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A FINITE MEMORY INTERACTING P\'OLYA CONTAGION
NETWORK AND ITS APPROXIMATING DYNAMICAL SYSTEMS\ast 

SOMYA SINGH\dagger , FADY ALAJAJI\dagger , AND BAHMAN GHARESIFARD\dagger 

Abstract. We introduce a new model for contagion spread using a network of interacting finite
memory two-color P\'olya urns, which we refer to as the finite memory interacting P\'olya contagion
network. The urns interact in the sense that the probability of drawing a red ball (which represents
an infection state) for a given urn, not only depends on the ratio of red balls in that urn but also
on the ratio of red balls in the other urns in the network, hence accounting for the effect of spatial
contagion. The resulting networkwide contagion process is a discrete-time finite-memory (Mth or-
der) Markov process, whose transition probability matrix is determined. The stochastic properties
of the network contagion Markov process are analytically examined, and for homogeneous system
parameters, we characterize the limiting state of infection in each urn. For the nonhomogeneous
case, given the complexity of the stochastic process, and in the same spirit as the well-studied SIS
models, we use a mean-field type approximation to obtain a discrete-time dynamical system for
the finite memory interacting P\'olya contagion network. Interestingly, for M = 1, we obtain a lin-
ear dynamical system which exactly represents the corresponding Markov process. For M > 1, we
use mean-field approximation to obtain a nonlinear dynamical system. Furthermore, noting that
the latter dynamical system admits a linear variant (realized by retaining its leading linear terms),
we study the asymptotic behavior of the linear systems for both memory modes and characterize
their equilibrium. Finally, we present simulation studies to assess the quality of the approximation
purveyed by the linear and nonlinear dynamical systems.

Key words. P\'olya urns, network contagion, finite memory, Markov processes, stationary dis-
tribution, dynamical systems, SIS models
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1. Introduction. Interacting urn networks are widely used in the field of applied
mathematics, biology, and computer science to model the spread of disease [22, 21],
consensus dynamics [16, 23], image segmentation [8], the propagation of computer
viruses in connected devices [11], and in social networks [35]. A general description
for an interacting two-color urn network is as follows. We are given a network of
N urns. At time t = 0, each urn is composed of some red and some black balls,
where different urns can have different initial compositions, but no urn is empty. At
each time instant t, a ball is chosen for each urn with probability depending on the
composition of the urn itself and of the other urns in the network, and then additional
(``reinforcing"") balls of the color just drawn are added to the urn. Letting Ui,t denote
the ratio of red balls in urn i at time t, the draw variable Zi,t, denoting the indicator
function of a red ball chosen for urn i at time t, is governed by

(1.1) Zi,t =

\Biggl\{ 
1 w.p. f(U1,t - 1, . . . , UN,t - 1),

0 w.p. 1 - f(U1,t - 1, . . . , UN,t - 1),
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S348 SOMYA SINGH, FADY ALAJAJI, AND BAHMAN GHARESIFARD

where ``w.p."" stands for ``with probability"" and f : \BbbR N \rightarrow (0, 1) is a real-valued
function which accounts for the interaction in the network of urns. The stochastic
process \{ Zi,t\} \infty t=1 is commonly known as a reinforcement process generated by an urn
model.

Although, a variety of models are used in the literature depending on the appli-
cation, P\'olya urns are the most commonly used urn models (there are a few examples
based on other interacting urn networks; e.g., see [34, 25] for interacting Friedman urn
networks). An interesting feature of P\'olya urns is that their reinforcement scheme
represents preferential attachment graphs in the sense that at each time step, we add
balls of a particular color with a probability proportional to the number of balls of
that color in the urn. This representation of P\'olya urns as preferential attachment
graphs makes the interacting P\'olya network a good choice to model the spread of
infection in an interacting population. For more insight on similarities between P\'olya
urns and preferential attachment models; see [11, 14, 12].

In this paper, we study a network of N two-color P\'olya urns. The objective is
to model the spread of infection (commonly referred to as contagion) through this
interacting P\'olya urn network, where each urn is associated to a node (e.g., ``indi-
vidual"") in a general network (e.g., ``population"") to delineate its ``immunity"" level.
Each P\'olya urn in the network contains red and black balls which represent units of
``infection"" and ``healthiness,"" respectively. The reinforcement of drawing a ball for
each urn is mathematically formulated such that a weighted composition of other urns
in the network (activated by an interaction row-stochastic matrix) affects the drawing
process, hence capturing interaction between nodes.

Various other models have been proposed in the literature to portray contagion
in networks using interacting P\'olya processes. In [21], the concept of ``super urn""
in networks is utilized to model spatial contagion, where drawing a ball for each urn
consists of drawing from a ``super urn"" formed by the collection of the urn's own balls
and the ones of its neighbors. In [22, 20], optimal curing and initialization policies were
investigated for the network contagion model of [21]. In [32], the authors introduced a
symmetric type reinforcement scheme for interacting P\'olya urns. Finally, an example
of a more complicated interaction network is given in [10], where a finite connected
graph with each node equipped with a P\'olya urn is considered and at any given time
t, only one of the two interacting urns receive balls with probability proportional to
a number of balls raised to some fixed power.

An important characteristic of most reinforcement processes generated via urn
models is that they are non-Markovian in the sense that the composition of each
urn at any given time affects its composition at every time instant thereafter. This
property is not realistic when modelling the spread of infection as one should account
for the possibility that infection is cured (or that the urn is removed, a possibility that
we do not consider here). In this work, we consider an interacting P\'olya urn network
where each urn has a finite memory, denoted by M \geq 1, in the sense that, at time
instant t > M , the reinforcing balls added at time t  - M are removed from the urn
and hence have no effect on future draws. This notion of a finite memory P\'olya urn
was introduced in [1] (in the context of a single urn) to account for the diminishing
effect of past reinforcements on the urn process, which is a realistic assumption when
modelling contagion in a population. The resulting network draw variables \{ Zt\} \infty t=1 :=
\{ (Z1,t, . . . , ZN,t\} \infty t=1 of the P\'olya urn with memory M forms a Markov chain of order
M . The memory parameter M gives a new degree of freedom to this interacting
P\'olya contagion network which makes it more suitable for the study of epidemics.
In particular, the draw process of the network with M = 1 represents the Markov
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process of the well-known susceptible-infected-susceptible (SIS) model [33, 38, 37,
29, 27, 28, 5], as each urn i at time t > 1 exhibits two possible states via its draw
variables, susceptible (Zi,t = 0), and infected (Zi,t = 1). Hence, our Polya-based
model (with M = 1) is an alternative representation of the SIS model, albeit with
different governing parameters. There are other examples in the literature where
a Markovian version of the P\'olya process is studied. In [3], a rescaled P\'olya urn
model with randomly fluctuating conditional draw probability is considered. Another
Markovian P\'olya process is the P\'olya--Lundberg process [31], which was recently
adapted in [9] to measure the dynamics of the SARS-CoV-2 pandemic, among many
other models (e.g., see also [15] where the classical P\'olya urn scheme is used).

The techniques used in the analysis of a finite memory P\'olya process are quite
different from the ones used for any general random reinforcement process. Standard
techniques used for the latter case include the method of moments [17], martingale
methods [32, 19], stochastic approximations [13, 18, 26], and the embedding of re-
inforcement processes in continuous time branching processes [7, 6, 24]. A detailed
discussion on these methods can be found in the survey [30] and in [4]. Unlike standard
reinforcement processes, we are able to use Markovian properties in our analysis as
our model of interacting urns with finite memoryM yields anMth order Markov draw
process. However, one drawback of working with a memory-M Markov chain over a
network is that the size of its underlying transition probability matrix grows exponen-
tially with both M and the network size. To account for this problem, after having
introduced our interacting P\'olya urn network and investigated its properties in detail,
we formulate a dynamical system to tractably approximate its asymptotic behavior.
To obtain this dynamical system, we make the assumption that for any given time
t > M , the joint probability distribution of draw processes at times t - 1, . . . , t - M
for any urn is equal to the product of marginals. This type of approximation is re-
ferred to as ``mean-field approximation"" and is commonly used in the literature on
compartmental models, such as the SIS model. The key factor that distinguishes
our treatment is the latitude provided by the consideration of memory M \geq 1, in
contrast to the SIS model which is based on a memory one (M = 1) Markov chain.
In particular, as our simulations, which are performed for both nonhomogeneous and
homogeneous networks, verify that the nonlinear dynamical system that we obtain is
a good approximation for the true (underlying) Markov process. We also characterize
the equilibrium point of this dynamical system when the nonlinear dynamical system
is approximated by its linear part (the latter approximation is exact for the case with
memory M = 1). More specifically, we show that when M = 1, the Markov process
precisely mimics a linear dynamical system with a unique equilibrium (which can be
exactly determined); while for M > 1, we note that the approximating linearized
dynamical system has a unique equilibrium when its governing (block) matrix has a
spectral radius less than unity. In summary, our results provide a novel mathematical
framework for the study of epidemics on networks in realistic scenarios where memory
is a consideration.

This paper is organised as follows. In section 2, we describe our interacting P\'olya
contagion network with memoryM , which generates a generalMth order time-varying
Markov network draw process. In section 3, we show that for the homogeneous case
(i.e., when all urns have identical initial compositions and the same reinforcement
parameters), the network Markov process is time-invariant, irreducible, and aperiodic.
We obtain the transition probability matrix of this Markov process, illustrate the
calculation of its stationary distribution, and establish its exact asymptotic marginal
distributions. In section 4, we derive the linear dynamical system for the general
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(nonhomogeneous) network for M = 1 and develop the nonlinear dynamical system
approximations for M > 1 using a mean-field approximation. We investigate the role
of memory as well as the equilibrium of these dynamical systems (both for M = 1
and its linearized variant for M > 1). Simulation results are presented in section 5 to
assess the modeling quality of the linear and nonlinear dynamical systems. Finally,
conclusions and directions of future work are stated in section 6.

2. The model and its properties. We consider a network of N P\'olya urns,
where each urn can be associated to a node in an arbitrary network. At time t = 0,
urn i contains Ri red balls and Bi black balls, i = 1, . . . , N . We let Ti = Ri + Bi

be the total number of balls in the ith urn at time t = 0, and assume that each urn
contains nonzero red and black balls at time t = 0 i.e., Ri > 0 and Bi > 0. We also
let Ui,t denote the ratio of red balls in urn i at time t, with its initial value (at time
t = 0) given by Ui,0 = Ri/Ti.

We next define the reinforcement scheme, in the form of draw variables, Zi,t,
associated with urn i at time t \geq 1, for our proposed interacting P\'olya contagion
network:

Zi,t =

\Biggl\{ 
1 if a red ball is drawn for urn i at time t,

0 if a black ball is drawn for urn i at time t,

where the process of drawing a ball for urn i is governed by (1.1) and the function f
is explicitly defined below. The drawing mechanism (1.1) is applied simultaneously
to all urns. If a red ball (respectively, a black ball) is drawn for urn i, we add \Delta r,i(t)
red balls (respectively, \Delta b,i(t) balls) to urn i. This scheme, which we refer to as the
urn scheme, is often captured by a matrix of the form\biggl[ 

\Delta r,i(t) 0
0 \Delta b,i(t)

\biggr] 
.

We assume throughout that \Delta r,i(t) \geq 0,\Delta b,i(t) \geq 0, for all t \in \BbbZ \geq 0, and that there
exist an urn i such that \Delta r,i(t) + \Delta b,i(t) \not = 0 at all times t.

To formulate the interaction part of the model, we start with defining an inter-
action matrix S as an N \times N row-stochastic matrix with nonnegative entries, i.e.,
each row in S sums to one. Entries of the interaction matrix S are denoted by sij ,
where i, j \in \{ 1, . . . , N\} . The interaction matrix S can also be thought of as a weighted
adjacency matrix of a directed graph with each node equipped with a P\'olya urn.

Having defined the interaction matrix, we can now explicitly specify the function f
used in the drawing mechanism (1.1). In particular, we set the probability of choosing
a red ball from urn i at time t as follows:

(2.1) Zi,t =

\left\{       
1 w.p.

N\sum 
j=1

sijUj,t - 1,

0 w.p. 1 - 
N\sum 
j=1

sijUj,t - 1.

Note that at time t > 1, the conditional probability of node i's draw variable Zi,t is
a function of all past draw variables in the network, namely, \{ Zj,k\} for j = 1, . . . , N
and k = 1, . . . , t  - 1. Furthermore, as all draws occur simultaneously, the draw
variables Zi,t and Zi\prime ,t are conditionally independent given all past draws in the
network, for any i \not = i\prime ; hence at any time t,

P
\bigl( 
Z1,t, . . . , ZN,t| \{ Z1,k\} t - 1

k=1, . . . , \{ ZN,k\} t - 1
k=1

\bigr) 
=

N\prod 
i=1

P
\bigl( 
Zi,t| \{ Z1,k\} t - 1

k=1, . . . , \{ ZN,k\} t - 1
k=1

\bigr) 
.
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For ease of notation, we define the following (normalized) initial and reinforcement
network parameters for i = 1, . . . , N and t \geq 1:

(2.2) \rho i =
Ri

Ti
, \sigma i = 1 - Ri

Ti
, \delta r,i(t) =

\Delta r,i(t)

Ti
, \delta b,i(t) =

\Delta b,i(t)

Ti
.

We are now ready to describe the notion of finite memory for the above interacting
P\'olya contagion network. In particular, we consider the scenario where we keep the
additional balls introduced in the urns after each draw only for a finite amount of time,
M \geq 1, which we call the memory of the network. In other words, the reinforcement
process is altered such that, for all urns in the network, we remove the balls added at
time t after the (t+M)th draw. This assumption, which was introduced in [1] in the
context of a single P\'olya urn, makes the model more realistic, because it accounts for
the decrease in severity (or influence) of ``infection"" with time. Also, the balls in the
urn at time t = 0 are never removed from the urn. In the epidemic setting, this initial
composition of the urns can be referred to as the intrinsic or inherent immunity of the
individuals against infection. We will next show that the sequence of N -tuple draw
variables \{ (Z1,t, . . . , ZN,t)\} \infty t=1 for our finite memory interacting P\'olya network forms
an Mth order Markov chain. For brevity, from now on, we denote our finite memory
interacting P\'olya contagion network by IPCN(M,N), where M is the memory of the
network and N is the number of urns in the network; unless we state otherwise, we
assume that the underlying parameters are given by (2.2). Before showing the Markov
property induced by the networkwide draw variable Zt := (Z1,t, . . . , ZN,t), we present
a useful characterization of the ratio of red balls at time t in terms of the IPCN(M,N)
parameters in (2.2).

Lemma 2.1. For an IPCN(M,N) system, i = 1, 2, . . . , N , and t \geq M + 1, we
have that

Ui,t =

\rho i +
t\sum 

n=t - M+1

\delta r,i(n)Zi,n

1 +
t\sum 

n=t - M+1

(\delta r,i(n)Zi,n + \delta b,i(n)(1 - Zi,n))

.(2.3)

Proof. Recall that Ui,t is the ratio of the red balls in urn i at time t. Given a
finite memory M for the network, at every time instant t \geq M + 1 we remove the
balls added at time t  - M ; hence for t \geq M + 1, the number of red balls in urn i at
time t is

(2.4) Ri +

t\sum 
n=1

\Delta r,i(n)Zi,n  - 
t - M\sum 
n=1

\Delta r,i(n)Zi,n = Ri +

t\sum 
n=t - M+1

\Delta r,i(n)Zi,n.

Similarly, the total number of balls in urn i at time t is

(2.5) Ti +

t\sum 
n=t - M+1

(\Delta r,i(n)Zi,n +\Delta b,i(n)(1 - Zi,n)).

The result then follows by dividing (2.4) by (2.5), and by normalizing both numerator
and denominator by Ti.

We now establish the Markov property for the network draw process \{ Zt\} \infty t=1.

D
ow

nl
oa

de
d 

05
/0

7/
22

 to
 1

30
.1

5.
24

4.
16

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

S352 SOMYA SINGH, FADY ALAJAJI, AND BAHMAN GHARESIFARD

Proposition 2.2. For an IPCN(M,N) system, the stochastic process given by
\{ Zt\} \infty t=1 is a time-varying Markov chain of order M .

Proof. Let at = (a1,t, . . . , aN,t) \in \{ 0, 1\} N . Using (2.1) and by virtue of the
conditional independence of the draw variables Zi,t and Zi\prime ,t given all past draws in
the network for all i \not = i\prime , we have for t \geq M that

P [Zt+1 = at+1| Zt = at, . . . , Z1 = a1]

=

N\prod 
i=1

P [Zi,t+1 = ai,t+1| Zt = at, . . . , Z1 = a1]

=

N\prod 
i=1

\left(  ai,t+1

N\sum 
j=1

sijUj,t + (1 - ai,t+1)

\Biggl( 
1 - 

N\sum 
j=1

sijUj,t

\Biggr) \right)  .

As a result, we have that

P [Zt+1 = at+1| Zt = at, . . . , Z1 = a1]

=

N\prod 
i=1

\Biggl( 
(2ai,t+1  - 1)

N\sum 
j=1

sij

\Bigl( 
\rho j +

t\sum 
n=t - M+1

\delta r,j(n)aj,n

\Bigr) 
1 +

t\sum 
n=t - M+1

(\delta r,j(n)aj,n + \delta b,j(n)(1 - aj,n))

+ (1 - ai,t+1)

\Biggr) 
(2.6)

= P [Zt+1 = at+1| Zt = at, . . . , Zt - M+1 = at - M+1].

Hence the process \{ Zt\} \infty t=1 is a time-varying Mth order Markov chain.

3. Analysis of the homogeneous case. In many settings of contagion propa-
gation, the ``individuals"" in the network, being the urns in our setting, are ``identical""
in the sense of having similar initial parameters. Motivated by this, in this section
we further develop the stochastic properties of the IPCN(M,N) system for the case
where the underlying parameters given in (2.2) are uniform across all urns, by setting
\Delta r,i(t) = \Delta b,i(t) = \Delta > 0, Ri = R, and Ti = T , for all i and t. By Lemma 2.1, for a
homogeneous IPCN(M,N), we have that

(3.1) Ui,t =

\rho + \delta 
t\sum 

n=t - M+1

Zi,n

1 + \delta M

for t \geq M + 1, where \rho = R
T = 1 - \sigma and \delta = \Delta 

T .
By a proof similar to the one given in Proposition 2.2, we next note that for

a homogeneous IPCN(M,N), the draw process \{ Zt\} \infty t=1 is a time-invariant Markov
chain of order M . Indeed, using (2.1) and (3.1), or by directly simplifying (2.6), we
have

P[Zt+1 = at+1| Zt = at, . . . , Z1 = a1]

=

N\prod 
i=1

\left(  (2ai,t+1  - 1)

N\sum 
j=1

sij(\rho + \delta 
\sum t

k=t - M+1 aj,k)

1 + \delta M
+ (1 - ai,t+1)

\right)  
= P[Zt+1 = at+1| Zt = at, . . . , Zt - M+1 = at - M+1],(3.2)
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where the conditional probabilities do not depend on time; hence for the homogeneous
IPCN(M,N), \{ Zt\} \infty t=1 is a time-invariant Mth order Markov chain.

We next examine more closely the properties of this time-invariant Markov chain.
Starting with the case of M = 1, i.e., for the homogeneous IPCN(1, N) system, the
transition probabilities of \{ Zt\} \infty t=1 are given by (3.2). Also, the probability of going
from state a = (a1,t, . . . , aN,t) to state b = (b1,t+1, . . . , bN,t+1) can expressed as

q
(1,N)
ab := q

(1)
ab q

(2)
ab \cdot \cdot \cdot q(N)

ab ,

where

(3.3) q
(d)
ab =

\left\{                 

\sigma +

\biggl( 
1 - 

N\sum 
k=1

sdkak,t

\biggr) 
\delta 

1 + \delta 
if bd,t+1 = 0,

\rho +
N\sum 

k=1

sdkak,t\delta 

1 + \delta 
if bd,t+1 = 1,

with d \in \{ 1, . . . , N\} . We denote the transition probability matrix of this Markov

process with memory M = 1 and N urns by the matrix Q(1,N) =
\bigl[ 
q
(1,N)
ab

\bigr] 
, whose

entries are given above. Note that for a memory M = 1 Markov process, it is possible
to go from one state to another in one time step with a positive transition probability.
Hence, the Markov chain is irreducible and aperiodic.

For the case of M > 1, since \{ Zt\} \infty t=1 is an Mth order Markov process with 2N

states, the process \{ Wt\} \infty t=1, defined by Wt := (Zt, Zt+1, . . . , Zt+M - 1), becomes an
(equivalent) Markov chain of order one with an expanded alphabet of 2NM states.
For the Markov chain \{ Wt\} , the transition probability of going from state

a = ((a11, a21, . . . , aN1), . . . , (a1M , a2M , . . . , aNM ))

to state
b = ((b11, b21, . . . , bN1), . . . , (b1M , b2M , . . . , bNM ))

in one time step is nonzero if and only if aij = bi(j - 1) for i \in \{ 1, . . . , N\} and j \in 
\{ 2, . . . ,M\} . If the transition probability is nonzero, it is given by

q
(M,N)
ab := \widetilde q(1)ab \widetilde q(2)ab \cdot \cdot \cdot \widetilde q(N)

ab ,

where

(3.4) \widetilde q(d)ab =

\left\{                     

\sigma +
\Bigl( 
M  - 

N\sum 
i=1

sdi

\Bigl( M\sum 
k=1

aik

\Bigr) \Bigr) 
\delta 

1 +M\delta 
if bdM = 0,

\rho +
\Bigl( N\sum 

i=1

sdi

\Bigl( M\sum 
k=1

aik

\Bigr) \Bigr) 
\delta 

1 +M\delta 
if bdM = 1,

where d \in \{ 1, . . . , N\} . Similar to the case of memory one, we denote the transition

probability matrix for memory M and N urns by the matrix Q(M,N) =
\bigl[ 
q
(M,N)
ab

\bigr] 
whose entries are given above. In the next lemma, we extend the above irreducibility
and aperiodicity properties for the Markov process \{ Wt\} \infty t=1 with M \geq 1.
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Lemma 3.1. For the homogeneous IPCN(M,N), the transition probability matrix
Q(M,N) is irreducible and aperiodic.

Proof. We have already seen that the Markov process given by the transition
probability matrix Q(1,N) is irreducible and aperiodic. For memory M > 1, to prove
irreducibility of the Markov chain, we show that given any two states, it is possible to
go from one state to another in finitely many time steps with a positive probability.
Let us fix two arbitrary states, a = ((a11, a21, . . . , aN1), . . . , (a1M , a2M , . . . , aNM )) and
b = ((b11, b21, . . . , bN1), . . . , (b1M , b2M , . . . , bNM )). We next construct an M -step path
(which occurs with a positive probability) between states a and b.

\bullet Suppose the Markov chain is in state Wt = a at time t. At time t+ 1, we go
from state a to state

Wt+1 = a(0) =
\Bigl( 
Zt+1 = (a12, a22, . . . , aN2),

. . . , Zt+M = (a1M , a2M , . . . , aNM ), Zt+M = (b11, b21, . . . , bN1)
\Bigr) 
.

Since aij = a
(0)
i(j - 1) for i \in \{ 1, 2, . . . , N\} and j \in \{ 2, 3, . . . ,M\} , the transition

probability of going from state a to a(0) is nonzero and can be obtained using
(3.4).

\bullet At time t+ 2 we go from state a(0) to state a(1),

Wt+2 = a(1) =
\Bigl( 
Zt+2 = (a13, . . . , aN3), . . . , Zt+M+1 = (b11, . . . , bN1),

Zt+M+1 = (b12, . . . , bN2)
\Bigr) 
.

Following this pattern of adding one N -tuple from state b at each time step, we will
reach state b in M time steps. In summary, choosing any initial state, we can reach
any other state of the Markov chain in at most M steps. Hence, the Markov chain
is irreducible. Also, note that the period of the state with all zeros is one. Since all
the states of an irreducible Markov chain have the same period, we obtain that this
Markov chain is aperiodic.

We now have an explicit formula for the entries of the transition probability
matrix Q(M,N). Since the time-invariant Markov chain \{ Wt\} \infty t=1 is irreducible and
aperiodic, it has a unique stationary distribution and it is ergodic. We next illustrate
this Markov process via a simple example.

Example 3.1. Given a homogeneous IPCN(1, 2) system with interaction matrix

S =

\biggl[ 
s11 1 - s11
s21 1 - s21

\biggr] 
,

the stationary distribution for the transition probability matrix Q(1,2) is given by

\pi 00 =
2\sigma 2\delta + \sigma 2 + (1 - s11  - s21 + 2s11s21)\sigma \delta 

2

(1 - s11  - s21 + 2s11s21)\delta 2 + 2\delta + 1
,

\pi 01 =
\rho \sigma (1 + 2\delta )

(1 - s11  - s21 + 2s11s21)\delta 2 + 2\delta + 1
,

\pi 10 =
\rho \sigma (1 + 2\delta )

(1 - s11  - s21 + 2s11s21)\delta 2 + 2\delta + 1
,

\pi 11 =
\rho (2\delta  - \sigma  - 2\sigma \delta + (1 - s11  - s21 + 2s11s21)\delta 

2 + 1)

(1 - s11  - s21 + 2s11s21)\delta 2 + 2\delta + 1
.

D
ow

nl
oa

de
d 

05
/0

7/
22

 to
 1

30
.1

5.
24

4.
16

7 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

FINITE MEMORY INTERACTING P\'OLYA CONTAGION NETWORK S355

It is easy to see that \pi = [\pi 00, \pi 01, \pi 10, \pi 11] satisfies \pi Q
(1,2) = \pi . We thus have

\bullet limt\rightarrow \infty P (Z1,t = 1) = \pi 10 + \pi 11 = \rho , limt\rightarrow \infty P (Z2,t = 1) = \pi 01 + \pi 11 = \rho ,
\bullet limt\rightarrow \infty P (Z1,t = 0) = \pi 00 + \pi 01 = \sigma , limt\rightarrow \infty P (Z2,t = 0) = \pi 00 + \pi 10 = \sigma .

Also using (3.1) with M = 1, we have for i = 1, 2 that

lim
t\rightarrow \infty 

\BbbE [Ui,t] =
\rho + \delta lim

t\rightarrow \infty 
\BbbE [Zi,t]

1 + \delta 
=

\rho + \delta lim
t\rightarrow \infty 

P (Zi,t = 1)

1 + \delta 
= \rho .

Hence, irrespective of the used interaction matrix, the asymptotic marginal (1-
fold) distributions and urn compositions for the IPCN(1, 2) system are the same as
for the single (memory one) P\'olya urn studied in [1]; this result is proved in general
in Theorem 3.2 below. We, however, next observe that the asymptotic 2-fold draw
distributions for the IPCN(1, 2) urns do not match their counterparts for the single
P\'olya urn process of [1]. Indeed, the 2-fold (joint) distribution vector of the single-urn
(stationary) P\'olya Markov chain in [1] is given by

\~\pi (2) =

\biggl[ 
\sigma (\sigma + \delta )

1 + \delta 
,

\rho \sigma 

1 + \delta 
,

\rho \sigma 

1 + \delta 
,
\rho (\rho + \delta )

1 + \delta 

\biggr] 
.

Furthermore, for the homogeneous IPCN(1, 2) system, the joint probability P (Z1,t =
a1, Z1,t+1 = b1) for urn 1 of the homogeneous IPCN(1, 2) system is given by

P (Z1,t = a1, Z1,t+1 = b1)

=
\sum 

a2,b2\in \{ 0,1\} 

P (Z1,t = a1, Z1,t+1 = b1, Z2,t = a2, Z2,t+1 = b2)

=
\sum 

a2,b2\in \{ 0,1\} 

P (Z1,t+1 = b1, Z2,t+1 = b2| Z1,t = a1, Z2,t = a2)P (Z1,t = a1, Z2,t = a2).

Thus noting the conditional independence of Z1,t+1 and Z2,t+1 given (Z1,t, Z2,t), and
using the IPCN(1, 2) matrix Q(1,2) along with the fact that

lim
t\rightarrow \infty 

P (Z1,t = a1, Z2,t = a2) = \pi a1,a2
,

we obtain

lim
t\rightarrow \infty 

P (Z1,t = 0, Z1,t+1 = 0) =
\sigma (\sigma + \delta )

1 + \delta 
 - \pi 01(1 - s11)\delta 

(1 + \delta )
,

lim
t\rightarrow \infty 

P (Z1,t = 0, Z1,t+1 = 1) =
\sigma \rho 

1 + \delta 
+

\pi 01(1 - s11)\delta 

(1 + \delta )
,

lim
t\rightarrow \infty 

P (Z1,t = 1, Z1,t+1 = 0) =
\sigma \rho 

1 + \delta 
+

\pi 01(1 - s11)\delta 

(1 + \delta )
,

lim
t\rightarrow \infty 

P (Z1,t = 1, Z1,t+1 = 1) =
\rho (\rho + \delta )

1 + \delta 
 - \pi 01(1 - s11)\delta 

(1 + \delta )
,

which explicitly shows by how much the asymptotic 2-fold draw distribution for urn 1
deviates from \~\pi (2). Note that by setting s11 = 1, the error term \pi 01(1 - s11)\delta /(1+ \delta )
reduces to zero, making the two distributions match, as expected (since when s11 = 1,
urn 1 only interacts with itself).

Note that it is much harder to derive in closed-form the stationary distribution
for the homogeneous IPCN(M,N) system with M > 1 and N > 2 but we have the
following asymptotic marginal probabilities for a homogeneous IPCN(M,N) system.
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Theorem 3.2. For a homogeneous IPCN(M,N) system

(3.5) lim
t\rightarrow \infty 

P (Zi,t = 1) = \rho 

for all urns i in the network.

Proof. Let \gamma i = limt\rightarrow \infty E[Zi,t] for i \in \{ 1, 2, . . . , N\} . Using (3.4), we obtain

\gamma d =
\rho +

\sum N
i=1 sdi(M\gamma i)\delta 

1 +M\delta 

for d \in \{ 1, 2, . . . , N\} . Let 1N = [1, . . . , 1]\bfT and \gamma = [\gamma 1, . . . , \gamma N ]\bfT , where \bfT denotes
transposition. Then,

(1 +M\delta )\gamma = \rho 1N + (M\delta )S\gamma 

which gives
(1 +M\delta )(\gamma  - \rho 1N ) = (M\delta )S(\gamma  - \rho 1N ).

Setting \widetilde \gamma := \gamma  - \rho 1N in the above equation, we have that

S\widetilde \gamma =
1 +M\delta 

M\delta 
\widetilde \gamma .

Since the eigenvalues of S have absolute values less than or equal to one (as S is a
row-stochastic matrix), we obtain that

\widetilde \gamma = 0

which implies that

\gamma i = \rho \forall i \in \{ 1, 2 . . . , N\} .

4. Dynamical system models. As seen in the earlier section, in general it
is not easy to obtain the stationary distribution for the IPCN(M,N) Markov chain
characterized in (2.6), which has 2MN states. Due to this exponential increase in
the size of the transition probability matrix with the number of urns N and memory
M , it is difficult to analytically solve for the stationary distribution in terms of the
system parameters. In this section, we present the main core of our paper, i.e., a
class of dynamical systems whose trajectory approximates the infection probability
at time t for any urn i in the network. Notably, for the case of M = 1, we observe
that the process naturally leads to an exact linear dynamical system without using
any approximation. For M > 1, we use a mean-field approximation to obtain an
approximating dynamical system. This is in the same theme as the classical SIS
model, and its variations, where a dynamical system is often used instead of the
original Markov chain. A few examples in which an approximate dynamical system is
constructed for a Markov chain are given in [33, 38, 37, 5]. Throughout this section,
we consider \delta r,i(t) = \delta r,i and \delta b,i(t) = \delta b,i for all time instances t, i.e., we remove the
time dependence from the reinforcement parameters of the Markov process.

4.1. Dynamical system for M=1. Our main objective is to analyze the be-
havior of the draw variables \{ Zi,t\} , when memory is one. In particular, we obtain a
dynamical system for the evolution in time of P (Zi,t = 1), which we outline next.

For ease of notation, given an IPCN(M,N) and an urn i, we denote the infection
probability at time t by

Pi(t) := P (Zi,t = 1).
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Recall from Lemma 2.1 and (2.6) withM = 1 that the conditional infection probability
of urn i at time t, given all the draw variables at time t - 1, is given by

P (Zi,t = 1| Z1,t - 1, Z2,t - 1, . . . , ZN,t - 1) =

N\sum 
j=1

sij(\rho j + \delta r,jZj,t - 1)

1 + \delta r,jZj,t - 1 + (1 - Zj,t - 1)\delta b,j

(4.1)

=

N\sum 
j=1

[sij\beta 
(j)
1 (1)Zj,t - 1 + sij\beta 

(j)
1 (0)(1 - Zj,t - 1)],

where

\beta 
(j)
1 (k) :=

\rho j + k\delta r,j
1 + k\delta r,j + (1 - k)\delta b,j

, j \in \{ 1, . . . , N\} , k \in \{ 0, 1\} .

Now taking expectation with respect to (Z1,t - 1, . . . , ZN,t - 1) on both sides of (4.1),
we get

Pi(t) =

N\sum 
j=1

[\beta 
(j)
1 (1)sijPj(t - 1) + sij\beta 

(j)
1 (0)(1 - Pj(t - 1))].(4.2)

To this end, defining the vector P (t) as

P (t) = [P1(t), P2(t), . . . , PN (t)]\bfT ,

we obtain the following dynamical system for the IPCN(1, N) network.

Theorem 4.1. For the IPCN(1, N) system, the infection vector satisfies

(4.3) P (t) = JN,1P (t - 1) + CN,1,

where JN,1 \in \BbbR N\times N , CN,1 \in \BbbR N\times 1 are matrices with respective entries

[JN,1]i\times j =
sij(\rho j + \delta r,j)

(1 + \delta r,j)
 - sij\rho j

(1 + \delta b,j)
= sij(\beta 

(j)
1 (1) - \beta 

(j)
1 (0))

and [CN,1]1\times i =

N\sum 
j=1

sij\rho j
(1 + \delta b,j)

=

N\sum 
j=1

sij\beta 
(j)
1 (0).

Proof. The proof follows from (4.2).

We next examine the equilibrium of this linear dynamical system.

Theorem 4.2. The linear dynamical system for the IPCN(1, N) system given
by (4.3) has a unique equilibrium point given by P \ast = (I  - JN,1)

 - 1CN,1 and

lim
t\rightarrow \infty 

Pi(t) = P \ast 
i

for all i \in \{ 1, . . . , N\} .
Proof. It is enough to show that the spectral radius of the matrix JN,1 is less

than one; since the spectral radius is less than or equal to the row sum norm of the
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matrix, it is enough to show that the row sum norm of JN,1 is strictly less than 1;
see [36]. Note that

(4.4)  - 1 <
(\rho j + \delta r,j)

(1 + \delta r,j)
 - \rho j

(1 + \delta b,j)
< 1

since 0 \leq \rho j \leq 1 and \delta r,j , \delta b,j \geq 0 for all j \in \{ 1, 2, . . . , N\} . Hence, the sum of absolute
values of entries in ith row of the matrix JN,1 satisfies

N\sum 
j=1

sij

\bigm| \bigm| \bigm| \bigm| (\rho j + \delta r,j)

(1 + \delta r,j)
 - \rho j

(1 + \delta b,j)

\bigm| \bigm| \bigm| \bigm| < N\sum 
j=1

sij = 1,

which yields the result.

As an illustration, we find the equilibrium of the linear dynamical system (4.3)
for a much simpler IPCN(1, N) system.

Corollary 4.3. Given an IPCN(1, N) system with S = I,

(4.5) lim
t\rightarrow \infty 

Pi(t) =
\rho i(1 + \delta r,i)

1 + \delta b,i + \rho i(\delta r,i  - \delta b,i)
.

Proof. For an IPCN(1, N) system with S = I, we have that

P (Z1,t - 1 = a1, . . . , ZN,t - 1 = aN ) =

N\prod 
j=1

P (Zj,t - 1 = aj).

In this case, since S = I and hence the draw variables of urns are independent of each
other. The asymptotic value of Pi(t) for i \in \{ 1, . . . , N\} is given by the equilibrium
point of the linear dynamical system

P (t) = JN,1P (t - 1) + CN,1

which is given by P \ast \in \BbbR N whose ith component is given by (4.5).
Another way to find this equilibrium point is to write the transition probability

matrix for a single urn using (2.6) and solving for stationary distribution to obtain
limt\rightarrow \infty Pi(t). The transition probability matrix for a single nonhomogeneous urn i is
given by

Q(1,1) =

\left[    
\sigma i + \delta b,i
1 + \delta b,i

\rho i
1 + \delta b,i

\sigma i

1 + \delta r,i

\rho i + \delta r,i
1 + \delta r,i

\right]    .

On solving for the stationary distribution, [\pi 0, \pi 1]Q
(1,1) = [\pi 0, \pi 1], we obtain that \pi 1

indeed equals the right-hand-side (R.H.S.) of (4.5).

We also illustrate Theorem 4.2 by examining the special homogeneous case. This
aligns with the result in Theorem 3.2.

Corollary 4.4. For a homogeneous IPCN(1, N) system, the equilibrium of (4.3)
is given by P \ast = \rho 1N , where 1N is vector of ones of size N .

Proof. By Theorem 4.2, the equilibrium P \ast is given by

P \ast = (I  - JN,1)
 - 1CN,1.
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Note that the row sums in (I  - JN,1) are given by 1
1+\delta , i.e.,

(I  - JN,1)1N =
1

1 + \delta 
1N .

Therefore,

(I  - JN,1)
 - 1CN,1 = (I  - JN,1)

 - 1
\Bigl[ 

\rho 
(1+\delta )

\rho 
(1+\delta ) \cdot \cdot \cdot \rho 

(1+\delta )

\Bigr] \bfT 
= \rho 1N .

4.2. Dynamical system for M > 1. We now construct a class of dynamical
systems which approximates the IPCN(M,N) Markov chain in (2.6). Unlike the
memory M = 1 case, we need to resort to approximations here to obtain dynamical
systems. We use the following mean-field approximation here:

\bullet We assume that for every time instant t > M , for each urn i, Zi,t - 1, . . . , Zi,t - M

are approximately independent of each other; i.e., at any given time in-
stant t > M , we assume that

P [Zj,t - 1, Zj,t - 2, \cdot \cdot \cdot , Zj,t - M ] \approx 
M\prod 
k=1

P [Zj,t - k](4.6)

for all j \in \{ 1, 2, . . . , N\} .

For the IPCN(M,N) system, we have from (2.6) that

P [Zi,t =1| (Z1,t - 1, . . . , Z1,t - M ), . . . , (ZN,t - 1, . . . , ZN,t - M )]

=

N\sum 
j=1

sij

\Bigl( 
\rho j + \delta r,j

M\sum 
k=1

Zj,t - k

\Bigr) 
1 +

M\sum 
k=1

(\delta r,jZj,t - k + \delta b,j(1 - Zj,t - k))

.(4.7)

Now, taking expectation with respect to

((Z1,t - 1, . . . , Z1,t - M ), . . . , ((ZN,t - 1, . . . , ZN,t - M )))

on both sides of (4.7) and using the linearity property of expectation, we obtain

P [Zi,t = 1] =

N\sum 
j=1

E

\left[     
sij

\Bigl( 
\rho j + \delta r,j

M\sum 
k=1

Zj,t - k

\Bigr) 
1 +

M\sum 
k=1

(\delta r,jZj,t - k + \delta b,j(1 - Zj,t - k))

\right]     (4.8)

=

N\sum 
j=1

\sum 
BM

sij(\rho j + \delta r,j
\sum M

k=1 ak)

1 +
M\sum 
k=1

(\delta r,jak + \delta b,j(1 - ak))

P (Zj,t - 1 = a1, . . . Zj,t - M = aM ),

where

BM := \{ (a1, a2, . . . aM ) | ak \in \{ 0, 1\} for k \in \{ 1, 2, . . . ,M\} \} .(4.9)
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Now we use the mean-field approximation (4.6) in (4.8) to obtain the following
class of approximating nonlinear dynamical systems:

Pi(t) \approx 
N\sum 
j=1

\sum 
BM

sij(\rho j + \delta r,j
\sum M

k=1 ak)

1 +
M\sum 
k=1

(\delta r,jak + \delta b,j(1 - ak))

M\prod 
k=1

P [Zj,t - k = ak]

(4.10)

=

N\sum 
j=1

\sum 
BM

sij(\rho j + \delta r,j
\sum M

k=1 ak)

1 + \delta r,j
M\sum 
k=1

ak + \delta b,j

\Bigl( 
M  - 

M\sum 
k=1

ak

\Bigr) M\prod 
k=1

(akPj(t - k) + (1 - ak)(1 - Pj(t - k))).

For simplicity of notation, we write (4.10) in the following way:

Pi(t) \approx 
\sum 
BM

\biggl[ N\sum 
j=1

sij\beta 
(j)
M (vM )

\biggr] M\prod 
k=1

(akPj(t - k) + (1 - ak)(1 - Pj(t - k))),(4.11)

where

vM =

M\sum 
k=1

ak, where ak \in \{ 0, 1\} for k \in \{ 1, 2, . . . ,M\} ,

\beta 
(j)
M (l) =

\rho j + l\delta r,j
1 + l\delta r,j + (M  - l)\delta b,j

, j \in \{ 1, . . . , N\} , l \in \{ 0, 1, . . .M\} .(4.12)

We next give a useful rearranged form of (4.11). In particular, even though (4.11)
appears to be complicated, after some simplifications the coefficients of the nonlinear
terms follow a binomial pattern. To give an idea of this binomial pattern, we will
first present a few examples and then give a proof formula for the rearranged form of
(4.11).

Example 4.1. We note that for the IPCN(2, 2) system, the approximating dynam-
ical system is given by

Pi(t) \approx 
2\sum 

j=1

sij\beta 
(j)
2 (0) +

2\sum 
j=1

2\sum 
k=1

sij

\Bigl( 
\beta 
(j)
2 (1) - \beta 

(j)
2 (0)

\Bigr) 
Pj(t - k)

+
2\sum 

j=1

sij

\Bigl( 
\beta 
(j)
2 (2) - 2\beta 

(j)
2 (1) + \beta 

(j)
2 (0)

\Bigr) 2\prod 
k=1

Pj(t - k).

Next, by expansion, we observe that for IPCN(3, 2) system, the approximating dy-
namical system is given by

Pi(t) \approx 
2\sum 

j=1

sij\beta 
(j)
3 (0) +

2\sum 
j=1

3\sum 
k=1

Pj(t - k)sij

\Bigl[ 
\beta 
(j)
3 (1) - \beta 

(j)
3 (0)

\Bigr] 

+

2\sum 
j=1

Pj(t - 1)Pj(t - 2)sij

\Bigl[ 
\beta j
3(0) - 2\beta 

(j)
3 (1) + \beta 

(j)
3 (2)

\Bigr] 

+

2\sum 
j=1

Pj(t - 2)Pj(t - 3)sij

\Bigl[ 
\beta 
(j)
3 (0) - 2\beta 

(j)
3 (1) + \beta 

j)
3 (2)

\Bigr] D
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+

2\sum 
j=1

Pj(t - 1)Pj(t - 3)sij

\Bigl[ 
\beta 
(j)
3 (0) - 2\beta 

(j)
3 (1) + \beta 

(j)
3 (2)

\Bigr] 

+

2\sum 
j=1

Pj(t - 1)Pj(t - 2)Pj(t - 3)sij

\Bigl[ 
3\beta 

(j)
3 (1) - 3\beta 

(j)
3 (2) - \beta 

(j)
3 (0) + \beta 

(j)
3 (3)

\Bigr] 
,

where one can already observe the binomial pattern that we hinted at.

We will now obtain a rearrangement of (4.11) for a general IPCN(M,N) system.

Theorem 4.5. For the IPCN(M,N) system, the approximating dynamical sys-
tem (4.11) can be written as

Pi(t) \approx 
N\sum 
j=1

sij\beta 
(j)
M (0)

+

N\sum 
j=1

M\sum 
n=1

\biggl[ \biggl( n\sum 
k=0

\biggl( 
( - 1)n - k

\biggl( 
n

k

\biggr) 
sij\beta 

(j)
M (k)

\biggr) \biggr) \biggl( \sum 
(d1,...,dn)
\in Hn,M

Pj(t - d1) \cdot \cdot \cdot Pj(t - dn)

\biggr) \biggr] 
,

(4.13)

where

Hn,M := \{ (d1, d2, . . . , dn)
\bigm| \bigm| di \in \{ 1, . . . ,M\} , di \not = dj \forall i, j \in \{ 1, . . . , n\} \} .

Proof. We show that (4.13) is obtained by a rearrangement of (4.11). The R.H.S.
of (4.11) is given by

N\sum 
j=1

\Biggl[ \sum 
BM

sij\beta 
(j)
M (vM )

M\prod 
k=1

\Biggl( 
akPj(t - k) + (1 - ak)(1 - Pj(t - k))

\Biggr) \Biggr] 
.(4.14)

The constant term can be extracted from (4.14) by setting aj = (0, 0, . . . , 0) in BM

for 1 \leq j \leq N and is given by
N\sum 
j=1

sij\rho j
1 +M\delta b,j

.

Now, fixing j \in \{ 1, 2, . . . , N\} , we expand the term

(4.15)
\sum 
BM

sij\beta 
(j)
M (vM )

M\prod 
k=1

(akPj(t - k) + (1 - ak)(1 - Pj(t - k))).

Note that the order of (4.15) isM . In order to get the nth degree term (where 1 \leq n \leq 
M in (4.15)), we need to choose n corresponding Pj(t - k)'s, where k \in \{ 1, 2, . . . ,M\} 
from the product

M\prod 
k=1

(akPj(t - k) + (1 - ak)(1 - Pj(t - k)))

and the rest M  - n chosen terms have to be 1. We then look at the coefficient of the
chosen nth order term. Note that the coefficients of the chosen Pj(t - k)'s are either 1
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or  - 1, depending on the tuple aj . Given a tuple aj , there are exactly vM , Pj(t - k)'s
with coefficients 1 and the rest n - vM of them have coefficient  - 1.

Summing over all the possible coefficients of the nth degree term of (4.14) we get

n\sum 
k=0

( - 1)n - k

\biggl( 
n

k

\biggr) 
sij\beta 

(j)
M (k)

\sum 
(d1,...,dn)
\in Hn,M

Pj(t - d1) \cdot \cdot \cdot Pj(t - dn).

Finally, we can obtain the nth degree terms (1 \leq n \leq M) for the other N  - 1 urns in
exactly the same way as above.

The analysis of the nonlinear dynamical systems given in (4.13) is clearly more
intricate than the one in the case with memory one, where the evaluations were
given by a linear dynamical system, namely (4.3). That being said, given that the
presence of nonlinearity is due to the product of probabilities, we can use a further
approximation by considering the leading linear terms.

Corollary 4.6. The linear part of the dynamical system (4.13) is given by

(4.16) Pi(t) \approx 
N\sum 
j=1

sij\beta 
(j)
M (0) +

N\sum 
j=1

M\sum 
k=1

sij

\Bigl( 
\beta 
(j)
M (1) - \beta 

(j)
M (0)

\Bigr) 
Pj(t - k).

Proof. Setting n = 1 in (4.13) we obtain

Pi(t) \approx 
N\sum 
j=1

sij\beta 
(j)
M (0)

+

N\sum 
j=1

\biggl( 
( - 1)

\biggl( 
1

0

\biggr) 
sij\beta 

(j)
M (0) + ( - 1)2

\biggl( 
1

1

\biggr) 
sij\beta 

(j)
M (k)

\biggr) \biggl( \sum 
d\in H1,M

Pj(t - d)

\biggr) 

=

N\sum 
j=1

sij\beta 
(j)
M (0) +

N\sum 
j=1

M\sum 
k=1

sij(\beta 
(j)
M (1) - \beta 

(j)
M (0))Pj(t - k).

Equation (4.16) gives an approximate linear dynamical system for the IPCN(M,N)
system. For M \geq 1 network of N urns, we define\widetilde P (t) := [P1(t), . . . , P1(t - M), P2(t), . . . , P2(t - M), . . . , PN (t), . . . , PN (t - M)]\bfT .

Using (4.13) and dropping the nonlinear terms, we can write

(4.17) \widetilde P (t) \approx JN,M
\widetilde P (t - 1) + CN,M ,

where JN,M is a block matrix with N2 blocks of size M \times M . Also,

JN,M =

\left[     
JN,M (1, 1) JN,M (1, 2) \cdot \cdot \cdot JN,M (1, N)
JN,M (2, 1) JN,M (2, 2) \cdot \cdot \cdot JN,M (2, N)

...
. . .

...
...

JN,M (N, 1) JN,M (N, 2) \cdot \cdot \cdot JN,N (N,N)

\right]     
NM\times NM

.

Here, the diagonal blocks of matrix, JN,M (i, i) are given by\Biggl[ 
sii(\beta 

(i)
M (1) - \beta 

(i)
M (0)) \cdot \cdot \cdot sii(\beta 

(i)
M (1) - \beta 

(i)
M (0)) sii(\beta 

(i)
M (1) - \beta 

(i)
M (0))

I(M - 1)\times (M - 1) 01\times (M - 1)

\Biggr] 
M\times M

,
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where I(M - 1)\times (M - 1) is the identity matrix of size M  - 1 and 01\times (M - 1) is the column
vector of lengthM - 1 with all entries zero. Similarly, the off-diagonal blocks JN,M (i, j)
are given by\Biggl[ 

sij(\beta 
(j)
M (1) - \beta 

(j)
M (0)) \cdot \cdot \cdot sij(\beta 

(j)
M (1) - \beta 

(j)
M (0)) sij(\beta 

(j)
M (1) - \beta 

(j)
M (0))

0(M - 1)\times (M - 1) 01\times (M - 1)

\Biggr] 
M\times M

,

where 0(M - 1)\times (M - 1) is a matrix of size (M  - 1) with all entries zero. Finally, CN,M

is a column matrix with N blocks each of size 1\times M given by

CN,M (i) =

\biggl[ 
N\sum 
j=1

sij\beta 
(j)
M (0) 0 \cdot \cdot \cdot 0

\biggr] \bfT 
1\times M

.

The linear dynamical system (4.17) has a unique equilibrium which is given by (I  - 
JN,M ) - 1CN,M . Even though we leave further studies of stability properties of the
nonlinear dynamical system (4.13) as a future direction, it is worth pointing out
that (4.17) asymptotically converges to the unique equilibrium if and only if the
spectral radius of JN,M is less than one. The possible dependency of this condition
to the interaction matrix and urn properties is also interesting for future studies.

We next present a few simulations to assess how close these class dynamical
systems are to our Markov process.

5. Simulation results. We provide a set of simulations1 to illustrate our re-
sults. For this purpose, we have considered four different setups which are aimed at
demonstrating the impact of memory, as well as initial urn compositions and reinforce-
ment parameters. In particular, for the first two networks with N = 10 (i.e., Figures 1
and 2), we use \delta r values that are significantly larger than the \delta b values in Figure 1
and \delta b values significantly larger than \delta r values in Figure 2. In Figure 3, we consider
larger size nonhomogeneous networks with N = 100. We simulate the IPCN(M,N)
system for M = 1, 2, 3 and their corresponding approximating (nonlinear) dynamical
systems given by (4.13). We also simulate the linear approximation (4.16) of the
nonlinear dynamical system for each M = 2, 3. Recall that for M = 1, the linear
dynamical system in (4.3) exactly characterizes the underlying Markov draw process.
Finally, in Figure 4, we simulate a homogeneous IPCN(M,N) system. Throughout,
for the given IPCN(M,N) system, we plot the average empirical sum at time t, which
is given by

1

N

N\sum 
i=1

It(i), where It(i) =
1

t

t\sum 
n=1

Zi,n.

For each plot, the average empirical sum is computed 100 times and the mean value
is plotted against time. For the dynamical systems, we plot the average infection rate
at time t, which is given by 1

N

\sum N
i=1 Pi(t).

We first note from the simulations that for the network with M = 1, the linear
system in (4.3) matches the empirical sum of the draw process, as expected since in
this case the linear system is exact.

We next observe that the nonlinear dynamical system (4.13) is always a good
approximation for the IPCN(M,N) system. Note that in (4.13), the order of the
approximating nonlinear dynamical system is equal to the memory of the IPCN(M,N)

1For a complete list of parameters used for generating all figures, see the link https://www.
dropbox.com/sh/19py25reaxnfoyn/AABFdBp98J-9Jkd7zzVfTAQ9a?dl=0.
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Fig. 1. Infection rate curves for nonhomogeneous IPCN(M,N) systems with N = 10 nodes
and memory M = 1, 2, 3. At t = 0, each urn has a total of 25 balls. The number of red balls in each
urn at t = 0 is chosen randomly between range 5 to 23 so that \rho \prime s lie in the range 0.2 to 0.92. \Delta \prime 

rs
are chosen randomly between range 60 to 70 and \Delta \prime 

bs are randomly chosen between range 20 to 29.
For simplicity, we set the initial values Pi(0), Pi(1), . . . , Pi(M  - 1) all equal to zero for all urns i in
the network. (Figure in color online.)

system. Therefore, when we drop nonlinear terms from (4.13) to obtain the linear
approximation (4.16), as we expect, the approximation gets worse. For M > 1,
we can see this worsening of linear approximation in Figures 1 and 3. However,
in some exceptional cases, the linear approximation performs well. An example of
this behavior is presented in Figure 2, where the linear approximations perform as
well as the nonlinear ones. An important aspect of these simulations is that the
reinforcement parameters play a major role in determining the asymptotic value of
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Fig. 2. Infection rate curves for nonhomogeneous IPCN(M,N) systems with N = 10 nodes
and memory M = 1, 2, 3. At t = 0, the total number of balls in each urn is 25. The number of red
balls in each urn at time t = 0 are chosen randomly between the range 2 to 17 so that \rho \prime s lie in the
range 0.08 to 0.68. \Delta \prime 

rs are chosen randomly in the range 12 to 30. \Delta \prime 
bs are chosen in the range

61 to 80. For simplicity, we set the initial values Pi(0), Pi(1), . . . , Pi(M  - 1) all equal to zero for all
urns i. (Figure in color online.)

the probability of infection. For example, in Figure 1, since the \delta r parameters are
significantly larger than the \delta b parameters (i.e., infection is much more likely than
recovery), the asymptotic value of the plots is higher (i.e., the urns tend towards
having a larger composition of red balls). Similarly in Figure 2, since the \delta b values are
significantly larger than the \delta r values, the asymptotic value of the plots are lower (i.e.,
the urns tend towards having a larger proportion of black balls). Furthermore, the
better performance of the linear system observed in Figure 2 relative to Figures 1 and 3
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Fig. 3. Infection rate curves for nonhomogeneous IPCN(M,N) Barab\'asi--Albert [2] systems
with N = 100 nodes and memory M = 1, 2, 3. At t = 0, the total number of balls in each urn is 25.
The number of red balls in each urn at time t = 0 are chosen randomly between the range 1 to 10
so that \rho \prime s lie in the range 0.04 to 0.4. \Delta \prime 

rs are chosen randomly in the range 40 to 50. \Delta \prime 
bs are

chosen in the range 15 to 25. For simplicity, we set the initial values Pi(0), Pi(1), . . . , Pi(M  - 1) all
equal to zero for all urns i. (Figure in color online.)

is attributed to the fact that the constant term in the linear approximation (given by
(4.16)) increases when \delta r is increased and decreases when \delta b is increased. Depending
on how large \delta r is, the probability of infection as approximated by (4.16) can exceed
1 and hence the linear approximation does not perform well for these cases. Whereas,
no matter how large \delta b gets, the probability of infection never gets smaller than 0 and
hence the linear approximation performs comparatively better in this case. Last, we
observe from the simulations for the homogeneous IPCN(M,N) system in Figure 4
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Fig. 4. Infection rate curves for homogeneous IPCN(M,N) systems with N = 10 nodes and
memory M = 1, 2, 3. We set \rho = 0.48, \delta r = \delta b = 0.44 for all the urns in the network. For simplicity,
we set the initial values Pi(0), Pi(1), . . . , Pi(M  - 1) all equal to zero for all urns i.

that the empirical sum as well as the linear and nonlinear dynamical approximations
converge to \rho irrespective of the memory of the system. This phenomenon is indeed
shown in Theorem 3.2 for any homogeneous IPCN(M,N) system.

6. Conclusions. We formulated an interacting P\'olya contagion network with fi-
nite Markovian memory. We showed that for the homogeneous case, i.e., when all urns
have identical initial conditions and reinforcement parameters, the underlying Markov
process is irreducible and aperiodic and hence has a unique stationary distribution.
We also derived the exact asymptotic marginal infection distribution. For the nonho-
mogeneous interacting P\'olya contagion network, we constructed dynamical systems to
evaluate the network's infection propagation. We showed that when memory M = 1,
the probability of infection can be exactly represented by a linear dynamical system
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which has a unique equilibrium point to which the solution asymptotically converges.
For memory M > 1, we used mean-field approximations to construct approximating
dynamical systems which are nonlinear in general; we obtained a linearization of this
dynamical system and characterize its equilibrium. We provided simulations compar-
ing the corresponding linear and approximating nonlinear dynamical systems with the
original stochastic process. Notably, we demonstrated that the approximating non-
linear dynamical system performs well for all tested values of memory and network
size. Future work includes analyzing the stability properties of the nonlinear model,
studying the scaling of the approximations with the size of the network, and designing
curing strategies for the proposed model with systematic comparisons with the SIS
model.
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