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The Performance Of FoCused Error
Control Codes

Fady Alajaji, Student Member, IEEE, and Thomas Fuja, Member, IEEE

Abstract— Consider an additive noise channel with inputs
and outputs in the field GF(q) where q > 2; every time a
symbol is transmitted over such a chanmnel, there are q—1
different errors that can occur, corresponding to the q-—1
non-zero elements that the channel can add to the transmit-
ted symbol. In many data communication/storage systems,
there are some errors that occur much more frequently than
others; however, traditional error correcting codes — de-
signed with respect to the Hamming metric — treat each
of these q—1 errors the same. Fuja and Heegard have de-
signed a class of codes, called focused error countrol codes,
that offer different levels of protection against *common”
and “uncommon” errors; the idea is to define the level of
protection in a way based not only on the number of errors,
but the kind as well. In this paper, the performance of these
codes is analyzed with respect to idealized “skewed” chan-
nels as well as realistic non-binary modulation schemes. It
is shown that focused codes, used in conjunction with PSK
and QAM signaling, can provide more than 1.0 dB of addi-
tional coding gain when compared with Reed-Solomon codes
for small blocklengths.

I. INTRODUCTION AND MOTIVATION

When a symbol from GF(q) is sent over a channel with
additive noise, there are ¢ — 1 different non-zero noise sym-
bols that can corrupt the transmitted field element. “Tra-
ditional” error control codes, designed with respect to the
Hamming metric, treat each of these ¢ — 1 possibilities the
same.

However, in many non-binary data transmission and stor-
age channels, there are some errors that occur much more
frequently than others. ‘As an example, consider a modu-
lation scheme in which data is mapped onto one’'of M = 2°
signal points using a Gray code, so the most likely detec-
tion errors cause exactly one bit error per symbol. In such
a system the most likely errors cause the received symbol
to differ from the transmitted symbol in exactly one bit
of their binary representation; thus, while there are 2° — 1
different possible errors, there are only b that are likely. A
similar situation arises in byte-organized memory systems;
while a code with “byte wide” symbols may be structurally
appropriate for such a system, the dominant error types are
often single-bit-per-byte failures. It is obviously inefficient
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to provide the same degree of protection against the un-
comimon errors as against the common ones.

This observation led Fuja and Heegard to develop the
idea of a focused error control code [1]. Such codes are
designed to give one level of protection against a specific
set of common errors while maintaining another (lower)
level of protection against uncommon errors. In [1] results
are obtained regarding the existence and construction of
such codes as well as bounds on their rates.

This paper analyzes the unique rate/performance trade-
offs offered by focused codes. First, the pertinent results
from [1] are reviewed; then, the performance of focused
codes over an idealized skewed channel is analyzed and that
analysis is applied to M-ary PSK and QAM signaling.

II. BAckGROUND ON Focuseb CoDES

In this section the pertinent results from [1] are reviewed.

A. What s a Focused Code ?

For any x € GF(q)" denote the Hamming weight of x by
|x|| - i.e., ||x|] denotes the number of non-zero components
of x. More generally, let GF(q)* denote the set of non-zero
elements of GF(g) and let A C GF(¢)*. Then for any
x € GF(q)" define the A-weight of x as the number of
components of x that lie in A.

Definition: Let B C GF(g)* be a set of non-zero ele-
ments of GF(g). (B represents the set of common errors.)
A code is (¢, t2)-focused on B if it can correct up to ¢, +1,
errors provided at most ¢; of these errors lie outside B.
More precisely, such a code is a set C of n-tuples over GF(q)
such that for any x € GF(¢)" there is at most one ¢ € C
satisfying both of the following conditions:

1. d(x,¢) <ty +ty;
2. dg.(x,c) <t1.

(Here d(x,y) £ [|x — y|| and dg. =[x — y|Ig.)

Note that a (¢, 0)-focused code is a “traditional” t-error
correcting code, while a (0,t)-focused code is completely
focused on B — i.e. it can correct up to { errors, provided
they are all common.

B. Construction of Combined Focused Codes for
0dd-Weight-per-Byte Errors

In [1] a method for constructing focused codes was pre-
sented. The codes thus constructed were called combined
focused codes, and in this section we review that method.
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Suppose the goal is to construct a code with blocklength
n over GF(2%) that is (¢1,%2)-focused on the set of odd-
weight symbols; that is, the common error set B consists
of all the elements of GF(2%) with a binary representation
containing an odd number of 1’s. (Note that this would
include the set of single-bit errors.)

The construction from [1] is described as follows. For
any n-tuple x over GF(2%), let b(x) be the binary n-tuple
obtained by taking the mod-two sum .of each component
of x. For example, if x=[0011,0100,1101,1010,1111], then
b(x)=[01100]. Let C; be an (n,nR;) binary inner code
with minimum distance dy = 2¢; + 2t5 +.1; let Cy be an
(n,nRy) outer code over GF(2%~!) with minimum distance
dy = 2t;+t2+1. To construct a codeword from the focused
code, first take a codeword ¢; from C; and a codeword
cs from Cy. Then add one bit to each symbol from ¢
such that c, the resulting n-tuple over GF(2%), satisfies
b(c) =0q.

To see that the code thus constructed is (1,%2)-focused
on B, consider the following decoding algorithm. Given
a received 2%-ary n-tuple r, compute b(r); find the code-
word x € C; that is closest to b(r). As long as at most
11 + ty odd-weight errors have occurred, x will be equal
to b(c), where ¢ is the codeword that was actually trans-
mitted. Mark the locations where x differs from b(r) as
erasures; strip off the last bit in each code symbol and pass
the resulting 2°~!-ary n-tuple plus erasure locations to a
decoder for Cs.

Suppose ¢; common and £; uncommon errors occur dur-
ing transmission; then as long as

4 < |(di - 1)/2)
and
f < |(d - £~ 1)/2]
the above algorithm will correctly estimate the transmitted
codeword. It is trivial to show that as long as ¢; + fp <
t1+19 and £3 < ¢; the above inequalities are met; thus, the
code described above is (1,t2)-focused.

Indeed, there are other error patterns — other values of
£, and £, — that satisfy the above inequalities. As an exam-
ple, suppose we wish to construct a (0, 2)-focused code over
GF(2%) using the above technique. Then we would need a
binary inner code with minimum distance dy = 5 and an
outer code over GF(2°~1) with minimum distance ds = 3.
Such a code would be able to correct any single uncommon
error — as long as there were no common errors — in addi-
tion to the error patterns described by the “(0, 2)-focused”
designation. :

The overall rate of this code is (1/b)Ry + (b — 1)Ry/b.
Furthermore, this technique can be generalized to cover a
variety of common error sets; for details, refer to [1].

III. PERFORMANCE OF FocUSED CODES ON AN
IDEALIZED CHANNEL

We now consider the performance of a (t;,%3)-focused
code over an idealized “skewed” channel. One of the fun-
damental questions to be considered is: Under what con-
ditions does a (¢1,t2)-focused code perform identically to
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a 11 + tp-error correcting code ? Since a (f1,t2)-focused
code can generally be constructed at a higher rate than a
t1 + ty-error correcting code, answering this question will
give insight into when focused codes might be appropriate
for a particular application.

A. The Skewed Symmetric Channel

Consider the following model for a communication (or
storage) channel. A character X € GF(q) is transmitted
and the character Y = X 4+ Z € GF(q) is received. Here,
the noise Z is assumed to be i.i.d.,independent of the input
X, and distributed according to

1-—¢, if 2 =0;
P(Z=2z)=4 e«(1-7v)/|B|, ifz€B;
/B, ifzeB,

where

¢ B is a set of non-zero field elements.

o B¢ consists of those non-zero elements that are nof in
B.

o ¢ = P(Z # 0) is the probability of symbol channel
€rror.

e v = P(Z ¢ B|Z # 0) is the probability that Z lies
outside B, given that Z # 0.

This channel - called the skewed symmetric channel (SSC)
for the focus set B — was introduced in [1] as an idealized
model of a channel that exhibits the “skewing” property
that focused codes were designed to address. B represents
the class of common errors and so ¥ < 1.

B. On the Decoding of Focused Codes

To analyze the performance of focused codes operating
over a noisy channel we must first specify a decoding al-
gorithm. The strategy we will use is the natural extension
of bounded distance (or incomplete) decoding. Suppose a
codeword from a (¢1,¢2)-focused code C is transmitted and
the q-ary n-tuple y is received; then the decoder computes
f(y), its estimate of the transmitted codeword, according
to the following rule:

f( )_ X; lfxeca d(x)y)stl +t2;&dBc(x)y)St1;
YI= ?.  if no x € C satisfies the above inequalities.

Note that f(y) is well-defined - i.e., for any y € GF(g)"
there is at most one codeword x € C that satisfies the two
inequalities. The “?” indicates a detected error that can-
not be corrected; depending on the application the decoder
can ask for re-transmission or simply output y and raise a
flag.

This algorithm will correctly decode the received code-
word as long as no more than t; + {; errors occur during
transmission and no more than t; of those errors lie outside
B. The decoding algorithm described in Section 2.2 is of
this form.

In the following sections we will analyze the performance
of this decoding algorithm when it is used with focused
codes operating over the skewed symmetric channel. The
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two performance measures we will use are the probability
~ of block decoding error — labeled P4 — and the probability
of symbol error — labeled P,.

Suppose we receive the n-tuple y. Then

PE P(f(y) # x|x was transmitted).

(Note that P; is defined as the probability that a correct
decision is not made; thus it does not distinguish between
detectable-but-uncorrectable errors and uncorrectable er-
rors that cannot be detected.) Of course y = x + z, where
z is a random noise vector whose components are chosen
independently according to the distribution given in Sec-
tion 3.1; thus Py is just the probability that ||z]| > 1 + 2
and/or ||z||g. > t1.

The symbol error probability Ps is defined as follows.
Suppose the codeword x € C is transmitted and y € GF(¢)"
is received. Define the random variable N to be the num-
ber of symbols where x and the decoder’s estimate of x
disagree — i.e., N = d(x, f(y)). Then

p, & EIN]

. n

where n is the blocklength of the code. By the above decod-
ing algorithm, if the channel introduces at most t + 5 er-
rors and at most ¢, of them are “ancommon”, then N = 0.
Furthermore we make the following pessimistic assump-
tion: If an uncorrectable error occurs — i.e., if d(x,y) >
t1 +t2 and/or dg.(x,y) > t1 — then the decoder intro-
duces an additional t1 +1t5 symbol errors. This assumption
is pessimistic because the decoder output will always be
within a distance t; + t9 of its input; the worst-case sce-
nario would be if the decoder changed #; + 5 symbols that
were correct, yielding N = t; + 5 + d(x,y).

Finally, it should be noted that the decoding algorithm
described above does not always produce the maximum
likelihood estimate of the transmitted codeword for the
skewed symmetric channel; thus this decoding algorithm
is sub-optimal. For the SSC the maximum likelihood esti-
mate of the transmitted codeword given a received vector
y is the codeword that minimizes Ad(x,y) + Fdg.(x,y)
over all choices of x € C; here A and F are non-negative
constants determined by the channel parameters ¢ and #.
Thus while our decoding procedure is not optimal for the
SSC, neither is bounded distance decoding — the strategy
typically used with Hamming-metric codes.

C. Block Error Probability over a Skewed Symmetric
Channel

Suppose a codeword from a (1, t3)-focused code is trans-
mitted over a skewed symmetric channel with parameters
¢ and 4. From Section 3.2, the probability of block decod-
ing error is the probability that more than t; -+ #, errors
occurred and/or more than ¢; uncommon errors occurred
-1ie.,

ti+1s 1

n n , .

+ > (2.)6’(1—6)” (1)
i=ti+ia+1

The first sum in (1) is the probability that there are at
most 3 + ¢y errors in a block of n transmitted symbols,
but more than ¢; of them are uncommon; the second sum
is the probability that there are more than ¢1 + {5 errors.
Thus, the second sum is the probability of block decoding
error for a “traditional” ¢; + {s-error correcting code.

If ne € 1, we can approximate P by taking only the
first terms in the sums in equation (1):

~ n titloy _ yn=ti—1_ti+1
Py w (t1+1>6 (1—¢) v

n
* <t1+t2+1

Figure 1 shows P; versus v on a log-log scale for fixed
¢ = 1073, blocklength n = 50 and for values of #; and ¢,
such that t; 4+ t» = 4. Each curve can be broken up into
two distinct regions; for large values of v, the graph is a
straight line with slope #; + 1, whereas for small values of
v the graph has slope zero and coincides with the graph of
Py for a (4,0)-focused code - i.e., a four-error correcting
code. This is because, for large values of v, the channel
is not very focused — i.e., the uncommon errors are not
that uncommon — and so the dominant cause of decoder
error is the occurrence of ¢1 + 1 uncommon errors; to put
1t more simply, when v &« 1, the first term in equation (2)
is dominant. Similarly, when v < 1 then the uncommon
errors are so uncommon that the primary source of decoder
error is the occurrence of ¢; + ¢5 + 1 errors, which means
that a (t1,t2)-focused code performs identically to a ty +to-
error correcting code — i.e., the second term in equation (2)
dominates. ,

So, partially answering the question that was posed at
the beginning of this section: For fixed €, a (¢;,12)-focused
code has the same block decoding error probability as a t; +
ty-error correcting code when the second term in equation
(2) is much larger than the first term. If we define (for
fixed €) v, to be the value of v for which the two terms
in equation (2) are equal to one another, then

)ftl+t2+1(1 __(:_)n—tl—tg—l. (2)

12 €
logyo Yerie = 1 logio I—e
1 t14+ta+4+1
I 1+ 12
11+ 1

logq m— . (3)

It is observed from Figure 1 that y..;; is a good approxi-
mation to the point at which a (41, ¢3)-focused code begins
to “match” the block decoding error probability of a t; 4+15-
error correcting code; that is, for v < 7.0+ the two codes
perform equivalently.

A similar analysis can be performed if we assume that -y
is held constant and e is varied. Figure 2 shows P versus ¢
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for fixed ¥ = 10~3, blocklength n = 50, and values of ¢; and
ty such that £y 4+ t5 = 4. Analogous to the case described
above, there is a critical value of € — call it ¢..;4 — such
that for € > €.r;; the block decoding error probability for
a (11,1s)-focused code is identical to that of a ¢; + ty-error
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of a (¢1,12)-focused code will be the same as that of a {1 4{5-
error correcting code.

correcting code. Here, €..4; is given by

t1+1
logyg€erit = log, o7y
g
( y )
1 t1+1
+ — loglo ____._1—___._——
tz n
(t1+tz+1 )

(Note: In obtaining equation (4) we have made the simpli-

fying assumption that ¢/(1 —¢) & ¢.)
-1
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Figure 1: Py versus y fort;+t3 =4, n =50, and e = 1073,

Finally, we note that the above analysis implicitly as-

sumes that ¢ and ¥4 can be specified independently. As

- Section 4 shows, ¢ and v are often both dependent on a

third parameter - e.g., signal-to-noise ratio. If this is the

case, we can guarantee “performance matching” by insur-

ing that the second term in equation (2) is much larger
than the first term; if we define a “benchmark” g3 by

n
yhH t+1

[e/(1 - 6)]"] ( n ) ’
i+t +1
then as long as § < 1 the block decoding error probability

e [ (5)

O T T 1
-2
._A: S
(4) -
E; L
g —8 -
11}
2 fe
-8 |—
F - (0,4)-Focused Code
=10 — —— (1,8)-Focused Code
I (ty, te)—Focused Code for
- (t, t)et(22). (3.1). (4.0)]
- L
_12 L L ! 11 l ! I ! '| ' L 1 ] ‘
o] ~-1

-2
logiole)

Figure 2: P; versus € for t; +#, = 4, n = 50, and v = 103,

D. Symbol Error Probability Qver a Skewed Symmetric
Channel ‘

We now compute the symbol error probability as defined
in Section 3.2.

| Lt N ;
- Z Z min(t1+t2+i,n)(i)( .
n izt +1j=t1+1 J

(1= &) iyl (1= y)"d

1 S . n\ —i
+; Z min(t; + 12 + ¢, n) < : ) e(l—e)" .
i=tytotl
Note that for ne < 1 this can be approximated by

2t +t2+1 n t1+1 n—ty—1t, 41
- ( a1 )e (1-¢) 5
2t +2t2 + 1

n
n th+ta+1

.€t1+t9+1(1 _ E)n—h—ig—l .

P,

)

P, =
+

(6)

To guarantee that the symbolerror probability of a (t1,t2)-
focused code matches that of a ¢; +14-error correcting code
requires that the second term in equation (6) be domi-
nant. Furthermore, note the similarity between equation
(6) above and the formula for the block decoding error
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probability in equation (2); the two terms in (6) are the
terms from (2) weighted by (slightly) different constants.
For reasonable values of ¢, and ¢, these constants are close
enough that matching the block decoding error probability
of a (t1,12)-focused code to that of a ¢ +ts-error correcting
code is equivalent to doing the same for the symbol error
probability.

E. Performance of “Combined” Focused Codes

Recall the technique for constructing “combined” (¢, 2)-
focused codes from Section 2.2. Specifically, recall that
the construction sometimes yields codes and decoding al-
gorithms that are capable of correcting more errors than
those indicated by the “(t1,%s)-focused” label — for in-
stance, some error patterns that contain more than ¢; un-
common errors. (Thus this decoding algorithm will, for cer-
tain constructions, perform slightly better than the bounded
distance decoder of Section 3.2.) In this section we show
briefly how this enhanced capability can be taken into ac-
count when computing the performance of such a code.

Suppose that £; common and £, uncommon errors occur
in a codeword during transmission. The decoding algo-
rithm described in Section 2.2 will yield a correct estimate
provided £y < |(d1-1)/2] and ¢, < |(d2—41—1)/2], where
di = 2(t1412)+1and dy = 2ty +t,+ 1. Assume that such
a combined code is used over a SSC with parameters € and
7, and define the block decoding error P} to be the proba-

bility that £y > |(dy — 1)/2] and/or €5 > |(d; — €1 — 1)/2]

- l.e.,
s ( \ )<€1 +£2>
Zl ~ £y + 4 £
s

L(d2—£1 =1)/2]+1
,€£1+£g(1 _ E)n——fl—fg.ylz(l _ 7)51

b (P)ea - -

[(d1~1)/2]
P/ =
£1=0

2=
L1 -1)/2]+1

Similarly, the symbol error probability can be pessimisti-
cally approximated by

n—~,

> “min(ty + & + [(dy — 4 — 1)/2], n)

=0 o=
(d2—23-1)/2|+1

) n &+ 4 Lidlapq _ \n—Lti—€a Lar1 _ N
<€l+£2)( : )e (1-0 ¥ (1— )

n n—{;
n % ST S min (4 + 6+ [(dr ~ 1)/2)

1 12_0
L(@1-1)/2]+1

1 [(di=1)/2]

Pl ==
? n

£y

+1(dz = [(d1 = 1)/2] = 1)/2],n)

n L+ L2\ 44, n—Ly—£y Ls £,
(£1+£2>< 0 )e (1-¢) ¥ (1 =y (7)

The first double sum in (7) is due to uncorrectable er-
rors in which the inner decoder is not overwhelmed; pes-
simistically, in such a case the #; erasures passed onto the

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 2/3/4, FEBRUARY/ "~ RCH/APRIL 1994

outer decoder would be decoded incorrectly, as would the
£; uncommon errors and |(dz — £ — 1)/2] edditional er-
rors caused by the outer decoder, resulting in a total of
£ + £ + [(d2 — £y — 1)/2] symbols decoded incorrectly.
The second double sum is due to uncorrectable errors in
which the inner decoder is overwhelmed. In addition to
the £; common and £2 uncommon errors that remain un-
corrected, there can be as many as [(dy — 1)/2] symbols
incorrectly identified as erasures by the inner decoder and
[(d2 — [(d1 — 1)/2] — 1)/2] additional symbols mistakenly

“corrected” by the outer decoder.

IV. PERFORMANCE OF FocuseED CODES
WITH NON-BINARY MODULATION SCHEMES

We now show how common non-binary modulation tech-
niques can be approximated by the skewed symmetric chan-
nel with appropriate choice of parameters. Then the results
from Section 3 will be used to analyze the performance of
focused codes operating over an additive white Gaussian
noise channel in conjunction with PSK and QAM modula-
tion.

A. Parameters for PSK Modulation

If M-ary PSK modulation is used with a Gray code so
that the difference between the binary representation of
any two adjacent signals is one bit, then an additive Gaus-
sian noise channel can be approximated by an M-ary SSC
for the focus set B consisting of all elements of GF(M)
with a binary representation containing exactly one “17.

Let {(ai, b)) :4 = 0,1,...,M — 1} denote the signals
points in an M-ary PSK constellation with symbol energy
E,~ie, a? + b} = E, and bj/a; = tan(2wi/M). (See
Figure 3.) Thus every T seconds one of the signals in the
set {s;(t) = a;$1(¢) + biga(t) : i = 0,1,..., M — 1} is
transmitted. We assume further that the channel is zero-
mean additive white Gaussian with power spectral density
S,(f) = Np/2. Finally, it is assumed that hard-decisions
are made at the demodulator, meaning that the received
signal r(t) is mapped onto the signal s;(¢) that minimizes
the Euclidean distance.

We now select ¢ and 4 such that the resulting SSC de-
scribes the PSK modulation. Recall that € is the probabil-
ity of channel error while 7 is the probability of an uncom-
mon error, given that an error has occurred; in the PSK
context, vy is the probability that the received signal lies
outside of the decision regions adjacent to the one contain-
ing the transmitted signal, given that the received signal
lies outside the region containing the transmitted signal.
(See Figure 3.)

Thus € is the probability that the received signal lies
outside s;(t)’s decision region, given s;(t) was transmitted.
This is well known [2] to be approximated by

e~ 20Q (\/2 E, /N, sin _]\WZ)
where Q(y) £ (1/+/27) fyoo exp(—t2/2)dt.

We now turn our attention to computing y. For M = 4
this is easy: P(Uncommon Error) = P(\/E/2 + n; <

(®)
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0,v/E;/2 + ny < 0) where n; and ny are independent
zero-mean Gaussian random variables with variance Ny/2.

Therefore P(Uncommon error) = Q?(1/E,/Np) and so

P(Uncommon error) Q? (v Es/NU)
P(Emor) 2 (VE./N, )

1 E, )
= 5@( 7\70)‘ (9)

$2 (1)

Radius /

N /

5; > 1 (1)

Angle 21t/M

Figure 3: Decision regions corresponding to 8-PSK.

To obtain 4 for M > 8 the following approximation for
the pdf of the angle of the received signal [3] is useful:

fo(8) = \/E,/(xNy) cos 6 exp[—(E, / Ny) sin? 0].

(This approximation is valid for E,/Ny > 1 and for small
angle 6.) An uncommon error is made if the noise causes a
phase displacement greater than 37 /M in absolute value.
Using the above approximation for fg(#), it can be shown

that
2E, | 3w
P(Uncommon error) = 2Q <,/~NU— sin M) ,

and so

P{Uncommon error)
P(Error)

) Q(\/QES/N(, sin(37r/M)) -
- Q (VBN sin(x/M))
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B. Parameters for a Square Constellation (QAM)

An additive white Gaussian noise (AWGN) channel and
an M-ary square signal constellation can be approximated
by an M-ary SSC channel with parameters € and v to be
determined. For the square constellation, we assume that
a two-dimensional Gray code is used so that the binary
representation of two signals immediately adjacent to each
other either horizontally or vertically differ in only one bit;
thus, our set of common errors is (once again) the elements
of GF(M) containing a single “1” in its binary representa-
tion. For example, when M = 16 as in Figure 4, if signal
s1 18 sent then a common error occurs if the demodulator
estimates the transmitted signal to be sg, s3, s4 or sg.

For a square (\/Jl_4 x VM where log, M is even) constel-
lation of QAM signals, the coordinates of the signals with
respect to the basis signals ¢; () and @,(t) are:

a,-=(2i+1—~/1‘7)g and  b; =,(2J'+1—‘/M)g’

where 7 and j take on the values 0,1,2,...,v/M —1, and d
is the constant horizontal or vertical distance between any
two neighbors. The value of d is determined by the average

symbol energy E and is given by d = /6E, /(M ~ 1).

g2 (t)
A
iz 16
S6 S2 S9
X X X X
X g X X
S3 S1 §s
= 1 (t)
X X B R
s7 S4 St
X X X X

Figure 4: A 4 x 4 constellation displaying “common” and
“uncommon” errors

In computing the parameters € and v a pessimistic ap-
proach will be used. It will be assumed that an error occurs
whenever the received signal lies outside of a square with
sides d in length centered on the transmitted signal; fur-
thermore, an uncommon error occurs whenever the received
signal lies outside of such a square and outside of the four
squares immediately adjacent (horizontally and vertically)
to it. {Such an assumption is pessimistic because the points
on the exterior of the signal constellation will actually have
lower probabilities of error than those indicated.)
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It is well known [3] that € — the probability of channel error
- is given by

€e=2-9¢° (11)

where ¢ = 2Q(\/3E,/No(M — 1)).

Now consider the derivation of . Using the same pes-
simistic assumption used in deriving e,

P(Uncommon Error) = P(|ny| > d/2,|ny| > d/2)
+ P(Ina| > 34/2, Ina] < d/2)
+ P(|nq| > 3d/2,|n1] < d/2),

where n; and n, are independent zero-mean Gaussian ran-
dom variables with variance Ny/2. If p; and py are defined
as

JIN- 3 E,
mo 2 Q(iVem) :Q( Ma1%>
= %P(inlf > d/2)
and
= %P(lnll > 3d/2)
then

P(Uncommon error) = 4p? + dps(1 — 2py).
This in turn implies

_ it pa(l = 2p)
pi(l—p1)

where p; and ps are as above.

(12)

C. Performance Maiching for Focused Codes Used with
PSK and QAM Modulation

Recall the question posed at the beginning of Section 3:
Under what conditions does a (t1,t2)-focused code perform
identically to a t; + ty-error correcting code ? In Sections
3.1 and 3.2 this question was answered for a skewed sym-
metric channel; it was shown that the two have the same
error rate as long as if 3 < 1, where 8 is defined in (5).
Having shown in Sections 4.1 and 4.2 how M-ary PSK and
QAM can be approximated by a SSC, we are now prepared
to determine when a (t1,%3)-focused code operating in con-
junction with these modulation schemes performs identi-
cally to a t; + to-error correcting code,

PSK: Equations (8)-(10) give the values of ¢ and v that
approximate M-ary PSK at a given signal-to-noise ratio;
substituting these values into equation (5) and determining
when 4 < 1 yields the following results.

e M=8: For octal PSK, a (0,t)-focused code performs
identically to a t-error correcting code for ¢t = 1,2,3
for all values of E,/Ny and all blocklengths n > 7.

o M=16: For 16-ary PSK, a (0,¢)-focused code per-
forms identically to a t-error correcting code for ¢t =
1,2,3,4,5,6 for all values of E /Ny and all block-
lengths n > 10.

These results indicate that a code capable of correcting
t adjacent-region errors will perform identically to a code
capable of correcting any t errors for many blocklengths
and many values of £. It is interesting to compare the “fo-
cused approach” to PSK modulation with that taken by
Lee-metric codes. A decoder for a t-error correcting Lee-
metric code will correctly estimate the transmitted code-
word provided that the total Lee distance between what
is transmitted and what is received is no more than ¢; a
received signal that is i reglons away from the transmitted
signal contributes a value 7 to the Lee distance. Thus, a
2-error correcting Lee-metric code, when used with M-ary
PSK, can correct any two adjacent-region errors and it can
correct any single error where the received symbol is twe
regions away from what was transmitted. The above re-
sults suggest that the added capability of Lee-metric codes
~ the ability to correct a (reduced) number of non-adjacent
errors — often provides negligible performance improvement
to PSK modulation.

Square Signal Sets: Equations (11) and (12) give the
values of € and - that approximate M-ary QAM at a given
signal-to-noise ratio; substituting these values into equa-
tion (5) and determining when § < 1 yields the following
results.

e M=64: For an 8 x 8 constellation at all vdlues of
E./Ny and all blocklengths n > T:

A (0,1)-focused code performs identically to a 1-
error correcting code.

- A (1,1)-focused code performs identically to a 2-
error correcting code.

A (1, 2)-focused code performs identically to a 3-
error correcting code.

A (2,2)-focused code performs identically to a 4-
error correcting code.

A (2, 3)-focused code performs identically to a 5-

error correcting code.

e M=256: For a 16 x 16 constellation at all values of
E. /Ny and all blocklengths n > 8:

- A (0,1)-focused code performs identically to a 1-
error correcting code.

A (1, 1)-focused code performs identically to a 2-
error correcting code.

- A (1, 2)-focused code performs identically to a 3-
error correcting code.

- A (2, 2)-focused code performs identically to a 4-
error correcting code.
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- A (2,3)-focused code performs identically to a 5-
error correcting code.

Regarding Simulations: The results presented in this
section maintain that a (¢1,%2) focused code performs as
well as a ¢; + ts-error correcting code for various values
of t; and t, and various signaling schemes. These results
were derived with the analytical approximations from ear-
lier sections; furthermore they have been supported by sim-
ulations. We now give a very brief description of the sim-
ulations carried out.

The noise afflicting a particular symbol in a codeword
consists of two simulated independent zero-mean Gaussian
random variables, each with variance No/2. If the noise
afflicting a particular symbol is sufficient to “knock” the
received signal into another decision region, an error is
registered; if the noise is sufficient to knock the received
symbol a non-adjacent decision region, then an uncommon
error is registered. If more than t; + ¢, errors and/or more
than ¢; uncommon errors occur in a codeword of n symbols,
then it is assumed that a decoder error has occurred. By
simulating many such codewords we arrive at an estimate
of Py.

Two things to note: First, for PSK the probability of an
error of any type is independent of the signal transmitted;
for QAM we made the pessimistic assumption that an in-
terior point is always transmitted. Second, this simulation
was capable only of estimating P; — not Py, since we did
not try to implement decoders in software.

Nonetheless, the simulations supported the analytical
claims. For instance, in simulating 10° 7-tuples of octal
PSK symbols over a channel with E,/Ny = 11 dB, we
found that the fraction of errors that could not be cor-
rected by a (0, 2)-focused code was 4.96 - 10~3; the fraction
of 7-tuples containing errors that could not be corrected
by a 2-error correcting code was 4.90 - 1073, Both of these
figures closely approximate the number that equation (2)
gives for the probability of block decoding error for this
channel when used with a (0,2)-focused code — namely,
Py = 4.91- 1073, This and all the other simulations that
were run support the conclusion that PSK and QAM mod-
ulation over an AWGN channel is well approximated by a
skewed symmetric channel with parameters chosen appro-
priately.

D. Coding Gain of Focused Codes Used with PSK and QAM
Modulations

In this section we compare the performance of some
(t1,t2)-focused codes with that of #; 4 ¢s-error correct-
ing codes. The focused codes are constructed using the
technique in Section 2.2, and the channel is additive white
Gaussian noise with PSK and QAM signaling.

Our approach is to compare a (¢1,t2)-focused code with
a ty +iq-error correcting code such that the two codes have
identical probability of error; because the focused code can
have a higher code rate than the “traditional” code, it will
enjoy some coding gain. For example, Section 4.3 shows
that a (0, 1)-focused code over GF(8) with blocklength n =
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7 will perform identically to a single-error correcting code of
the same blocklength when used with octal PSK; however,
it’s possible to construct a (0,1)-focused code at a rate
of 16/21 = 0.762, whereas a single-error correcting Reed-
Solomon code over GF(8) with blocklength n = 7 has rate
5/7 =~ 0.714. The 6.7% rate improvement of the focused
code translates into a constant coding gain of 0.28 dB.

- Equation (6) gives the symbol error rate for a (t,12)-
focused code operating over a skewed symmetric channel
with parameters € and v; equation (7) gives the same when
the code is one of the “combined” codes from Section 2.2.
Equations (8), (9), and (10) give € and ¥ for an AWGN
channel employing PSK modulation; equations (11) and
(12) give € and ¥ for an AWGN channel when the mod-
ulation is QAM with a square signal set. Thus, for a
given signal-to-noise ratio we can use equations (8)-(12)
to compute ¢ and 4 and then use (6)-(7) to yield P,. To
make a fair comparison between codes with different rates,
P, is computed as a function of F;/No, where Ej is the
energy per information bit - i.e., if R is the code rate,
Ey = E,/(Rlog, M).

Figure 5 shows P, versus E}3/Ny for 16-ary PSK used
with various coding schemes. The solid line shows P; for
uncoded 16-ary PSK, while the dotted line shows P, for
an (8,4) two-error correcting shortened Reed-Solomon code
over GF(16). The two dashed lines display the performance
of a (0,2)-focused code over GF(16) with blocklength n =
8; the short-dashed line shows P, as computed by equation
(6), while the long-dashed line uses equation (7). (Since
the code can correct any single uncommon error — a fact
that equation (7) takes into account and (6) does not — we
find that equation (7) shows the performance to be slightly
improved over that suggested by (6).)

Figure 5 shows that, at a symbol error rate of P, = 107¢,
the focused code provides approximately 1.13 dB of coding
gain above that of the Reed-Solomon code; comparing the
focused code with uncoded 16-ary PSK, we find a coding
gain of approximately 2.48 dB.

Similarly, Figure 6 compares a blocklength n = 11 (1, 2)-
focused code with a 3-error correcting shortened Reed-
Solomon code when used with an 8 x 8 square signal con-
stellation. In this case the performance given by equations
(6) and (7) were identical; the focused code provides a con-
stant 0.91 dB of coding gain over the Reed-Solomon code
and provides 2.38 dB of gain above uncoded 64-QAM at
P, =10"°.

In each of the two figures, the focused code is constructed
according to Section 2.2 with the inner code being the
highest-known-rate [4] binary code with minimum distance
dmin = 2(t1 +12) + 1 and the outer code being a shortened
Reed-Solomon code. The gains are significant primarily for
codes with blocklengths that are short relative to the field
size; for instance, if the blocklength goes above n = 20 for
64-QAM, then the focused code construction of Section 2.2
provides a coding gain that is no more than 0.25 dB bet-
ter than a shortened Reed-Solomon code. It would appear
that this limitation is more a function of the particular
construction than of focused codes in general.
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