29, p. 94] is a generalization of the above symmetry
definition in terms of partitioning Q into symmetric sub-
matrices. In turn, Gallager-symmetry is subsumed by the
notion of quasi-symmetry below.

Definition 6 [46]: A DMC with transition matrix Q is
quasi-symmetric if, for some m ≥ 1, Q can be partitioned
along its columns into m weakly-symmetric sub-matrices,
Q̃1, Q̃2, . . . , Q̃m , where Q̃i is a sub-matrix of size |X | × |Yi |
for i = 1, . . . , m, with Y1 ∪ . . . ∪ Ym = Y and Yi ∩ Y j = ∅,
for any i �= j , i, j = 1, 2, . . . , m.
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Lemma 4 [46]: The capacity of a quasi-symmetric DMC
is attained by the uniform input distribution and is given by

C =
m�

i=1

ai Ci ,

where, for i = 1, · · · , m, ai �
�

y∈Yi
px,y is the sum of

any row (px,y1, px,y2, · · · , px,y|Yi |) of Qi (corresponding to
an arbitrary input symbol x ∈ X ), and

Ci = log |Yi | − H

�
any row of

1

ai
Qi

�

= log |Yi | − H

�
px,y1

ai
,

px,y2

ai
, · · · ,

px,y|Yi |
ai

�
is the capacity of the i th weakly-symmetric sub-channel whose
transition matrix is 1

ai
Qi .

III. NEC NON-FEEDBACK CAPACITY

We study a class of NECs with memory as defined in (1)
for which the function h : Q×Q� → Q satisfies the following
invertibility conditions2:

• (S-I) Given any x ∈ Q, the function h(x, ·) : Q� → Yx

is invertible with inverse h̃(x, ·) : Yx → Q�, where Yx �
{y ∈ Q : ∃ z ∈ Q� such that h(x, z) = y}.

• (S-II) Given any y ∈ Q, the function h̃(·, y) : Xy → Q�
invertible, where

Xy � {x ∈ Q : ∃ z ∈ Q� such that h(x, z) = y}.
The above properties enable us to obtain the channel’s noise-
erasure from the input and output values via the relationship

zi = h̃(xi , yi ) · 1{yi �= e} + e · 1{yi = e} (7)

where h̃ : A → Q� with

A �
	
x∈Q

{x} × Yx =
	
y∈Q

Xy × {y} ⊆ Q × Q,

or equivalently,

A = {(x, y) ∈ Q × Q : ∃ z ∈ Q� such that h(x, z) = y}.
For any input-output pair (x, y) ∈ Q × Q with (x, y) /∈ A,
there is no z ∈ Q� such that y = h(x, z); thus for such a (x, y)
pair, we have Pr(Xi = x, Yi = y) = 0.

It can be straightforwardly verified that examples of NECs
that satisfy conditions S-I and S-II above include the EC,
the ANC, the discrete symmetric channel of [24], and the
data storage channel described in (2). In this paper, the noise-
erasure process Z = {Zi }∞i=1 is assumed to be stationary
and ergodic and independent of the transmitted message.
Throughout the paper, except in Section V, it is assumed
that the NEC satisfies properties S-I and S-II above. We next
present our first main result, which is proved at the end of this
section.

Theorem 1: The capacity of an NEC without feedback is
given by

C = (1 − ε) log q − (H̄ (Z) − H̄ (Z̃)),

2These conditions are similar to but more general than the ones considered
in [24].

where ε = PZi (e) is the probability of an erasure, H̄(·) denotes
the entropy rate and Z̃ = {Z̃i }∞i=1 is an auxiliary erasure
process derived from the noise-erasure process Z as follows

Z̃i =
�

0 if Zi �= e

e if Zi = e.
(8)

Before proving the theorem, we state the following obser-
vations.

Observation 1 (Important Special Cases):

• If {Zi}∞i=1 is memoryless, then

C = (1 − ε) log q − (H̄(Z) − H̄(Z̃))
= (1 − ε) log q − H (Z1|Z̃1). (9)

• If we set q � = 1 and h(x, z) = x , then Zi = Z̃i

and C = (1 − ε) log q , recovering the capacity of the
burst EC [11].

• If q � = q , h(x, z) = x ⊕q z and ε = 0, then C =
log q − H̄(Z) and we recover the capacity of the discrete
symmetric channel in [24] which subsumes the ANC [21].

Observation 2 (Capacity calculation): The calculation of
the NEC capacity given in Theorem 1 hinges on the evaluation
of the entropy rates H̄(Z) and H̄(Z̃) of the noise-erasure and
auxiliary erasure processes, respectively. As both processes
are stationary, we have H̄(Z) ≤ H (Zl|Zl−1) and H̄ (Z̃) ≤
H (Z̃l|Z̃ l−1) for any fixed integer l ≥ 1, and estimates of the
entropy rates (whose accuracy improve with l) can be obtained.
We next examine how to determine these entropy rates when
the noise-erasure process Z is a first-order Markov source.

• Special Markov noise-erasure process: If the noise-
erasure process Z is first-order Markov and satisfies

PZi |Zi−1(e|zi−1) = ε�

for some 0 ≤ ε� ≤ 1 and all zi−1 ∈ Q�, then the cor-
responding auxiliary erasure process Z̃ is also Markov3

with transition distribution given by

PZ̃i |Z̃i−1
(e|0) = PZi |Zi−1(e|0) = ε�

and

PZ̃i |Z̃i−1
(e|e) = PZi |Zi−1 (e|e).

In this case, we directly have H̄(Z) = H (Z2|Z1) and
H̄(Z̃) = H (Z̃2|Z̃1), hence simplifying the NEC capacity
to the following expression

C = (1 − ε) log q − (H (Z2|Z1) − H (Z̃2|Z̃1)),

which can be exactly determined.
• General Markov noise-erasure process: For a gen-

eral (stationary ergodic first-order) Markov noise-erasure
process Z, the auxiliary erasure process Z̃ is not Markov-
ian; it is a hidden Markov process as Z̃i is a deterministic
function of Zi given by Z̃i = e · 1(Zi = e), yielding

Pr(Z̃ j = z̃ j |Z j = z j ) = 1(z̃ j = e)1(z j = e)

3This can be shown, along the same lines as equations (49) and (51) in
Section VI, by noting that if the conditional term Y i−1 = yi−1 is removed,
both equations still hold.
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+ 1(z̃ j = 0)1(z j �= e) (10)

for any j ≥ 1. As noted above, H̄(Z̃) is upper bounded
by H (Z̃l|Z̃ l−1) for any positive l. Furthermore by [45,
Sec. 4.5], it is lower bounded by H (Z̃l|Z̃ l−1, Z1), l ≥ 1,
whose initial values are given by

H (Z̃l|Z̃ l−1, Z1) =
�

H (Z̃1|Z1) = 0 for l = 1,

H (Z̃2|Z1) for l = 2.

Thus, when Z is a general Markov process, the NEC
capacity satisfies

(1 − ε) log q − H (Z2|Z1) + H (Z̃l|Z̃ l−1, Z1)

≤ C ≤ (1 − ε) log q − H (Z2|Z1) + H (Z̃l|Z̃ l−1)

(11)

for any l ≥ 1, where the lower and upper bounds
in (11) are asymptotically tight as l → ∞ [45, Sec. 4.5].
In light of the channel structure, the conditional entropies
H (Z̃l|Z̃ l−1, Z1) and H (Z̃l|Z̃ l−1) can be efficiently com-
puted via the joint distributions Pr(Z1 = z1, Z̃ i = z̃i ) and
Pr(Z̃ i = z̃i ), i ≥ 1, which we can determine recursively
as follows:
(i) Initial distributions: we have

Pr(Z̃1 = e) = 1 − Pr(Z̃1 = 0) = PZ1(e)

and

Pr(Z1 = z1, Z̃1 = z̃1) = PZ1(z1) Pr(Z̃1 = z̃1|Z1 = z1)

for z1 ∈ Z = Q� ∪ {e}, z̃1 ∈ {0, e}, where Pr(Z̃ j =
z̃ j |Z j = z j ) is given in (10).
(ii). For any i ≥ 2, z1, zi ∈ Z and z̃i ∈ {0, e}i , we have
the recursion

Pr(Z1 = z1, Zi = zi , Z̃ i = z̃i )

=
�

z2,...,zi−1

Pr(Zi = zi , Z̃ i = z̃i )

=
�

z2,...,zi−1

Pr(Zi−1 = zi−1, Z̃ i−1 = z̃i−1)

× PZi |Zi−1(zi |zi−1) Pr(Z̃i = z̃i |Zi = zi )

=
�
zi−1

Pr(Z1 = z1, Zi−1 = zi−1, Z̃ i−1 = z̃i−1)

× PZi |Zi−1(zi |zi−1) Pr(Z̃i = z̃i |Zi = zi ) (12)

where for i = 2, Pr(Z1 = z1, Zi−1 = zi−1, Z̃ i−1 =
z̃i−1) = Pr(Z1 = z1, Z̃1 = z̃1), which is given above.
Finally, in light of (12), we have

Pr(Z1 = z1, Z̃ i = z̃i )

=
�

zi

Pr(Z1 = z1, Zi = zi , Z̃ i = z̃i )

and

Pr(Z̃ i = z̃i ) =
�
z1

Pr(Z1 = z1, Z̃ i = z̃i )

for i ≥ 2.
Example: We illustrate the estimation of C by computing
the above lower and upper bounds on the entropy rate

Fig. 1. Comparison as a function of l of the entropy rate upper and lower
bounds, H (Z̃l |Z̃ l−1) and H (Z̃l |Z̃ l−1, Z1), for the hidden Markov source
{Z̃i } generated by the Markov noise-erasure process given by �.

H̄(Z̃) of the auxiliary erasure process. We consider two
cases of the stationary (first-order) Markov noise-erasure
process {Zi }. In the first case, {Zi } has alphabet {0, 1, e}
(i.e., q � = 2) and a transition probability matrix given by

� =
⎡
⎣PZi |Zi−1(0|0) PZi |Zi−1(1|0) PZi |Zi−1(e|0)

PZi |Zi−1 (0|1) PZi |Zi−1(1|1) PZi |Zi−1(e|1)
PZi |Zi−1(0|e) PZi |Zi−1 (1|e) PZi |Zi−1(e|e)

⎤
⎦

=
⎡
⎣0.6 0.2 0.2

0.1 0.8 0.1
0.4 0.4 0.2

⎤
⎦.

In the second case, {Zi } has alphabet {0, 1, 2, 3, e}
(q � = 4) and transition probability

�̂ =

⎡
⎢⎢⎢⎢⎣

0.8 0 0 0.2 0
0 0.7 0 0 0.3
0 0 0.6 0.4 0
0 0.4 0 0.6 0

0.1 0 0.1 0 0.8

⎤
⎥⎥⎥⎥⎦.

We plot in Figs. 1 and 2, the upper and lower bounds
on the entropy rate H̄ (Z̃) when {Z̃i } is generated by
{Zi } with transition matrices � and �̂, respectively.
The figures indicate a relatively fast agreement between
the upper and lower bounds. For source �, the bounds
converge for l = 8 with H̄(Z̃) ≈ 0.5884. For source �̂,
the bounds take longer to converge (which is expected,
as this source is significantly more bursty than �); we
have H̄(Z̃) ≈ 0.529 around l = 17. With the accurate
calculation of H̄(Z̃) in each case, we obtain a reliable
estimate for channel capacity: C = (1 − ε) log q −
(H (Z2|Z1) − H̄(Z̃)). We have numerically observed a
similar behavior of the tightness of these bounds for other
examples of Markov noise-erasure processes with various
degrees of burstiness.

We close this observation by noting that the upper and lower
bounds on C in (11) can be directly extended to NECs with
M’th-order Markov noise-erasure processes:

(1 − ε) log q − H (Z M+1|Z M ) + H (Z̃l|Z̃ l−1, Z M )

≤ C ≤ (1 − ε) log q − H (Z M+1|Z M ) + H (Z̃l|Z̃ l−1) (13)
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Fig. 2. Comparison as a function of l of the entropy rate upper and lower
bounds, H (Z̃l |Z̃ l−1) and H (Z̃l|Z̃ l−1, Z1), for the hidden Markov source
{Z̃i } generated by the Markov noise-erasure process given by �̂.

for l ≥ M , with the lower and upper bounds in (13) asymp-
totically coinciding as l grows without bound.

Observation 3 (Effect of Memory on NEC Capacity):
Here we examine the effect of memory on the capacity of
the NEC with stationary noise-erasure process Z = {Zi }∞i=1.
Let Z� = {Z �

i}∞i=1 be a memoryless noise-erasure process
with the same marginal distribution as Z and let C DMC

denote the capacity of the NEC with noise-erasure process Z�
(which is the memoryless counterpart channel to the NEC).
Similarly, let Z̃� be the memoryless erasure process obtained
from Z�. Since the channel is stationary and information
stable, we readily obtain from (4) that C ≥ C1 = C DMC ; see
also [47]. We have

C DMC = (1 − ε) log q − �H̄(Z�) − H̄(Z̃�)
�

= (1 − ε) log q − H (Z �
1|Z̃ �

1)

= (1 − ε) log q − H (Z1|Z̃1).

Therefore, C > C DMC if and only if H̄ (Z) − H̄(Z̃) <
H (Z1|Z̃1). If q � = 1 and h(x, z) = z, then Z = Z̃ and
the NEC reduces to the EC; in this case, C = C DMC =
(1 − ε) log q , which is the well-known result that memory
does not increase capacity of the burst EC [5], [11]. If ε = 0
(i.e., no erasures occur) and Z has memory, then C = log q −
H (Z) > log q − H (Z1) = C DMC . For the NEC with general
noise-erasure process (noisy, with ε �= 0 and not memoryless),
it is not obvious whether C > C DMC since we need to evaluate
the difference of the entropy rates of two random process with
memory. We provide an answer in the case of Markov noise-
erasure processes in the following lemma.

Lemma 5: For NECs with (first-order) Markov noise-
erasure process Z, if there exist z1, z�

1, z2 ∈ Q� with z1 �= z�
1

such that PZ1(z1) > 0, PZ1(z
�
1) > 0 and PZ2|Z1(z2|z1) �=

PZ2|Z1(z2|z�
1), then C > C DMC .

Note the conditions in Lemma 5 readily hold for non-
degenerate (i.e., non-memoryless) stationary, irreducible and
aperiodic Markov noise-erasure processes.

Proof: To prove this lemma, we first need the following
lemma whose proof in given in the appendix.

Lemma 6: Let Z = {Zi }∞i=1 and Z̃ = {Z̃i }∞i=1 be the
processes as in (8) and let Hn � 1

n [H (Zn) − H (Z̃ n)]. Then
the sequence {nHn}∞n=1 is subadditive.

From Lemma 6, we have

inf
n

Hn = lim
n→∞ Hn

= lim
n→∞

1

n
[H (Zn) − H (Z̃ n)]

= H̄(Z) − H̄(Z̃).

Thus, H̄(Z) − H̄(Z̃) ≤ H2. Note that

H2 = 1

2

�
H (Z2) − H (Z̃2)

�
= 1

2

�
H (Z1) + H (Z2|Z1) − H (Z̃1) − H (Z̃2|Z̃1)

�
= H (Z1) − H (Z̃1) + 1

2

�− H (Z1) + H (Z2|Z1)

+ H (Z̃1) − H (Z̃2|Z̃1)
�

= H (Z1|Z̃1) + 1

2

�− H (Z2) + H (Z2|Z1)

+ H (Z̃2) − H (Z̃2|Z̃1)
�

= H (Z1|Z̃1) + 1

2

�− I (Z1; Z2) + I (Z̃1; Z̃2)
�

≤ H (Z1|Z̃1), (14)

where (14) holds since Z̃1−Z1−Z2− Z̃2 form a Markov chain
and where equality holds if and only if Z1 − Z̃1− Z̃2 − Z2 also
form a Markov chain. Therefore, for a (first-order) Markov
noise-erasure process Z, if there exist z1, z�

1, z2 ∈ Q� and z1 �=
z�

1 such that PZ1(z1) > 0, PZ1(z
�
1) > 0 and PZ2|Z1(z2|z1) �=

PZ2|Z1(z2|z�
1), then H (Z) − H (Z̃) ≤ H2 < H (Z1|Z̃1), which

implies that C > C DMC .
We conclude this section with the proof of Theorem 1.
Proof of Theorem 1: An NEC with stationary and ergodic

noise-erasure process Z = {Zi }∞i=1 is stationary and infor-
mation stable. Therefore, its non-feedback capacity is given
by (4):

C = lim
n→∞ Cn = lim

n→∞ max
PXn

1

n
I (Xn; Y n).

Focusing on Cn , note that it can be viewed as the capacity of
a discrete memoryless channel with input alphabet X n , output
alphabet Yn , and input-output relationship Yi = h(Xi , Zi ) ·
1{Zi �= e}+e ·1{Zi = e}, for i = 1, 2, . . . , n. Let W n(·|·) and
Q

(n) denote the transition probability and transition matrix of
this channel, respectively, and let q̄yn|Xn denote the column of
Q

(n) associated with the output yn , i.e.,

q̄yn|Xn � [W n(yn|xn)]T
xn∈X n ,

where the superscript “T ” denotes transposition and the entries
of q̄yn|Xn are listed in the lexicographic order. For example,
for binary input alphabet and n = 2,

q̄y2|X2 = [W 2(y2|00), W 2(y2|01), W 2(y2|10), W 2(y2|11)]T .

For any S ⊆ N � {1, 2, . . . , n}, define

YS � {yn : yi = e for i ∈ S, yi �= e for i /∈ S},
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and

QYS |Xn � [q̄yn|Xn ]yn∈YS ,

where the columns of QYS |Xn are collected in the lexico-
graphic order in yn ∈ YS . We first show that the n-fold
channel Q

(n) of the NEC is quasi-symmetric (recall
Definition 6).4 Note that {QYS |Xn }S⊆N is a partition of Q

(n).
Also in light of properties S-I and S-II, we have the follow-
ing two lemmas (Lemma 7 and 8) which imply the quasi-
symmetry of the NEC.

Lemma 7: For any S ⊆ N , each row of QYS |Xn is a
permutation of

p̄ZS � [PZn(zn), 0, . . . , 0� �� �
qn−|S|−(q �)n−|S|

]zn∈ZS ,

where

ZS � {zn : zi = e for i ∈ S, zi �= e for i /∈ S},
and the entries of p̄ZS are collected in the lexicographic order
in zn ∈ ZS .

Proof: Fixing an input vector xn ∈ X n and considering
the element in QYS |Xn associated with the input sequence xn

and output sequence yn ∈ YS , we have

W (yn |xn)

=

⎧⎪⎨
⎪⎩

Pr(ZN \S = h̃(xN \S , yN \S), ZS = e|S|),
if yi ∈ Yxi for all i ∈ N \ S,

0, if ∃ yi /∈ Yxi for some i ∈ N \ S,

(15)

where ZN \S denotes {Zi : i ∈ N \ S} and similarly for
xN \S and yN \S , h̃(xA, yA) is short for (h̃(xi , yi ))i∈A, and
(15) follows from (7) and (1). Note that�

h̃(xN \S, yN \S)
�

yN \S∈�i∈N \SYxi

=
�
Q��n−|S|

,

since h̃(x, ·) is invertible for all x ∈ Q (property S-I).
Therefore,�

zn : zN \S = h̃(xN \S , yN \S), zS = e|S|,

for some yN \S ∈ �i∈N \SYxi

�
=
�

zn : zN \S ∈
�
Q��n−|S|

, zS = e|S|�
= ZS . (16)

From (15), we note that W (yn |xn) = 0 for all
yn such that yn ∈ YS with yN \S /∈ �i∈N \SYxi .
Therefore, [W (yn |xn)]yn∈YS is a permutation of
[PZn (zn), 0, . . . , 0]zn∈ZS where the number of consecutive
zeros is |YS | − |�i∈N \SYxi | = |YS | − |ZS | =
qn−|S| − (q �)n−|S|. Note that the above argument does
not depend on the input sequence xn , and thus all rows of
QYS |Xn are permutations of p̄ZS .

Lemma 8: For any S ⊆ N , the column sums of QYS |Xn

are identical and are equal to

q |S|PZ̃n (z̃(n,S)),

4The NEC, being quasi-symmetric, satisfies a weaker (and hence more
general) notion of “symmetry” than the ANC [21] and the channel in [24]
which are both symmetric.

where Z̃i , i = 1, · · · , n, is defined in (8), and z̃(n,S) denotes
the n-tuple with components

z̃i (n,S) =
�

0 for i ∈ N \ S,

e for i ∈ S.
(17)

Proof: Fixing an output sequence yn ∈ YS and consider-
ing the column sum of q̄yn|Xn , we have�
xn∈Qn

W n(yn|xn)

=
�

xn∈Qn:
xi∈Xyi ,i ∈N \S

Pr(ZN \S = h̃(xN \S , yN \S), ZS = e|S|) (18)

=
�

xS∈Q|S|

�
xN \S∈Qn−|S|:

xi∈Xyi ,i ∈N \S

Pr(ZN \S = h̃(xN \S, yN \S),ZS =e|S|)

= q |S| �
xN \S∈Qn−|S|:

xi∈Xyi ,i ∈N \S

Pr(ZN \S = h̃(xN \S , yN \S), ZS = e|S|)

= q |S| �
zn∈ZS

PZn (zn) (19)

= q |S|PZ̃n (z̃(n,S)), (20)

where (18) follows (7), yn ∈ YS and W n(yn|xn) = 0 if xi /∈
Xyi for some i ∈ N \ S, (19) follows from property S-II,
and (20) follows from (8) and (17). Note that (20) does not
depend on the output sequence yn , and thus the column sums
are identical.

We are now ready to explicitly determine Cn . By Lemma 4,
we have

Cn = 1

n

�
S⊆N

�
zn∈ZS

PZn (zn)
�

log qn−|S|

−H
�

any row of
1�

zn∈ZS PZn (zn)
QYS |Xn

��

= 1

n

�
S⊆N

�
zn∈ZS

PZn (zn)

�
log qn−|S|

−H

⎛
⎝! PZn (ẑn)�

zn∈ZS PZn (zn)

"
ẑn∈ZS

⎞
⎠%

= 1

n

�
S⊆N

�
zn∈ZS

PZn (zn)
�

log qn−|S| − H (Zn|Zn ∈ ZS )
�

= 1

n

�
S⊆N

Pr(Z̃N /S = 0n−|S|, Z̃S = e|S|)

×
�

log qn−|S| − H (Zn|Z̃N /S = 0n−|S|, Z̃S = e|S|)
�
(21)

= 1

n

�
S⊆N

PZ̃n (z̃(n,S))
�

log qn−|S|−H (Zn|Z̃ n = z̃(n,S))
�

= 1

n
[n log q

�
S⊆N

PZ̃n (z̃(n,S))−log q
�
S⊆N

PZ̃n (z̃(n,S))|S|

−
�
S⊆N

PZ̃n (z̃(n,S))H (Zn|Z̃ n = z̃(n,S))]
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= 1

n

�
n log q − log q

�
z̃n∈Z̃n

PZ̃n (z̃n)

n�
i=1

1(z̃i = e)

−
�

z̃n∈Z̃n

PZ̃n (z̃n)H (Zn|Z̃ n = z̃n)
�

= 1

n

�
n log q − log q · E

� n�
i=1

1(Z̃i = e)
�

− H (Zn|Z̃ n)
�

= log q − 1

n
log q

n�
i=1

E
�
1(Z̃i = e)

�
− 1

n
H (Zn|Z̃ n)

= (1 − ε) log q − 1

n
(H (Zn) − H (Z̃ n)),

where (21) follows from (8). Taking the limit of Cn above and
using the definition of entropy rate (which exists for both Z
and Z̃ by stationarity) yields

C = lim
n→∞ Cn = (1 − ε) log q − (H̄(Z) − H̄(Z̃)).

�

IV. NEC FEEDBACK CAPACITY

We next show that feedback does not increase the capacity
of the NEC.

Theorem 2: Feedback does not increase the capacity of the
NEC:

CF B = C = (1 − �) log q − [H̄(Z) − H̄(Z̃)],
where Z̃ = {Z̃i}∞i=1 is defined in (8).

Proof: For any sequence of feedback channel codes with
rate R and error probability satisfying limn→0 P(n)

e = 0, we
have

n R

= H (M)

= I (M; Y n) + H (M|Y n)

≤ I (M; Y n) + n�n (22)

=
n�

i=1

I (M; Yi |Y i−1) + n�n

=
n�

i=1

H (Yi |Y i−1) −
n�

i=1

H (Yi |Y i−1, M) + n�n

=
n�

i=1

H (Yi |Y i−1) −
n�

i=1

H (Yi |Y i−1, M, Xi ) + n�n (23)

=
n�

i=1

H (Yi |Y i−1) −
n�

i=1

H (Yi |Y i−1, M, Xi , Zi−1) + n�n

(24)

=
n�

i=1

H (Yi |Y i−1) −
n�

i=1

H (Zi |Y i−1, M, Xi , Zi−1) + n�n

(25)

=
n�

i=1

H (Yi |Y i−1) −
n�

i=1

H (Zi |Zi−1) + n�n (26)

=
n�

i=1

H (Yi |Y i−1) − H (Zn) + n�n

=
n�

i=1

H (Yi |Y i−1, Z̃ i−1) − H (Zn) + n�n (27)

≤
n�

i=1

H (Yi |Z̃ i−1) − H (Zn) + n�n

=
n�

i=1

�
z̃i−1

Pr(Z̃ i−1 = z̃i−1)H (Yi |Z̃ i−1 = z̃i−1)

− H (Zn) + n�n

≤
n�

i=1

�
z̃i−1

Pr(Z̃ i−1 = z̃i−1) max
PXi |Z̃ i−1 (·|z̃i−1)

H (Yi |Z̃ i−1 = z̃i−1)

− H (Zn) + n�n

=
n�

i=1

�
z̃i−1

PZ̃i−1(z̃i−1)
�&

1 − PZi |Z̃ i−1(e|z̃i−1)
'

log q

+ hb
&
PZi |Z̃ i−1(e|z̃i−1)

'�− H (Zn) + n�n (28)

=
n�

i=1

�
z̃i−1

PZ̃i−1(z̃i−1)
�&

1 − PZi |Z̃ i−1(e|z̃i−1)
'

log q

+ H (Z̃i|Z̃ i−1 = z̃i−1)
�

− H (Zn) + n�n

=
n�

i=1

�
(1 − ε) log q + H (Z̃i |Z̃ i−1)

�− H (Zn) + n�n

= n(1 − ε) log q + H (Z̃ n) − H (Zn) + n�n ,

where �n goes to zero as n → ∞. Here (22) follows from
Fano’s inequality, (23) holds since Xi = fi (M, Y i−1), i =
1, 2, . . . , n, (24) follows from (7), (25) follows from (1) and
(7), and (26) holds because Zn and M are independent, and
for i ≥ 2,

H (Zi |Zi−1) = H (Zi |Zi−1, M)

= H (Zi |Zi−1, M, X1) (29)
= H (Zi |Zi−1, M, X1, Y1) (30)
= H (Zi |Zi−1, M, X2, Y1) (31)
= H (Zi |Zi−1, M, Xi , Y i−1), (32)

where (29) follows from X1 = f1(M), (30) follows from
(1), (31) holds since X2 = f2(M, Y1), and (32) is obtained
by including more conditional terms as in (30) and (31).
Furthermore, equation (27) follows from (8) and (7). Finally,
(28) follows from Corollary 1 in the appendix, and hb(ε) �
−ε log ε − (1 − ε) log(1 − ε) is the binary entropy function.
We thus have

CF B ≤ (1 − ε) log q − lim
n→∞

1

n

�
H (Zn) − H (Z̃ n)

�
= (1 − ε) log q − �H̄(Z) − H̄(Z̃)

�
= C.

This inequality and the fact that CF B ≥ C complete the proof.

V. NEC CAPACITY-COST FUNCTION

In this section, we consider the capacity-cost function of
NECs without feedback. The capacity-cost function given
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in (5) is a multi-letter expression and is not computable for
general channels. We herein derive a set of finite-letter upper
bounds for it.

Theorem 3: The capacity-cost function of the NEC satisfies

C(β) ≤ Cl(β) − H̄ (Z) + 1

l
H (Zl) � Cub

l (β)

for any positive integer l.
Proof: Consider a sequence of β-admissible channel codes

with rate R such that limn→∞ P(n)
e = 0. As in (22), it follows

from Fano’s inequality that

R ≤ lim
n→∞

1

n
I (M; Y n).

For any fixed integer l ≥ 1, let n � kl + l � for some non-
negative integers k and l �, where l � ∈ [0, l − 1]. Then we have

lim
n→∞

1

n
I (M; Y n) = lim

k→∞
1

kl + l �
�
I (M; Y kl )

+I (M; Y kl+l�
kl+1 |Y kl)

�
≤ lim

k→∞
1

kl + l �
�
I (M; Y kl ) + l � log |Y|�

= lim
k→∞

1

kl + l �
I (M; Y kl )

≤ lim
k→∞

1

kl
I (M; Y kl ), (33)

where Y j
i is a constant random variable, if j < i . Note that

I (M; Y kl )

= I (M, Xkl ; Y kl)

= H (Y kl) − H (Y kl|M, Xkl )

= H (Y kl) − H (Zkl|M, Xkl )

= H (Y kl) − H (Zkl)

≤
k�

i=1

H (Y il
(i−1)l+1) − H (Zkl)

=
k�

i=1

H (Y il
(i−1)l+1) −

k�
i=1

H (Y il
(i−1)l+1|Xil

(i−1)l+1)

+
k�

i=1

H (Zil
(i−1)l+1) − H (Zkl) (34)

=
k�

i=1

I (Xil
(i−1)l+1; Y il

(i−1)l+1) − H (Zkl) + k H (Zl)

≤
k�

i=1

lCl(βi ) − H (Zkl) + k H (Zl)

≤ klCl

��k
i=1 βi

k

�
− H (Zkl) + k H (Zl) (35)

≤ klCl(β) − H (Zkl) + k H (Zl) (36)

where βi � 1
l E[b(Xil

(i−1)l+1)], (34) follows from the fact that

H (Y il
(i−1)l+1|Xil

(i−1)l+1) = H (Zil
(i−1)l+1|Xil

(i−1)l+1)

and the independence of Zil
(i−1)l+1 and Xil

(i−1)l+1, (35) follows
from the concavity of Cl(β) which is stated in Lemma 1, and

(36) holds since Cl(β) is monotone increasing by Lemma 1.
Substituting (36) into (33), we have

lim
n→∞

1

n
I (M; Y n) ≤ Cl(β) − lim

k→∞
1

kl
H (Zkl) + 1

l
H (Zl).

Since

lim
n→∞

1

n
H (Zn) = lim

k→∞
1

kl
H (Zkl),

we obtain

C(β) ≤ Cl(β) − H̄ (Z) + 1

l
H (Zl).

The upper bounds for C(β) given in Theorem 3, which
hold for an arbitrary NEC (not necessarily satisfying
conditions S-I and S-II), generalize the upper bounds for
the capacity-cost function of the ANC shown in [26]. Note
that these upper bounds are counterparts to the Wyner-Ziv
lower bounds on the rate-distortion function of station-
ary sources [48], [49] and illustrate the functional duality
between the capacity-cost and rate-distortion functions orig-
inally pointed out by Shannon [50]. For any positive integer l,
Cl(β) is a finite-letter lower bound to C(β) : C(β) =
supn≥1 Cn(β) ≥ Cl(β). The l-letter upper and lower bounds
are asymptotically tight as the gap �l � Cub

l (β) − Cl(β) =
1
l H (Zl)− H̄ (Z) goes to zero as l → ∞. Finally, note that for
finite l, both Cl(β) and Cub

l (β) can be numerically evaluated
via Blahut’s algorithm for the capacity-cost function [40], [51].

VI. NEC CAPACITY-COST FUNCTION WITH FEEDBACK

We next investigate the feedback capacity-cost function
CF B(β) of the NEC. At time i , the transmitter obtains Y i−1

from the feedback link, and thus knows Zi−1 according to (7).
Therefore, the input at time i can be generated according to
Xi = fi (M, Zi−1). In general, the feedback encoding rule
fi (M, Zi−1) is time-varying. In this section, we will choose
an input cost function, a family of Markov noise-erasure
processes and an appropriate time invariant feedback encoding
rule to demonstrate that feedback can increase the capacity-
cost function.

We first derive a lower bound to CF B(β) under time
invariant feedback strategies. For the NEC with feedback and
a fixed encoding rule f ∗ : Q × (Q� ∪ {e}) → Q, we define
Clb,F B

n (β) as

Clb,F B(β) = sup
n

Clb,F B
n (β) = lim

n→∞ Clb,F B
n (β),

where

Clb,F B
n (β) = max

PV n ∈τ̃n (β)

1

n
I (V n; Y n),

Xi = f ∗(Vi , Zi−1), for i = 1, 2, . . . , n, V n is a q-ary n-tuple
independent of Zn , and

τ̃n(β) � {PV n : 1

n
E[b(Xn)] ≤ β}.

Note that the cost constraint is imposed on the input vector Xn

rather than V n . We next state without proving the following
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theorem; the proof can be obtained by using a standard random
coding argument as in the proof of [26, Th. 2].

Theorem 4 (Achievability of Clb,F B (β) : CF B(β) ≥
Clb,F B(β)): Consider the NEC and a fixed time-invariant
feedback encoding rule f ∗ as above. For any R < Clb,F B(β),
there exists a sequence of β-admissible feedback codes of
block length n and rate R such that P(n)

e → 0 as n → ∞.
In the rest of this section, we consider the linear cost

function b(x) = x for x ∈ Q and the following specific
encoding function f ∗ [26]. Let V n(M) be a q-ary n-tuple
representing the message M ∈ {1, 2, . . . , 2nR}. Then, to
transmit M , the encoder sends Xn(M), where

X1(M) = V1(M),

Xi (M) = f ∗(Vi (M), Zi−1)

�
�

Vi (M), Zi−1 �= s̃

0, Zi−1 = s̃
if i > 1, (37)

and s̃ is some fixed preselected state. Note that V n(M) can
be viewed as the input vector when there is no feedback; that
is, if the channel is without feedback, then Xn(M) = V n(M).
The encoder of the NEC with feedback can obtain the state
Zi−1 at time i . If the encoder observes the “bad” state s̃, then
it sends the least expensive symbol. In many cases (such as the
examples considered in the figures below), the least expensive
symbol has cost b(0) = 0.

In light of Theorems 3 and 4, a numerical comparison of
Clb,F B

n (β) and Cub
n (β) for a given block length n can indicate

whether it is possible for feedback to increase the capacity-
cost function. Since C(β) ≤ Cub

n (β) and Clb,F B (β) =
supn Clb,F B

n (β), it suffices to show that Clb,F B
n (β) > Cub

n (β)
for some n and β to conclude that CF B(β) > C(β). To this
end, consider an NEC with q � = q = 2, h(x, z) = x ⊕2z,
a linear cost function and a first-order Markov noise-erasure
process described by the transition matrix

�1 =
⎡
⎣ 0.4 0.4 0.2

0.7 0.1 0.2
0.2 0.7 0.1

⎤
⎦ ,

where the entries are ordered according to the order (0, 1, e).
In Fig. 3, we plot using Blahut’s algorithm [40], [51] Cub

n (β)

versus Clb,F B
n (β) (with f ∗ given by (37)) for n = 6. Fig. 3

clearly indicates that feedback increases the capacity-cost
function of this NEC for a range of costs β.

We next formalize this result analytically for NECs with
irreducible and aperiodic stationary Markov noise-erasure
processes whose transition probability matrix has the property
that the row corresponding to a given noise state s̃ ∈ Q�
and the column corresponding to the erasure state are nearly
uniform. More specifically, we prove that for such chan-
nels using feedback encoding rule (37) (which is properly
matched to the linear cost function), we can achieve the
channel capacity with a cost that is lower than the cost
incurred in the non-feedback case, hence extending a previous
result in [26] from the family of ANCs to the wider class
of NECs.

Theorem 5: Consider an NEC with stationary irreducible
and aperiodic Markov noise-erasure process and feedback
encoding rule given in (37). If the transition probabilities of

Fig. 3. Comparison of Cub
6 (β) with Clb,F B

6 (β) (in bits) for a binary input
NEC with a Markov noise-erasure process given by �1 (recall that C(β) ≤
Cub

n (β) and Clb,F B
n (β) ≤ CF B (β) for any n).

the noise-erasure process satisfy that for a particular noise state
s̃ ∈ Q�

PZi |Zi−1(zi |s̃) =
⎧⎨
⎩

ε�, if zi = e

1−ε�
q , otherwise

and

PZi |Zi−1(e|zi−1) = ε�

for some 0 ≤ ε� ≤ 1 and all zi−1 ∈ Q�, then

CF B(β) > C(β) for βlb ≤ β <
q − 1

2
,

where

βlb = [1 − PZ (s̃)]q − 1

2
.

Proof: Let P∗
V n (vn) = 1

qn for any vn ∈ Qn . For the
non-feedback channel with input distribution P∗

V n , since P∗
V n

achieves Cn , we have

β(n)
max = 1

n

�
vn

P∗
V n (vn)b(vn)

=
�
v

P∗
V1

(v)b(v)

= q − 1

2
= βmax,

C(n)
�q − 1

2

�
= (1 − ε) log q − 1

n
[H (Zn) − H (Z̃ n)],

and

C
�q − 1

2

�
= (1 − ε) log q − [H̄(Z) − H̄(Z̃)].

Thus, from Lemma 2, we have

C(β) < (1 − ε) log q − [H̄(Z) − H̄ (Z̃)] for β <
q − 1

2
.

(38)
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For the feedback channel with input distribution P∗
V n and

the encoding rule f ∗, we have

βlb
n � 1

n
E[b(Xn)]

= 1

n

n�
i=1

E[b(Xi)]

= 1

n

�
v1

P∗
V1

(v1)b(v1) + 1

n

n�
i=2

E[b( f ∗(Vi , Zi−1))]

= 1

n

q − 1

2
+ n − 1

n

�
v

�
z

PZ (z)P∗
V (v)b( f ∗(v, z))

= 1

n

q − 1

2
+ n − 1

n

��
v

PZ (s̃)P∗
V (v)b(0)

+
�
z �=s̃

�
v

PZ (z)P∗
V (v)b(v)

�

= 1

n

q − 1

2
+ n − 1

n

�
z �=s̃

PZ (z)
q − 1

2

=
�
1 − n − 1

n
PZ (s̃)

�q − 1

2
.

Note that since Z is an irreducible and aperiodic stationary
Markov process, PZ (s̃) > 0, and thus βlb

n < q−1
2 . The

uniform input distribution P∗
V n may not be the optimal input

distribution achieving Clb,F B
n (βlb

n ), implying that for V n with
distribution P∗

V n , we have

Clb,F B
n (βlb

n ) ≥ 1

n
I (V n; Y n)

= 1

n
[H (Y n) − H (Y n|V n)]

= 1

n

n�
i=1

H (Yi |Y i−1) − 1

n
H (Y n|V n). (39)

For the second term in (39), we have

H (Y n|V n)

= H (Y n|V n, X1) (40)

= H (Z1, Y n|V n, X1) (41)

= H (Z1|V n, X1) + H (Y n|V n, X1, Z1)

= H (Z1) + H (Y n
2 |V n, X1, Z1) (42)

= H (Z1) + H (Y n
2 |V n, X1, Z1, X2) (43)

= H (Z1) + H (Z2, Y n
2 |V n, X1, Z1, X2)

= H (Z1) + H (Z2|V n, X1, Z1, X2)

+ H (Y n
2 |V n, X1, Z1, X2, Z2)

= H (Z1) + H (Z2|Z1) + H (Y n
3 |V n, X1, Z1, X2, Z2)

= H (Zn), (44)

where (40) holds since X1 = V1, (41) follows from (7),
(42) follows form (1) and the fact that the noise process is
independent of the message, (43) holds since X2 = f ∗(V2, Z1)
and (44) is obtained by repeating the steps (40)-(43).
To analyze the first term in (39), we consider Pr(Yi =
yi |Y i−1 = yi−1) for two cases:

(i) For Yi = e, we have

Pr(Yi = e|Y i−1 = yi−1)

=
�

zi

Pr(Zi = zi , Yi = e|Y i−1 = yi−1)

= Pr(Zi = e|Y i−1 = yi−1) (45)

= Pr(Z̃i = e|Y i−1 = yi−1),

where (45) follows from the fact that Yi = e if and only if
Zi = e by (1).
(ii) For Yi = yi �= e, we have the chain of identities shown at
the top of the next page, where (46) follows from the chain
rule, the encoding rule, (1) and the fact that the noise process
is Markov and independent of the message. From the pre-
ceding analysis, we obtain the following conditional output
entropy

H (Yi |Y i−1)

=
�
yi−1

Pr(Y i−1 = yi−1)H (Yi |Y i−1 = yi−1)

=
�
yi−1

Pr(Y i−1 = yi−1)

×
�

−Pr(Z̃i = e|Y i−1 = yi−1) log Pr(Z̃i = e|Y i−1 = yi−1)

− q
Pr(Z̃i =0|Y i−1 = yi−1)

q
log

Pr(Z̃i = 0|Y i−1 = yi−1)

q

�
=
�
yi−1

Pr(Y i−1 = yi−1)

×
�

H (Z̃i |Y i−1 = yi−1) + Pr(Z̃i = 0|Y i−1 = yi−1) log q
�

= H (Z̃i |Y i−1) + (1 − ε) log q

= H (Z̃i |Y i−1, Z̃ i−1) + (1 − ε) log q. (47)

Next, we consider Pr(Z̃i = e|Y i−1 = yi−1, Z̃ i−1 = z̃i−1)
for (yi−1, z̃i−1) with Pr(Y i−1 = yi−1, Z̃ i−1 = z̃i−1) > 0.
We have

Pr(Z̃i = e|Y i−1 = yi−1, Z̃ i−1 = z̃i−1)

=
�
zi−1

Pr(Zi−1 = zi−1, Z̃i = e|Y i−1 = yi−1, Z̃ i−1 = z̃i−1)

=
�
zi−1

Pr(Zi−1 = zi−1|Y i−1 = yi−1, Z̃ i−1 = z̃i−1)

× Pr(Z̃i = e|Zi−1 = zi−1)

=
�

zi−1 �=e

Pr(Zi−1 = zi−1|Y i−1 = yi−1, Z̃ i−1 = z̃i−1)ε�

+ Pr(Zi−1 = e|Y i−1 = yi−1, Z̃ i−1 = z̃i−1)

× Pr(Z̃i = e|Zi−1 = e). (48)

If Z̃i−1 = e, then since Z is Markovian,

Pr(Z̃i = e|Y i−1 = yi−1, Z̃i−1 = e, Z̃ i−2 = z̃i−2)

= Pr(Zi = e|Y i−1 = yi−1, Z̃i−1 = e, Z̃ i−2 = z̃i−2)

= Pr(Zi = e|Zi−1 = e)

= Pr(Z̃i = e|Z̃i−1 = e). (49)
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Pr(Yi = yi |Y i−1 = yi−1)

=
�

zi ,zi−1,vi ,xi

Pr(Zi−1 = zi−1, Zi = zi , Vi = vi , Xi = xi , Yi = yi |Y i−1 = yi−1)

=
�

zi ,zi−1,vi ,xi

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi |Zi−1(zi |zi−1)P∗
Vi

(vi )1(xi = f ∗(vi , zi−1)) · 1(yi = θ(xi , zi )) (46)

=
�

zi ,zi−1 �=s̃,vi ,xi

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi |Zi−1 (zi |zi−1)P∗
Vi

(vi )1(xi = f ∗(vi , zi−1)) · 1(yi = θ(xi , zi ))

+
�

zi ,vi ,xi

Pr(Zi−1 = s̃|Y i−1 = yi−1)PZi |Zi−1(zi |s̃)P∗
Vi

(vi )1(xi = f ∗(vi , s̃)) · 1(yi = θ(xi , zi ))

=
�

zi ,zi−1 �=s̃,xi

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi |Zi−1 (zi |zi−1)
1

q
· 1(yi = θ(xi , zi ))

+ q
�

zi

Pr(Zi−1 = s̃|Y i−1 = yi−1)PZi |Zi−1 (zi |s̃) 1

q
· 1(yi = θ(0, zi ))

=
�

zi−1 �=s̃,xi∈Xyi

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi |Zi−1 (h̃(xi , yi )|zi−1)
1

q
+ Pr(Zi−1 = s̃|Y i−1 = yi−1)PZi |Zi−1(h̃(0, yi )|s̃)

=
�

zi−1 �=s̃,zi �=e

Pr(Zi−1 = zi−1|Y i−1 = yi−1)PZi |Zi−1(zi |zi−1)
1

q
+ Pr(Zi−1 = s̃|Y i−1 = yi−1)

1 − ε�

q

= 1

q

�
zi−1 �=s̃,zi �=e

Pr(Zi−1 = zi−1, Zi = zi |Y i−1 = yi−1) + 1

q
Pr(Zi−1 = s̃|Y i−1 = yi−1)P(Zi �= e|Zi−1 = s̃)

= 1

q
Pr(Zi−1 �= s̃, Zi �= e|Y i−1 = yi−1) + 1

q
P(Zi−1 = s̃, Zi �= e|Y i−1 = yi−1)

= 1

q
Pr(Zi �= e|Y i−1 = yi−1)

= 1

q
Pr(Z̃i = 0|Y i−1 = yi−1),

If Z̃i−1 = 0, then using (48) and setting for brevity the event
A0 �

�
Y i−1 = yi−1, Z̃i−1 = 0, Z̃ i−2 = z̃i−2

�
, we have

Pr(Z̃i = e|A0)

=
�

zi−1 �=e

Pr(Zi−1 = zi−1|A0)ε
�

+ Pr(Zi−1 = e|A0) Pr(Z̃i = e|Zi−1 = e)

=
�
zi−1

Pr(Zi−1 = zi−1|A0)ε
�

= ε� (50)

= Pr(Z̃i = e|Z̃i−1 = 0), (51)

where (50) holds since Pr(Zi−1 = e|A0) = Pr(Zi−1 =
e|Y i−1 = yi−1, Z̃i−1 = 0, Z̃ i−2 = z̃i−2) = 0. Since Z̃i is
binary, (49) and (51) show that Z̃i − Z̃i−1 −(Y i−1, Z̃ i−2) form
a Markov chain and thus H (Z̃i |Y i−1, Z̃ i−1) = H (Z̃i |Z̃i−1).
From this, (39), (44) and (47), we have

Clb,F B
n (βlb

n ) ≥ (1 − ε) log q − 1

n
[H (Zn) − H (Z̃ n)]. (52)

Recalling that

lim
n→∞ βlb

n = lim
n→∞

�
1 − n − 1

n
PZ (s̃)

�
q − 1

2

=
�

1 − PZ (s̃)

�
q − 1

2
= βlb,

the following lemma is proved in the appendix.
Lemma 9:

lim
n→∞ Clb,F B

n (βlb
n ) = Clb,F B(βlb).

In view of the preceding lemma, taking the limit of both sides
of (52) yields

Clb,F B(βlb) ≥ (1 − ε) log q − [H̄(Z) − H̄ (Z̃)].
Since Clb,F B(βlb) is a lower bound to CF B(βlb) and
CF B(βlb) ≤ CF B = (1 − ε) log q − [H̄(Z) − H̄ (Z̃)], we have

CF B(β) = (1 − ε) log q − [H̄(Z) − H̄ (Z̃)]
for

βlb ≤ β ≤ q − 1

2
,
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Fig. 4. Comparison of Cub
6 (β) with Clb,F B

6 (β) (in bits) for a binary input
NEC with Markov noise-erasure given by �2 (recall that C(β) ≤ Cub

n (β)

and Clb,F B
n (β) ≤ CF B (β) for any n).

Fig. 5. Comparison of Cub
6 (β) with Clb,F B

6 (β) (in bits) for a binary input
NEC with Markov noise-erasure given by �3 (recall that C(β) ≤ Cub

n (β)

and Clb,F B
n (β) ≤ CF B (β) for any n).

and by (38) we conclude that CF B(β) > C(β) for
βlb ≤ β < q−1

2 .
Note that the NEC of Fig. 3 has a Markov transition matrix
that satisfies exactly the conditions of Theorem 5. We next
provide numerical results for Markov NECs which do not
precisely meet these conditions. In Figs. 4 and 5, we plot
Cub

6 (β) and Clb,F B
6 (β) (under the linear cost function and f ∗

given by (37)) for NECs with q � = q = 2, h(x, z) = x ⊕2z
and Markov transition matrices

�2 =
⎡
⎣ 0.4 0.4 0.2

0.7 0.2 0.1
0.2 0.7 0.1

⎤
⎦

and

�3 =
⎡
⎣ 0.45 0.35 0.2

0.7 0.2 0.1
0.2 0.7 0.1

⎤
⎦,

respectively. These figures show that in fact Theorem 5 holds
for a more general class of NECs and a wider range of costs β.

Similar numerical results can be obtained for NECs with non-
binary input alphabets.

Without input cost constraints, the channel, being quasi-
symmetric, has the uniform distribution as the optimal capacity
achieving input distribution under both feedback and non-
feedback regimes. Thus the entropy rate of the channel output
remains unchanged in the presence of feedback and feedback
does not increase capacity. However, upon imposing an input
cost constraint, the uniform input distribution is no longer
optimal. In this case, feedback provides the encoder useful
information that, under feedback encoding rules judiciously
selected in accordance with the cost function, can drive the
input distribution to improve the entropy rate of the output,
resulting in an increase in the channel capacity-cost function.

VII. CONCLUSION

We investigated a class of NECs satisfying invertibility
conditions which can be viewed as a generalization of the
EC and ANC with memory. The non-feedback capacity was
derived in closed-form with the aide of an auxiliary erasure
process with memory and proving that the n-fold channel is
quasi-symmetric for all n. We then showed that the feedback
capacity is identical to the non-feedback capacity, demonstrat-
ing that feedback does not increase capacity. We note that
these results can be generalized to NECs with an arbitrary
noise-erasure process (not necessarily stationary or infor-
mation stable) using generalized spectral information mea-
sures [21]–[23]. The capacity-cost function of the NEC with
and without feedback were also studied. We demonstrated,
both analytically and numerically, that for a class of NECs
with linear input costs and Markov noise-erasure processes,
feedback does increase the capacity-cost function. Future work
include deriving the non-feedback and feedback capacities of
non quasi-symmetric NECs and of compound channels with
NEC components.

APPENDIX

A. Proof of Lemma 6

Proof: If N and n are two integers such that N > n ≥ 1,
then we have

N HN = H (Z N ) − H (Z̃ N )

= H (Z N |Z̃ N )

= H (Zn, Z N
n+1|Z̃ N )

= H (Zn|Z̃ N ) + H (Z N
n+1|Z̃ N , Zn)

≤ H (Zn|Z̃ n) + H (Z N
n+1|Z̃ N

n+1)

= H (Zn|Z̃ N ) + H (Z N−n|Z̃ N−n )

= nHn + (N − n)HN−n, (53)

where (53) follows by writing I (Z N ; Z̃ N ) in two different
ways and noting that H (Z̃ N |Z N ) = 0. Dividing both sides
by N , we have that HN ≤ n

N Hn + N−n
N HN−n, and hence the

sequence {nHn}∞n=1 is subadditive.
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B. Corollary 1

We first prove the following lemma.
Lemma 10: If Y denotes the output of the NEC with

invertibility conditions S-I and S-II, the input X and the noise
Z are independent, and ε = PZ (e), then

max
PX

H (Y ) = (1 − ε) log q − hb(ε).

Proof: Noting that Z̃ = 0 if Z �= e and that Z̃ = e if
Z = e, we have

max
PX

H (Y )

= max
PX

[I (X; Y ) + H (Y |X)]
= max

PX
I (X; Y ) + H (Z)

= (1 − ε) log q − (1 − ε)H (Z |Z̃ �= e) + H (Z) (54)

= (1 − ε) log q − (1 − ε)H (Z |Z̃ �= e) + H (Z , Z̃)

= (1 − ε) log q − (1 − ε)H (Z |Z̃ �= e) + H (Z̃) + H (Z |Z̃)

= (1 − ε) log q − (1 − ε)H (Z |Z̃ �= e)

+ hb(ε) + (1 − ε)H (Z |Z̃ �= e)

= (1 − ε) log q − hb(ε),

where (54) follows from (9).
Corollary 1: If in the setup of Lemma 10, random variable

A is jointly distributed with Z and is conditionally independent
of X and Y given Z , then

max
PX

H (Y |A = a) = (1 − εa) log q − hb(εa),

for all a ∈ A, where εa = P(Z = e|A = a).

C. Proof of Lemma 9

We will show that {Clb,F B
n } is an equicontinuous family

of functions on [βlb, βmax]. Since Clb,F B
n converges to Clb,F B

pointwise, this will imply by Problem 16 of [52, Ch. 7] that the
sequence of functions {Clb,F B

n } converges to Clb,F B uniformly
over the interval [βlb, βmax]. Since βlb

n ∈ [βlb, βmax] for all n
and limn→∞ βlb

n = βlb, Problem 9 in [52, Ch. 7] will in turn
imply that Clb,F B

n (βlb
n ) → Clb,F B(βlb) as n → ∞ as claimed.

Since each Clb,F B
n is an increasing concave function with

Clb,F B
n (0) = 0, for all n and β, β � ∈ [βlb, βmax] with β � < β,

we have

0 ≤ Clb,F B
n (β) − Clb,F B

n (β �)
β − β �

≤ Clb,F B
n (βlb) − Clb,F B

n (0)

βlb − 0

= Clb,F B
n (βlb)

βlb

≤ Clb,F B(βlb)

βlb
,

where the last inequality holds since Clb,F B(β) =
supn≥1 Clb,F B

n (β). Thus for all n,

((Clb,F B
n (β) − Clb,F B

n (β �)
(( ≤ Clb,F B(βlb)

βlb

((β − β �((

showing that {Clb,F B
n } is equicontinuous on [βlb, βmax] and

the lemma follows. �
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