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Abstract—The joint source-channel coding problem for soft- would need half the (encoding and decoding) delay of separat
decision demodulated time-correlated fading channels is inves- coding; this translates into a 2-dB power saving for a wide
tigated without the use of_channel coding _and interleaving._For class of source-channel pairs [4]. Such substantial piatent
the purpose of system design, the recently introduced non-bingr b fit id . tive f dopti d int i
noise discrete channel with queue based noise (NBNDC-QB) is ene '_S providé an Incentive ior a Qp Ing and In egfa I_ng
adopted. This analytically tractable Markovian model has been JSCC in today’s resource strapped wireless communications
shown to effectively represent correlated fading channels that systems. Some other advantages of JSCC over separate-source
are thard't(cl)\/l R%r;ddletantalytic?lly.d'optirtnall/lsel?uence maximtum a channel coding were quantitatively characterized in [5r F
posteriori etection of a discrete Markov source sent ove ; ; ;
the NBNDC-QB is first studied. When the Markov source is lossy Co((jjlng, ahva”etg of (?LIZferen(tj JScc Scﬂzn;es. ha\lle been
binary and symmetric, a necessary and sufficient condition under propose (S!JC as [6] - [ ] and many other )jls also
which the MAP decoder is reduced to a simple instantaneous known that if a channel is well-behaved (ergodic) and has
symbol-by-symbol decoder is established. Two robust lossy soerc memory, then its capacity is strictly greater than the ciypac
coding schemes with low-encoding delay are next proposed for of its memoryless counterpart (a channel with identical-one
the NBNDC-QB. The first scheme consists of a scalar quantizer, a 4imensional transition distribution) realized via ideiafiiqite-

proper index assignment, and a sequence MAP decoder designed . .
to harness the redundancy left in the quantizer's indices, the depth) block interleaving [17], [18]. Consequently, a comm

channel's soft-decision output and noise correlation. The second hication system can be designed to take advantage of the
scheme is the classical noise resilient vector quantizer known channel’s memory and perform better than a system that
as the channel optimized vector quantizer. It is demonstrated discards such memory via interleaving. Furthermore, #ffec
that both systems can successfully exploit the channel’'s memory use of the channel's soft-decision information can improve

and soft-decision information. Signal-to-distortion (SDR) gains of it d t f hard-decision ddcod
more than 1.7 dB are obtained over hard-decision demodulation C@Pacily and system periormance over hard-decision decode

by using only 2 bits for soft-decision. Furthermore, gains as high SChemQS (e.g., see [19] - .[22])-
as 4.4 dB can be achieved for a strongly correlated channel, In this work, we investigate the JSCC problem for soft-

i(n Compé}riso)ﬂ VI;/ith S){Stgmslld?SEQHEd for thﬁ idEa"y inéeﬁea\]fed decision demodulated time-correlated fading channels oBu
memoryless) channel. Finally, it is numerically observed that for jactive js the design of effective schemes having low ermugpdi
low coding rates the NBNDC-QB model can accurately approx- . . -
imate discrete fading channels in terms of SDR performance. delay and complexity that aptly eXpIO't, t,he §ource S_tm“
as well as both the channel’'s soft-decision information and

) . . statistical memory without the use of channel error comect
Index Terms—Joint source-channel coding, correlated fading d d ch linterl . Such sch h erti
channels, Markov channels, channel modeling, soft-decision de- codes and channel interieaving. such schemes have pertinen

modulation, MAP decoding, scalar quantization, channel opti- applications in wireless communications including mobile
mized vector quantization. radio and sensor networks, where the mobile or sensor has
stringent processing and encoding delay constraints,ewhil
the fusion center or the base station has sufficient decoding

resources. For this purpose, we use the recently introduced

T is well known that the separate treatment of SOUIGG,, hinary noise discrete channel with queue based noise
gnd channel_ coding, Justmed.by Shanr)on s_source—chanrmlBNDC_QB)' which is a binary inpu2é-ary output channel
coding separation theorem [3], is not optimal in the PreseNyherey > 1 is an integer) with2?-ary stationary ergodic

of complexity and delay constraints. For example, in & reécefl;, order Markov noise in [23] - [25]. This model features
information theoretic study [4] it is shown that the ermopex  ¢j,qeq form expressions for its transition probabilitiesise
nent for joint-source channel coding (JSCC) can be twice @giqpy rate and autocorrelation function, making it anéma
large as the exp_onen_t for separate sour(?(_e and channel COdI'QQ tractable analytical performance analysis and code de-
Hence, for an identical overall probability of error, JSC%ign. It is also shown in [24], [25] that the NBNDC-QB
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ori MAP detection problem when a discrete Markov sourcand soft-decision information and achieve considerabtjebe
sent over the NBNDC-QB. We translate the MAP detectioBDR performance than systems with hard output quantization
problem into simple Viterbi decoding with an appropriatelyand systems that disregard the channel’s memory via the
modified decoding metric. If the Markov source is binaryse of interleaving. In Section V, we numerically validate
and symmetric, we prove a necessary and sufficient conditide NBNDC-QB model for both the SQ-MAP and COVQ
under which the sequence MAP detector reduces to an systems as an effective approximation of the Rayleigh DFC.
stantaneous symbol-by-symbol mapping (having no decodivée conclude the paper in Section VI.

delay). We also illustrate and verify this condition nuraaliy.

To exploit the NBNDC-QB’s memory and soft decision I_I' NBNDC_QB 6ND DFC CHANNEL MODELS o
information, we next design two JSCC schemes with low In this section we review the two channe_l models studied in
encoding delay and complexity: a scheme that uses a baggl: [25]: the NBNDC-QB and the Rayleigh DFC. We also
scalar quantizer (SQ) and sequence MAP decoding (the g@_serve that the DFC is a special instance of the NBNDC.

MAP scheme), and a scheme consisting of a channel optimi%gd NBNDC-QB

vector quantizer (COVQ). Both schemes are source-centric . . .
JSCC systems in the sense that they do not use explicit "® NBNDC [23], [25] is & binary-input an@¥’-ary-output

algebraic channel coding, and are thus less complex than #h@nnel model, wherg > 1. The input data bitsY; € {0, 1}
conventional separate source-channel coding systemthefrur @€ affected by noisé; via the relation

more, both schemes avoid the use of channel interleaving v, = (27 - 1)X; + (-1)%Z;, i=12...., (1
which can introduce considerable additional delay when the .

underlying physical channel experiences slow fadingemst Where Y; and Z; take values iny = {0,1,...,27 — 1},

our schemes are tailored to judiciously exploit the chaanelVith {Y;} denoting the channel output process, and where the

statistical time-correlation structure in order to bettembat "0iS€ Procesg Z;} is assumed to be independent {oX;; }.
channel impairments. Both systems are designed and esdlutcc0rding to (1).Z; can also be written in terms of input and
for the NBNDC-QB and then tested (with a mismatchefUtPut symbols:
encoder/decoder) over the equivalent correlated Raylek@ 7 _ Y, —(29-1)X;
used with soft-decision demodulation to simulate the syste 7 (—1)%; ’

performance in a wireless setup. The noise . . .
: : T proces$Z;} can in general be any stochastic
This work builds upon and significantly extends [11], [26]) ) .ooq Following [§3]],}[25], we choogeZ; } to be a non-

where only binary (input, noise and output) channels wi nary generalization of the queue-based (QB) noise [18].
Markovian additive noise were considered. We note that the. ' otar to the ensuing channel model by NBNDC-QB. The

channel considzreld ind[ﬁl], [26(11 is abspet():ia! Cgss of thEodel, which is based on a ball sampling mechanism involving
NBNDC-QB model used here and can be obtained by Setigd ym and a queue aff cells, is intuitively described as

the NBNDC-QB parameter; = 1, which wanslates into follows. At time instancej > M, with probability 1 — ¢, the

using hard-decision _demodulation in_the unde_rlying fadi ise symbolZ; is independent of past noise symbols and is
channel. Note that in contrast to this work, in [11], [26 icked according tPr{Z; = i} = p;, i = 0,1,...,29 — 1.

correlated fading channels were not examined and reali
9

j=1,2,.... )

) D ) V\fith probability ¢, Z; is chosen to be one a¥f preceding
S\Egnﬁétn;ﬁ?;gzg and validation (under mismatched codi ise symbols (the probability that; takes a particular value

Th o £ thi . foll We introd depends on a bias paraméterand increases in proportion to
h © orgﬁnlzatllon % tl S EapsrB;\?DaCS: OBOWS(':I he Ir;\:trol U%he number of times that value occurred in the past noise
the two channel models, the -QB and the Raylei mbols). The detailed description of the noise model ismgiv

SFC’ i.n Secf:t'i\ﬁn LI In Section Ill, wehstllj\ldg'\igeCMAg seéquinth [18], [25]. The resulting QB nois¢Z;} is a stationary and
etection of Markov sources over the -QB and obtaig . e (irreducible)M/th-order Markov process described by

the required relationships to implement the MAP decodtat;1I 24 1 9 independent parameters: the memory ordé
via the Viterbi algorithm. We further study the specific cas, y =+ P p ' y !

fhe marginal probability distributio ..., p20-1), and
of binary Markov sources sent over the NBNDC-QB Wm}:orrelatign pa?ametet@y< -1 ané@go;p(l), P2i-1);

memory orderdM = 1 and prove a necessary and sufficient The state procesES. ! of the OB noise. defined bg. 2
condition under which the sequence MAP detector reducgj P S8; Q ' B
f

. . - ivZi-1y...,Zi—m+41) for j > M, is a homogeneous
gy 4y 9 y L g
to an instantaneous symbol-by-symbol mapping. A sufficie st-order Markov process taking values {0,1,...,29 —

qonc:i\t/ion is also provciided Ifor thﬁ case of > 1.hln Secf— %M_ It is shown in [23], [25] that forj > M + 1 the
tion IV, we present and evaluate the two JSCC schemes for ffie. <ot transition probabilitieg(s;|s,_,) 2 Pr{S; =

NBNDC-QB (the SQ-MAP a_md COVQ schemes). In SQ'MAPS/-|S]4_1 — s; 10, With 8; = (2, 2j-1, ..., 2_41) and
we apply the MAP decoding system to a scalar quantlzgd L= (2, o ), are given by
analog-valued Markov source and assess system performarice Prgmb S =ML

in terms of signal-to-distortion ratio (SDR). This extends M-l c
[11] where only binary output channels with Markov noise@(sjlsj—1) = Z Oz 250 T 00z 25 uy M—-—1+a
were considered. A COVQ system is then proposed for the =1

NBNDC-QB. Similar to the SQ-MAP, we show numerically 2ypen a7 — 1, the queue has only one cell; in this case the cell bias
that the COVQ can successfully exploit the channel's memopgrameter is set to. = 1 [18], [25].
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+ (1=¢)ps,, (3) with Q¢(-) denoting the Gaussian Q-function, aiEly|-]
denotes expectation with respect to the random varidble

it 2py =z fork=j,....7 = M+2, andQ(sls;—1) =0 Eoryp, = 1, there is closed form expression fBfLk(y|x) =

otherwise, wheré; ;, = 1if 1 =4 andd; ;, = 0if 1 # ¢, and N
gy, et S E T endhu =LA A0 Ry ). gven by
=1
Since the noise process is independent of the input, we have Pélp)c(j) =n(-Tj_1) — n(-T}), (6)

Pr{Y™ =¢y™ | X™ =2} =Pr{Z™ = 2"}, (4) wherej = % €Y, and

Whereym = (ylay%"' ay’m)v ™ = (.’L‘l,l‘g,"' a-rm) and _ Tj2
2™ = (21,22 ,%y), hoting thatz; and y; determine {1620 (TJ‘VESNR)}Q (str+1)
z; through (2). Them-fold channel transition probabilityn(Tj) =1-Q¢(T;V2SNR)— swt!

Pr{Zm ="} £ Ph(,’B”,\),DC_QB(z"”) is given in [25, Egns. (20) 1o

and (21)] (withn corresponding ton herein); in particular,

for m =1, P[Ele)NDc_QB(Zl) = p., for all z; € Y. The channel Form < 3, P{(y™|2™) can be calculated in closed form.

noise correlation coefficient is given by [25] For m > 3, (5) can only be determined numerically. Finally,

we point out that the DFC is actually an NBNDC as given by

_ 2 e
Cor= E[ZyZy41] — ElZ:° _ Molta (1) whose noise process has afold distribution given by
var(Zy) L=(M=2+a)5=55 () [23), [25]
B. Rayleigh DFC C. Fitting the NBNDC-QB model to Raleigh DFC model

The Rayleigh DFC we consider consists of a binary phase-we fit the NBNDC-QB model to a given Rayleigh DFC
shift keying (BPSK) modulator, a time-correlated flat Réyie (with fixed SNR andfp7T andq) via the following steps [24],
fading channel with additive white Gaussian noise (AWGN])25]:
and ag-bit soft-quantized coherent demodulator. The inputand, \atch the noise one-dimensional probability distribusion
output alphabets ar& = {0,1} andy = {0, 1,...,27 — 1}, by settingp, = Pp}c(j) for j € Y, where P)(j) is
respectively. Denoting the DFC binary input process &y, }, given by (6), in terms 0P, ¢, and SNR. The values of
the received channel symbols are giveniy= /E, Ay Si + p; are given in Table I.

Ny, k=1,2,..., where E is the energy of signal sent over | \jaich the noise correlation coefficients (so that the
the channel,5; = 2X; — 1 is the {~1,1}-valued BPSK QB parametera is given in terms ofM and ¢). The
?nodd?(ljaetr?t?caslllgn;létggli]eﬁ}(i Iisd? éi%iiir:r? r;;ég‘:fzafsem DI(:C3 noise correlation coefficient is calculated using
of varianceN, /2. Here{ A} is the channel’'s Rayleigh fading prc (™|} In (5) for m —2 [25].
process (which is independent frofV,} and the input
process) withA, = |G|, where {G\} is a time-correlated fwo (29-ary) noise processes.
complex wide-sense stationary Gaussian process with €sark It is important to note that in general the two channel mod-
autocorrelation function given as a Bessel function of theqs cann(F))t be matched to havg identical statistical behavio
normalized maximum Doppler frequengy T [25], [28]. The However, for the memoryless case (with Cor=0), the NBNDC-
DFC's signal-to-noise ratio (SNR) is given by SNRE, /Nj. AR . y (.W' or= ), the

In the DFC model, a soft-decision demodulator consisti B is statistically identical to the ideally interleaved OF

of a ¢-bit uniform quantizer takes the outpi}, to produce the € values of the f|tt.|ng NBNDC'QB parametgrs obtamed’ as
. T f / outlined above are given in [24, Table I1] for different DISC
discrete channel outpul), = j, if Ry € (T;_;,T;], where

theT" are uniformly spaced thresholds with step-sizegiven
byT’Jl =00, T = (j+1-29"Y)Afor j = 0,1 24 _9 I1l. MAP DETECTION OFMARKOV SOURCES OVER THE

— H ‘7 ) ) ) _
andTy, , = co. Lettingd £ A/\/E, andT; £ T} /\/E;, the .NBNDC QB
m-fold transition probability for the DFC can be calculated\- MAP decoder design
via [23], [25] Consider a stationary and ergodic discrete so{iXg} with

, finite alphabet0, 1}"™. Here{X;} can represent the output of
(m)/ m m Ay m _ ,m m _ ,m ’ z
Porc(y™[2™) = Pr{Y™ =y™|X™ =2"}  (5) 3 s0urce encoder, such as the output of aatealar quantizer
= Eaa, [H Qi (Ak)
k=1

« Estimate the remaining QB parameterd ) by mini-
mizing the Kullback-Leibler divergence rate between the

(as will be seen in Section V). Its redundancy (which is due
’ to the source’s statistical memory and the non-uniformity o
its marginal distribution [11], [26]) encapsulates the reels

where dispensable amount of information that can be eliminated vi
) . optimal variable-length lossless or fixed-rate nearlsless
Giglar) = PriVi =X, =i, Ay = ax} data compression.
= Qg (\/2SNR(Tj_1 — (20— l)ak.) Suppose that a sequence df source symbolsx =

_ (x1,%X2,...,xn) € {0,1}"" is sent over the NBNDC-QB
e (V 2SNR(T}; — (2i — 1)%) in nN channel uses. The channel contaminates this source
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sequence via a sequence Zf-ary noise symbols:"Y = conditions for the MAP decoder to haselessfor a binary
(21,22, 2an) € {0,1,...,2¢9 — 1}*V and outputs the Markov channel and a binary Markov source. In this case,
sequencey”y = (y1,y2,...,¥n) € {0,1,...,29 — 1}"V, a MAP decoder is called useless if it decodes what it sees

Since the transmission over the channel is done bit-by-gite., XV = Y¥) and thus does not improve the channel’s
(and not n-tuple by n-tuple), we represent the noise sesequence error rate (this is also knowrsag-what-you-seer
guence using a bit-by-bit notation so that the noise symbaimglet decoding26], [31]). Note that skipping the decoder
(Znit1s Znivas - Zn(i+1)) 1 = 0,1,..., N —1, correspond to and accepting the output sequence without further praugssi
the inputn-tuple x;, 1 and outputn-tuple y; ;. The channel can only be achieved fay = 1 since in that case the output
outputy? is fed to a sequence MAP decoder which estimategquence is also binary.

xN by %V as: We examine this problem fog > 2 where the received
seguence is not binary and we provide a non-trivial extensio
of [26, Theorem 1]. Specifically, we apply a mappifigto
convert eacl2?-ary received symbayty, into a binary symbol
5/ We find the optimal mapping* in the sense of minimizing
té symbol error probability. For a symmetric binary Markov
Ydurce and an NBNDC- -QB with/ = 1 andq > 2, our main

%V = argmax Pr{X" =xV | YN = yV}. @)

xN

assume that the sourdéX;} is i.i.d. A minor mod|f|cat|on
of the decoding metric is needed to accommodate (Markog

sources with memory. result here establishes a necessary and sufficient camditio

. |;0r gk €{L,2,...,nN =1}, i+j <nN,i—k>1 4. mappingd* to be an optimal sequence detection rule.
etine Consider a binary sourcen(= 1) and the NBNDC-QB
Q( fiﬂzz ) & Pr{Z! +1 = ij:{ Zi =2} channel withM = 1. In this case, the channel noi$&,,} is
a first-order Markov process with (cf. Section II)
Since the NBNDC-QB channel noise is Markov of memory N
order M, fornN > M (which typically holds asV is assumed Qlzi) = Pr{Z, =z} =p., (10)
to be large in practice), it can be shown (see [2], [34]) that  Q(zi|z;) = Pr{Z,=z|Z,-1 =2} =
(7) is equivalent to [€5z7¢,z.j +(1- 5),0z,;] , 2,2 € V.
V= arg maX{lOg[Pl\(lg?\lDC—QB(Z{L)P(Xl)] + (8)  Consider a mapping : Y — {0,1}. To replace the MAP
X detector with the mapping we simply setz, = 4, =
(7,+1 i ‘ O(yn), n = 1,2,...,N. The following lemma is proved in
Z log|Q(zin 41 | 2in (M 1))P(x1+1)]} Appendix A.

Lemma 1:For the NBNDC-QB with parameters satisfying
where P(x;) 2 Pr{X; = x;} is the probability distribution the condition
of random vectoiX; of sizen and from (3),

PO = pP1L=p2 2 .. = pPoa_i, (11)
Jjt+n i—1
Q= tr Iz ) = 8szy + 00, ., ,, | x @mong all mappingd : Y — {0,1} the following mapping
KA RO _IJ_L Z_i_%;_zl)zé e 0* yields the lowest symbol probability of error:
- 0, ify, <k*
£ * _ _ ) n [}
M_1lta +(1- 5),%1 ; 9) 0" (yn) = Gn = { 1, otherwise, (12)
. ) . wherek* € {0,1,...,27} is the smallest value satisfying
with 2, 2 0 if i < 1, zf = (2 Zig1r- s Zj)s P(1)
Pap.os(#) = Pr{Z} = =} given in [25, Eqns. (20) <o (13)
and (21)], andz; related to its corresponding symbats and P2a—kr—1 (0)

yi via (2). In light of (8) and (9), the MAP detection can bevherep_; £ o0, p2a 20, andP(z) = Pr{X = x}.
implemented using a modified version of the Viterbi algarith  As in Section I1I-A, the sequencgX;} (which is the same

(2], [34]. as{X;}, sincen = 1) is assumed to be a first order stationary
For the case of sources with memory, we assume that fiarkov chain. Define

source forms a discrete first-order Markov chain with state A A

transition probability matrixP(x;, 1|x;); in this case, the path Pznzn-1 = P(xn|rn1) = Pr{Xn = 24| Xn1 = 2n1},
metric can be directly obtained from (8) by replaciRgx; ) (14)
to P(xi41]%;). P, = P(z,) 2 Pr{X, =x,}.

For the special case of a symmetric binary Markov sourcg i.e.
B. Case study: MAP detection of binary Markov sources P(0) = P(1), it can be seen from (13) that = 291, since

It is useful to know when the MAP detector can bén this case
replaced with an instantaneous (symbol-by-symbol) dexpdi . Pl Poa—1
rule without loss of optimality in terms of minimal sequence i) D241 - Poa—1_1
probability of error. The answer to this question is partly .. Pr*—1 Poa—1_1
given in [26, Theorem 1], which gives necessary and sufficien i) - 21

<1

)

P2a—k* P2a-1
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Define theauxiliary binary noise symbot,, which is related ~ Theorem 1 is illustrated in Table Il for a binary symmetric
to its corresponding noise symbg] via Markov source withpgg = 0.6 and 0.7, whereC' is the term
0. if 2 <941 on the left-hand side of (17). In the table, the NBNDC-QB'’s
Zn = { 1’ othgrwise. ' (15) one-dimensional noise distribution is calculated by miaigh
- ) ) it to that of the underlying DFC; i.e., by setting = PélF)c(j)
The sequence of auxiliary binary noise symbols form &g given in (6) in terms of SNR; ands, where the values of
auxiliary noise proces$Z, }. Since the noise procedZ.} ;5 are chosen so that the capacity of the DFC is maximized,
is independent of the input proce¢’, } and the auxiliary see Table I. From Table Il we clearly observe that when
binary noise variableZ,, is only a function ofZ,,, the auxiliary ¢ - 1 the MAP decoder is performing better than the mapping
noise proces§Z,} is also independent of the input procesg« FEor the cases withC > 1 the MAP decoder and the
{ X} ] ] ) ) instantaneous mapping* have the same performance even
The following lemma is proved in Appendix B though in the simulations the boundary conditians= 7; and
Lemma 2:1f {Z,} is a first-order Markov chain, then the, = _ 7 from the theorem have not been checked. Additional

auxiliary noise procesgZ, } forms a first order Markov chain. regy|ts jllustrating the independence of the results ofiihise
Note that the definition of the NBNDC in (1), the definitionc,rejation can be found in [34].

of the mappind@* given in (12), and the fact that for symmetric . )

binary Markov source&* = 2¢-1, imply that§,, = z,, if and Remark:For M > 1 and under the same setting as in

only if z, < 29! (in which casez, = 0). As a result, the Theorem 1, with the boundary assumptions that= 7,

auxiliary binary noise symbol can also be defined in terms && = 92, ---» m = §ar and zy = gy, whereN > M + 1,
the inputz,, and g, as follows: one can prove that theufficiencyof condition (17) for the
o optimality of the symbol-by-symbol decoding mé&p can be
5, & 0, if g = n, (16) generalized to
Lo g =25, M—24 2
. . —ct%e 4 (1 — &) poa-1_ —
wherez¢ is the binary complement of,, and,, = 0*(y,). Aiv;iia ( P21 X {1 poo} >1. (18)
The following theorem gives a necessary and sufficient  a—ita® T (1 = €)paa—s Poo

condition for the mapping?* to be an optimal sequence
detection rule for; > 2. The proof is given in Appendix C. IV. ROBUSTLOSSY SOURCE CODING OVER THE

Theorem 1:Consider a symmetric binary Markov source NBNDC-QB
with pgg = p11 € [%, 1] and the NBNDC-QB with correlation ~ The NBNDC captures a large class of channel models. For
parametee > 0, memory ordetM = 1, ¢ > 2, and satisfying example, setting/ = 1 and letting the noise be i.i.d. reduces
(11). Letz"V be a source sequence of length > 3, vy a the NBNDC to the familiar memoryless binary symmetric
channel output sequence, andjét = 6*(y") be obtained by channel. As noted in Section Il, the Rayleigh DFC with
applying the mapping* component-wise tg/V. If z; = §; Clarke’s fading model is also an NBNDC with a stationary and
and zy = jn, thenizV = 3" is an optimal sequence MAP ergodic noise process [23], [25]. Furthermore, the modsl| ha

detection rule if and only if the ability to properly delineate both the statistical meyno
2 structure as well as the soft-decision information of many
Paoi-1 {1 —poo} >1, (17) real-valued output channels with memory used with antipo-
p2a-1 Poo dal signaling and soft-output quantization (includingazed
wherepg is defined via (14). additive Gaussian channels). In this section, we design two
For binary symmetric first-order Markov sources witlh = JSCC schemes, scalar quantization with MAP decoding (SQ-
p11 € [0, %), using the same approach, a similar theorem cAP) and channel-optimized vector quantization (COVQ), fo
be proved under the following condition the NBNDC-QB channel.
2
P2a-1-1 Poo
o X L poo} > 1. A. SQ-MAP system

1) System descriptionConsider the system depicted in

. ; . .o Fig. 1. The source(V;}2, is assumed to be a real-valued
theorem are not stringent, since they can be simply Satlbyedstationary and ergodic process. The scalar quantizer (SQ)

sending a pre-assigned value fgrandz y, where the receiver . ; :

. : ) encoder is a mapping from the real domairR of source
is also aware of the pre-assigned values. On the practibal Sl mbols to the index sdD), 1 271}, such thaty(v) — i
simulation results for long sequences confirm the resulhef tify R,, where {R, : 7 O '1’ Qn’ 1} is aty ;rtiaoln
theorem without the need to check these conditions. v E i P e 2 P

o . .~ ... of R. Hence the SQ rate i = n. The partitions are
>
It is interesting to note that foy > 2 the optimality chosen according to Lloyd-Max formulation [35], with the

(g:or\llf/i;]t;lc;n f(01r7)q'S:mieptigdigtngfﬁtgs EZ%ZZﬂsngﬁetﬁZ"ﬂi (_%nitial codebook selection obtained via the splitting altfon
correlation. In particular [26, Corollary 3] shows that foe= 1 27]. The index assignment modgle 'S & one—to-pne mapping
-, X b:{0,1,...,2" — 1} — {0,1}"™ with b(¢) = x, which maps
the condition analogous to (17) is : . ! .
each index; to a binary vectorx € {0,1}". Sinceb is one-
(e+ (1 —€)po)? " 1—poo]? > 1 to-one, we can denote the quantization region®Rhyinstead
(1 —€)2pop1 P00 = of R;, whereb(i) = x. Different index assignment methods

Note that the conditions; = ¢; and zy = gy In the
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such as the natural binary code (NBC), the folded binary codsing the instantaneous mapping instead of MAP detection, f
(FBC) [11], simulated annealing, and some heuristic assigvarious source distributions. A comparison of Tables It &
ment methods were tested. The FBC was selected becaustoofn = 1 for Gaussian and Laplacian sources reveals that
its simplicity and good performance. the instantaneous symbol-by-symbol decoder is perforragg
The n-tuple codewordx is then sent bit-by-bit over the well as the MAP decoder for these cases. Considerable gains
NBNDC-QB channel. The channel outpyte {0,1,...,29— (up to 2.25 and 3 dB) are also obtained by increasing the
1}, is fed to the MAP decoder described in the previouguantizer resolution tgy = 2 and ¢ = 3, respectively (for
section, where the source redundancy and channel memory: 3, SNR= 5 and Cor= 0.9 for Laplacian sources).
are harnessed for error correction. Finally, the SQ decgder Gauss-Markov sourcesErom Table Ill, we remark that up
maps the decoder outp&tinto output levels of the quantizerto 3.4 dB SDR gains (af = 3, n = 3, SNR = 2) can
codebook, i.e.f(X) = cg, cx € R, X € {0,1}"™. be realized for Gauss-Markov sources by exploiting theenois
Using a MAP decoder enables the system to take advantagerelation instead of interleaving the channel. In gehara
of inter-block memory in order to minimize the sequenceerrdetter performance is observed when the channel is highly
probability (and, as a result, decrease the distorfioit)can correlated.
be seen that in this system, most of the complexity load isAt low rates, especially ab = 1, the SDR performance
undertaken by the receiver. for the correlated channel is worse than that for the uncor-
2) Numerical results:We next present numerical resultgelated channel. This behavior is expected for= 1 and
on the performance of the described communication systgm= 1 from [26, Corollary 3]. According to this corollary
for the NBNDC-QB model. The NBNDC-QB noise one-and the numerical results, for the correlated channel, the
dimensional distributiorp; is expressed in terms of the SNRsource memory has a mismatch with the channel memory.
of the underlying Rayleigh DFC (discussed in Section 1I-BAs a result, increasing the channel noise correlation \sib a
by settingp, = PSU.(5), where PSU.(j) is given in (6) for increase the mismatch between the source and channel,gnakin
j=0,1,...,27 — 1 and ¢ is chosen as in [23] to maximizethe SQ-MAP perform worse on correlated channels than on
the DFC capacity as given in Table I. uncorrelated channels. However, this mismatch does nairocc

Several source distributions are tested, including memoif@r higher rates# > 2) and the SDR performance of the
less (i.i.d.) Gaussian and Laplacian sources and corcelafystem significantly improves with increasing channel @ois
Gauss-Markov sources. All sources have zero mean and trelation. Forn = 1 the results of Theorem 1 can also be
variance. The correlated source is modeled via a first-ordéistrated by comparing the Gauss-Markov source resolts f
Markov process, defined by; = ¢V;_, + U; where¢p € n =1 (With poo = p11 = 0.86) in Tables Ill and IV.

(—1,1) is the correlation parameter afd;} is a Gaussian In addition, using a 3-bit soft-decision quantizer in the
i.i.d. process. Note that whefi/;} is i.i.d., the resulting2"- receiver, gains up to 3.9 dB are observedr(at 3, SNR= 2,

ary procesgx;} is also i.i.d. However, if{ V;} is Markovian, Cor = 0.9 for Gauss-Markov sources) over a hard-decision
{x;} is not necessarily Markovian, but we model it as guantizer { = 1). Additional results for other values of Cor
Markov process (the distributio®(x;) and state transition and M are given in [34]. It is seen that for lower noise
matrix [P(x; |x;_1)] are calculated from a training set ofcorrelations, (e.g., Cof5 and 0.7), the system still has a
source symbols used for designing the SQ). better SDR performance, although the gain is less than for

For each simulation, the SQ training and statistics cathect Cor=0.9.
is done over a set df0® source symbols. For testingy, = 10°
independently_gengrated source symbols are transmit_téd 81 Channel Optimized Vector Quantization (COVQ)
the signal-to-distortion ratio (SDR) per source symbolas ¢ .
culated under the mean square error (MSE) distortion measur N contrast to the SQ-MAP, the COVQ system incorporates
We run each simulation 10 times and take average for ensurmﬁ intra-block memory of the noise into the quantizer desig
consistent results. Table Il depicts simulation resuitisdg) algorithm. This makes it is more robust to channel noise than

for different sources over the NBNDC-QB model with severaitandard scalar or vector quantizers such as the LBG-VQ [27]
values of the parameters SNR, SQ codeword lengthoise without adding extra algebraic (channel coding) redunganc

correlation Cor, and soft-decision resolutign The COVQ system, of rat& = n/k, is depicted in Fig. 2.
Memoryless sourcesTable Il indicates that the systemWe refer the reader K? [1], [34] for a.detalled descrllptlon. of

exploiting high noise correlation performs significantigtier € System as well as its design algorithm based on itefptive

than the system that fully interleaves (Cer0) the channel. PPlying optimality encoder and decoder conditions [7PH{1

For example, more than 4.2 dB of SDR gain is obtained sdpstead, we focus on illustrating the system’s performanves
memoryless Laplacian sources @t= 3, n — 3, SNR = 2. the NBNDC-QB channel. The same source distributions were

Also, for n = 1, since the quantized codewords form élsed as for the SQ-MAP system, and the algorithm was trained

symmetric i.i.d. sourceppg = p11 = 0.5), the results illustrate using SOO'OOO,SOWCE" vector_s._

Corollary 3 of [26] (when; = 1) and Theorem 1 of Section Il Tablg V depicts COVQ training result_s for.the memoryless

(wheng > 2). Table IV shows the results of an SQ systerﬂ:aplac'an source over NBNDC-QB with different channel
- noise correlation coefficients and coding rates. The cHanne

SNote that the MAP decoder does not directly minimize the enrerit parameters) and p; are given in Table I. As for the SQ-
mean square distortion. MAP system, the results show that the COVQ system performs
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consistently better over the highly correlated channehthand 2 for the memoryless Gaussian source), there is a good
over the fully interleaved one: gains of more than 4.4 dB ammnformity between the results for the two channel models.
achievable (e.g.,, foy = 1, R = 3, k = 3, SNR= 2 in This agreement in SDR performance can be heuristically
Table V) by exploiting the channel memory. Note that sincexplained by noting that for low rates: (= 1 and 2), the
the COVQ only makes use of intra-block memory, for rat8Q output sent to the channel input is nearly i.i.d. uniform.
R =1 and low dimensiong;, the block length is so small thatBut the NBNDC-QB and DFC channels were matched by
there is not much channel memory to exploit. As a result, tmeinimizing the divergence rate between their noise praess
performance is constant for different channel correlatidh Hence, when both channels are driven by the same capacity-
is however observed that in some cases interleaving may ga&hieving input (which is i.i.d. uniform as both channels ar
better COVQ performance over channels with lower noise ca@ymmetric), they will then have a similar probability of err
relations. Since the capacity of the correlated channglictly  performance in addition to nearly identical capacitiese Th
higher than that of the memoryless channel, this degradatisame agreement in SDR performance is also observed for
may be due to poor selection of the initial codebook for th@emoryless Laplacian and Gauss-Markov sources:fer 1.
vector quantizer. In general, the results indicate impmoxet We finally note that forn > 3, some disagreement in SDR
of COVQ performance when the channel noise correlation gerformance is observed [34] between the two systems (in
increased. Similar observations can be made for memorylélsis case the SQ output is not i.i.d. uniform). Note that
Gaussian and Gauss-Markov sources and different chantied degradation is not unexpected since for higher rates the
parameters (such as lower correlation values Cor and higseurce input distribution becomes less uniform, and tloeeef
memory orders\/) [34]. the matched NBNDC-QB model becomes less successful in
Finally, as in the case of the SQ-MAP system, we remaititating the error performance of the DFC.
that the COVQ performs considerably better with soft-deais
quantization ¢ > 2) as opposed to hard-quantization= 1). g COVQ system
Table V reveals SDR gains as high as 1.7 dB (for= 3,
k = 1, Cor = 0, SNR = 5) by just usingg = 2. For 3-
bit quantization additional (but less pronounced) gains loa
realized.

We next train a COVQ for an NBNDC-QB whose param-
eters are obtained by the procedure given in Section II-C to
match a given Rayleigh DFC. The resulting channel optimized
guantizer's performance is then tested over the DFC (here
again there is a mismatch in the COVQ system used over the

V. VALIDATING THE NBBIS%%-QB MODEL IN TERMS OF DFC as it is designed for the modeling NBNDC-QB). Training

and simulation results in terms of SDR are shown in Fig. 4 for

To illustrate the use of the NBNDC-QB model in a practicahemoryless Gaussian sources: we observe that there is a good
setup, we next assess how well it can represent the codelaignformity between the results for the two channel modals, i
Rayleigh DFC in terms of SDR performance when used wihse the NBNDC-QB is used for training and the DFC for
the SQ-MAP and COVQ systems. As noted in Section II-B, thesting. However, for higher rates, some degradation ketwe
m-fold probability distribution of correlated Rayleigh @om the simulation and training results is observed. The same
variables is not known in closed form fon > 3, and as a opservation applies for memoryless Laplacian and coeelat

result the channel transition probabilitié%}"g(ymwm) can  Gauss-Markov sources [1], [34].
only be calculated numerically. It is shown in [24] that the

NBNDC-QB model (for which the channel transition probabil- VI. CONCLUSION
ities are known is closed form) can approximate the Rayleigh

DFC in terms of channel capacity and noise autocorrelati nRObUSt source coc!mg for_ a new channel_model f:alled
function. BNDC-QB was studied. This channel model is analytically

tractable (its transition probabilities, noise entropyerand
autocorrelation function are known in closed form) and can
A. SQ-MAP system serve as a good approximation to a discrete Rayleigh fading
To validate the NBNDC-QB model as a good representati@hannel. First, the MAP decoding of a discrete source was
of the Rayleigh DFC for SQ-MAP systems, we design theonsidered and implemented using the Viterbi algorithnr. Fo
MAP detector using the path metric obtained for an NBND(inary symmetric sources a necessary and sufficient conditi
QB (whose parameters are obtained using the matching pnas derived for the MAP decoder to be reducible to an instan-
cedure described in Section 1I-C) and run simulation usirtgneous symbol-by-symbol decoder without loss of optitpali
both the NBNDC-QB and the Rayleigh DFC to compar&his condition was also numerically illustrated.
their performance. Hence the system simulated over the DFCTwo lossy JSCC schemes with low delay and complexity
employs a mismatched decoder. were implemented and tested for the NBNDC-QB model.
To simulate the Rayleigh DFC, we generate the fadirig the first system the MAP decoder was matched to a
coefficients using the modified Clarke method [36]. Simolati scalar quantized Markov source (SQ-MAP system). Numerical
results in terms of SDR are shown in Fig. 3 for memorylesgsults demonstrated that the proposed system can success-
Gaussian sources. More results can be found in [2], [34].-Coffally utilize memory and soft-decision information overeth
paring the performance of the system for the two channeNBNDC-QB channel model. The second JSCC scheme, which
we observe that for lower rates (codeword lengths= 1 consists of a COVQ implemented over the NBNDC-QB, was
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also shown to successfully exploit the channel’s intraeklo According to (11),p, < pg+ and poa_p+_1 < p2a_1_p.
memory and soft information in combating channel errors. Hence by (13),
Both systems outperform their fully interleaved counterpa P(1) P P
systems where the channel memory is discarded using ideal > >
(infinite) interleaving. P(0) ™ pra—pr—1 — pra-1-p

Finally, the channel model was compared to the correlated and thusP. — P, < 0. Hence, removing from ), and
Rayleigh DFC in terms of SDR performance. It was shown adding it to); does not increase error probability.
numerically that for both the SQ-MAP and COVQ SyStemS_ﬂ\‘t:’ follows that if we start from an arbitrary mappirty after

N.BNDC'QB. model can effectively approximate the Raylelggt most2¢ — 1 applications of the above replacement steps,
discrete fading channels for low coding rates. Future mebeawe obtain 6*. Since each step can only reduce the error

direptions inc]ude the integration of iterative spurcam:hel obability, among all mapping&" must minimize the error
coding/decoding methods (e.g. see [37]-[42]) into our JS "y

. ; _ obability. [ ]
systems for correlated fading channels (used without -inter
leaving) to further improve performance under very noisy

conditions while only moderately increasing system delay a APPENDIXB
complexity. Proof of Lemma 2:Let {Z,,} be a Markov process with a
finite state spac® and let the binary proces{s?n} be defined
APPENDIX A by Z, = f(Z,) for a functionf : ) — {0,1}. We use a

) . . result given in [32, p. 325] [33] which states that a suffitien
Proof Of. _Lem“.“a 1: We will show _that any mapping ., gjtion for{Z,} to be a Markov process is that
can be modified via a sequence of simple changes, each of

which can only decrease the error probability, such th@&raftPr{Z, ,, = 1|2, = 2.} = Pr{Zn11 = Zns1|Zn = f(20)},

a finite number of these changes the modified mapping will (21)

be equal ta9*. for all z,,1 andz,. Let f be given by (15). Then using (10),
To this end, we consider a mappifg: YV — {0,1} as a we have

classification rule that classifie¥ different output symbols

from {0,1,...,27—1} into two classe$/), and));. Thusé is Pr{Zn 1 =0[Z, = z,} (22)
defined by = Pr{Z,41€{0,1,...,297" —1}|Z, = z,}
(0, ffyed r! |
o 2i={ ] hE (19) =Y PH{Zus = 170 = )
=0
where); Cc Y and)y =Y\ ). 29-1_1
According to (12), ford* we haveY; = {0,1,...,k* —1} = > Qlilzn)
andY; = {k*,k*+1,...,29—1}. Let P, denote the symbol i=0
error probability under mapping, P. £ Pr{d(Y) # X}, €+221‘171(1 —)py, i 2y < 2071,
where (X Y') has the common joint distribution of the pairs = ZQq—l’__lo(l _ o) . > 901
(X;,Y;). If 0 # 6%, at least one of the two following cases =0 E)pis = ’
hold: Also
i) There exists an element € Yy, such thata < k*. 5 s
Removing a from Y, and adding it to)) yields a Pr{Z”;l_l_ ?'Z" =0} (23)
mapping with error probability’., such that < - Pr{Z, =1
pf: 9 P ¥ - ¥ Pr{znﬂzmzn:i} {Zn =i}
P.—P, = Pr{Y =aX =1}Pr{X =1} (20) i= Pr{Z, = 0}
—Pr{Y =a|X = 0} Pr{X = 0} Note that according to (22), for ajl=0,...,2971 —1,
= Q27-1-a)P(1) —Q(a)P(0) ga-1_1
= P(l)p2‘1—1—a - P(O)pa Pr{Zn—i-l = O|Zn = ]} =&+ Z (1 - 5)/%
According to (11),0, > pr-—1 and poa_p= > poa_1_q. ] =
Hence by (13), Hence, (23) is equal to
P(l) _ pra Pa P! S22 P Z, = i)
< < — s i=0 n
PO e < (4 B 0 255
and thereforeP, — P, < 0. Thus, removingz from )y, 20711 Pr{Z — 0}
and adding it tg)y does not increase the error probability. = (e + Z (1- e)pi> ——r 7
i) There exists an elemente ), such thab > k*. Similar i=0 br{Z, =0}
to (21), it can be shown that 29711
~ =&+ Z (1—6),02

P, — P. = —P(1)paa_1_4 + P(0)p. P
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Using the same reasoning, it can be shown that In set Ay, sincexy = g, andxx_1 = ¥Jr_1 We see that
ga-1_1 2z, = ap and z,_1 = ag_1. Thus,

Pr{Zn =01Z, =1} = Y (1-e)pi.  (24) ] Qleslosy) Pslis) _ y Qoslasy) Plasfee)

=0 e As Q(2zk|2k—1)P(zp|2r_1) ved Qaglar—1)P(xk|Tr—1)
Thus according to (23) and (24), ! _ 1L
Pr{Z,:1=0|Z, = %,} (25) N . N
g1-1_1 L In AQ, Tk 7& Yk and Th—1 75 Yk—1 lmply that T =1-— Yk

— € +q_zli:0 (1 - E)Pi; if Zn =0, andxk,l =1—9k_1. Also, if Tk 7é Uk andxk,l 75 Uk—1, then
DD = if z, =1. by the definition of6* (with k* = 27 — 1), 2, 2,1 > 2771,

It can be seen from (22) and (25) that condition (21) is satisfi NOW since the Meirkgv source is symmetrigod = p1),

for the NBNDC-QB with memory ordef/ = 1 and the W€ OPtain tha}tp(y"’w’“‘l) = Plaglze-1). Noting that
~ q— 1

function f defined via (15). ConsequentlyZ,.} is a first order @ ®—1 <2 and according to (10) and (11),

Markov chain. u H Q(ax|ar—1)P(Jr|Jx—1) H Q(ak|ak—1) 1 >1
Q(zk|zp—1) Pz |TK—1) Zk|Zlc 1)
APPENDIXC ReAz ke
Proof of Theorem 1:For * to be the optimal detection We next note that sinc&; = Y; andXy = Yy, we clearly
rule it is necessary and sufficient that for al’ € {0,1} must have|A;| = |A4|, where|B| denotes the number of
andy™ € {0,1,...,29 — 1}, the following hold elements in a seB. Furthermore, inds we havex, # 7
N _ ~NIvN _ N implying = = 1 — 3. Therefore, according to the definitions
o Pr{XY = N YY = V) i There ¢
v 2 Pr{XN = VYN = gV > 1. of z; anday, and using (2), it can be seen that= (27—1) —
XY =2 =Y ar and z;_1 = ax_;. Similarly, in set.A;, we havez; = ay,
~ can be written as andz,_1 = (2¢9—1)—ay_1. Also, due to the source symmetry
Pr{yN — yN| XN = gV} Pr{x " = §V} and noting thap, € [3,1], we have
Y : U .
Pr{YN = yN|XN = gN} Pr{XVN = 2N} . P(Or|ir—1) S P(g;|9i-1) _ P _ 1=poo
Note that by (2) and (4), we havBr{YN = yN|XN = keds P(ap|rp—1) et P(xjlzj-1)  Poo Poo
i 2q71 X, .
oV} o= Pr{ZV = 2V}, where z; = U5 ((_1 %€ Thus according to (10) and (11), we have
{0,1,---,29 — 1}, ¢ = 1,2,...,N. Also note that by the o
definition of 9* (with k* = 2171), if we leta, £ £ G000, Q(ak|ak—1) P (Gr|Fr-1) I Q(ak|as—1)P(gr|gr-1)
with §; = 0*(ys), thena; € {0,1,...,29=1 — 1} for all  xea, QErlF—1)P(@rlznr) = 25 Qzrlzk—1) Plarlze-)
i=1,...,N. . S H Q(ax|ar—1)(1 — poo)
Thus we have, witlw" = (a1,...,an), 2" = (21,...,2n), -1 Q29 —1 — ag|ar—1)poo
andy™ = (41, -.,9n) as above, S A Oa 1 )
ag|ak—1)(1 — poo
L Pr{ZN = oV} Pr{X¥ = §¥} <[] Dl — 1~ ar1)p
Pr{ZN = ZN}Pr{XN =N} k(elf‘ \ a ) a )
. — &)p2a-1-11 = Poo — Poo
_ Pr{Z, = a1}P(91) H Q(ar|ar—1)P(Tr|Tr—-1) = (1 — &) paa—1poo % H P00 ~(26)
Pr{21 = Zl}P Zk|Zk 1 P(Ik‘xk—l) kEAs3 keAy
A i1 [1—poo]?
_ H Q(ak|ar— 1 P(Gr|r—-1) H Parioi [ poo]
Q Zk|2’k 1 (ﬁk‘xk 1) i1 P2et Poo

where the last equality follows fromPr{Z; — a,}P(j:) = where the second inequality follows by taking minimum over

_ - v ; the first product and noting th%m > 1 for all
Pr{Z, = 1 }P since X; = Y; according to the hypothe- [20—1—a
12 =z} Pa) ! ! g yp k. Clearly, if (17) holds, then

sis.
We partition the index sek = {2,3,..., N} as follows: |As] 2
K=AUAyUA3U Ay, where 1_[p2“1 1><[ Poo} > 1.
A _ ~ s—1 P2et Poo
A = {keK: iz =0k Th—1 = Jr—1}, . . . :
As 2 (ke :an# 6Tt # Goi), ;I'hkl;SV > 1 and the mapping* is an optimal MAP decoding
ule.
Y . ~ -
As R {k € K:ap# gr, o1 = gr-1}, To prove the converse, assume that (17) does not hold; i.e.,
Ay = {keK:xp =0k 21 # Ju—1}- ' )
Hence, P2a-1_1 % [ —poo} <1
. P2a-1 Poo
10 H Q(aklar—1)P(k|Jr-1) Now for

i=1keA; Z]C‘Zk 1 P(S(}k|l‘k,1). xN = (0707 70)
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and
yN:(0705 70’261—1,07._. ’0)7

where the only non-zero component @Y is in an arbitrary
positioni € {2,..., N — 1}, we have
1 2
Proi1 poo] )xlx...xl <1

P2a-1 { Poo

Hence, if (17) does not hold, there exists somié and 3™V
such that the mapping* does not decode optimally. =

v = 1><1><...><1><<
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Fig. 1. Block diagram of a JSCC system using scalar quaidgizaind MAP
decoder (SQ-MAP).
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THE p AND 6 VALUES FOR THENBNDC-QB FOR SOFFDECISION

RESOLUTIONSq = 1,2, 3.

[SNR (dB)

[

T po [ pr | p2 | p3

[ p4

OdNdN |«

15

0.99230.0071
0.97220.0201
0.95450.0177

0.00640.0013

0.0123

0.12
0.06

0.00780.00430.0021

0.00090.

10

0.97610.0233
0.92390.0528
0.86480.0514

0.01870.0044

0.0369

0.20
0.11]

0.02360.01320.0063

0.00240.

Fig. 2.

- (- NBNDC_QB, n=1
—— NBNDC_QB, n=2
—#— Rayleigh DFC, n=1
—#— Rayleigh DFC, n=2

y€{0,1,...,

Block diagram of a COVQ system

20 —1}"

0.93580.0647
0.78220.1536
0.7031/0.09964

0.053§0.0104

0.0784

0.40
0.18

0.05470.03350.0178§

0.0082

0.0047

WNPR[WNPEP[[WNRE[[WN R

0.89150.1085
0.69530.1962
0.56350.1318§

0.08500.0235

0.1123

0.50
0.25

0.08390.05450.0305

0.0144

0.0089

TABLE I

SYMBOL ERROR RATE (IN%) FOR MAP DECODING AND INSTANTANEOUS
MAPPING § FOR SYMMETRIC BINARY MARKOV SOURCES WITHpgo = 0.6
AND 0.7. THE CHANNEL MODEL IS THENBNDC-QB,WITH M =1,
Cor = 0.0, AND ¢ = 2, 3. THE VALUES C ARE CALCULATED FROM (17).
THE § VALUES FORSNRs (15,10,5,2)ARE (0.12,0.20,0.40,0.5(0H0R

g =2 AND (0.06,0.11,0.18,0.250Rq = 3, RESPECTIVELY

Fig. 3. SQ-MAP simulation SDR results (in dB) for the DFC-fittdBNDC-

10 12

SNR (dB)

14

QB and the DFC; memoryless Gaussian souice, 2, fpT = 0.005.

16 T T

— © —NBNDC_QB, g=1, k=2, n=4
—%¥— Rayeligh DFC, g=1, k=2,n=4
- & - NBNDC_QB, q=2, k=2, n=6
—+— Rayleigh DFC, q=2, k=2, n=6
- B —NBNDC_QB, ¢=2, k=2, n=4
—— Rayleigh DFC, q=2, k=2, n=4

14+

SDR (dB)

¢ SNR (dB)
Fig. 4. COVQ simulation SDR results (in dB) for the DFC-fitte@NDC-

10

12

14

16

QB and the DFC; memoryless Gaussian souice, 2, fpT = 0.005.

SNR (dB)
Poo | q 15 10 5 [ 2

MAP] 0~ [MAP] @ [MAP][ & [MAP| O~
2C=139>51]C=125>1]C=127>51]C=1.03>1
0.6 076 0.76 | 2.30] 2.30 | 6.43] 6.43 [10.85] 10.85
3 C=080<1[C=080<1|C=073<1]C=068<1
0.73] 0.76 | 2.22] 2. 30 621] 643 [10.51] 10.85
2[C=057<1|C=052<1]C=052<1]C=042<1
0.7 064 076 [ 191 2. 30 555 643 | 9.50 | 10.85
IMC=033<1[C=033<1]C=030<1]C=028<1
062 076 [ 190 2. 30 537] 643 | 9.27] 10.85

1 TABLE Il

SQ-MAP TRAINING SDRRESULTS(IN DB) FORMEMORYLESS
NBNDC-QB AND HIGHLY CORRELATED NBNDC-QB WITH PARAMETERS

M = a =1, G: MEMORYLESS GAUSSIAN SOURCE L: MEMORYLESS
LAPLACIAN SOURCE, GM: GAUSS-MARKOV SOURCE WITH¢ = 0.9.

Fully interleaved (Cor=0) Cor=0.9
Sou-| g | n SNR (dB) SNR (dB)
rce I5TI0] 5772 IS5 TI0] 57T 2
11 417 ] 3.75| 2.78 | 1.94]| 419 | 3.77 | 2.85| 1.97
1|2 815| 6.49 | 3.85|2.14|| 8.37 | 6.89 | 447 | 284
3]/ 11.05| 7.80 | 4.02 | 1.93|| 11.58| 8.43 | 4.76 | 2.76
T 4171 375 278 11.94]| 419 3.77 | 285 1.97
G |2|2] 815| 6.49 | 3.85|2.14| 869 | 7.68| 561 | 4.03
3| 11.10| 7.94 | 4.33 | 2.53|| 12.61| 10.15| 6.64 | 4.51
I 417 375 278194 419 3.77| 2.85| 1.97
32| 817 | 6.54 | 402 |241|| 876 | 7.77 | 591 | 4.48
3| 11.15| 798 | 4.38 | 2.57|| 12.86| 10.52| 7.16 | 5.12
11 287 ] 262 | 2.00 | 1.44]| 2.88 | 2.63 | 2.05 | 1.45
1|2 6.65| 527 | 291 | 1.30|| 6.89 | 5.88 | 4.28 | 3.21
3] 959 | 6.49 | 2.72 | 0.58|| 10.14| 7.64 | 488 | 3.34
T 2871 262 2.00[1.44]] 288 2.63 | 2.05| 1.45
L [2|2]| 6.69| 542 | 3.32|201|| 7.26 | 6.72 | 553 | 4.47
3|| 990 | 7.09 | 3.81|2.06( 11.59| 9.86 | 7.14 | 5.35
1] 287 262 | 2.00 | 1.44]| 288 2.63 | 2.05 | 1.45
3|2| 6.72| 545 | 3.27 | 2.01|| 7.32 | 6.91 | 5.88 | 4.97
3] 996 | 7.12 | 3.75|1.99|| 11.85| 10.47| 7.94 | 6.23
11 421 ] 3.78 | 3.74 | 3.22]| 423 | 3.81| 289 | 2.01
1|2]| 895| 829 | 6.97 | 6.34|| 894 | 824 | 6.88 | 5.71
3| 13.38| 11.84| 9.46 | 7.52|| 13.89| 12.69| 10.43| 8.69
T 4387 423 389 361 435 | 414 | 344 265
GM | 2| 2] 916 | 8.81 | 8.00 | 6.98| 9.24 | 897 | 8.26 | 7.36
3 || 13.98| 12.87| 10.72| 8.91 || 14.47| 14.02| 12.88| 11.51
1] 439 430 | 401 [365| 437 | 420 | 362 2.97
32| 9.18| 8.87 | 8.09 | 7.24|| 9.29 | 9.18 | 8.64 | 8.00
3 || 14.07| 13.06| 10.96| 9.16 || 14.57| 14.34| 13.47| 12.58
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TABLE IV
SQWITH INSTANTANEOUS MAPPING- TRAINING SDRRESULTS(IN DB)
FOR7n = 1 AND THE MEMORYLESSNBNDC-QB AND THE HIGHLY
CORRELATEDNBNDC-QB WITH PARAMETERSM =1, o =1, G:
MEMORYLESS GAUSSIAN SOURCE L: MEMORYLESSLAPLACIAN SOURCE,
GM: GAUSS-MARKOV SOURCE WITH¢ = 0.9.

Fully interleaved (Cor=0 Cor=0.9
Source| ¢ SNR (dB) SNR (dB)
ISTI0O]T 571 2 ISTI0]T 57T 2
G 1,2,3[[417]3.75]278] 1.94]] 419 3.77[ 2.85] 1.97
L 1,2, 3] 287]262]2.00]| 1.441] 2.88] 2.63] 2.05[ 1.45
GM [1,2,3][421]378]282] 197 423]3.81]2.89]2.01

TABLE V
COVQ TRAINING SDRRESULTS(IN DB) FOR THEMEMORYLESS
NBNDC-QB AND THE HIGHLY CORRELATED NBNDC-QB WITH
PARAMETERSa = 1.0, M =1, € = 0.9; MEMORYLESSLAPLACIAN

SOURCE

Fully interleaved (Cor=0) Cor=0.9

qg| R |k SNR (dB) SNR (dB)
I5 T I0 [ 57 2 IS5 T I0] 5 T2
1]] 2.87 ] 263 [2.07]1.58[] 2.87 [ 2.63 [ 2.07 | 1.58
1|2]|| 346 | 3.12 | 242| 1.84|| 348 | 3.16 | 245 | 1.85
3 || 406 | 3.46 244|190 426 | 3.93 | 3.38 | 291
T]] 664 539348232 6.71| 564 | 412 | 434
1|2 |2]|| 7.67| 6.18 | 4.18| 3.12|| 7.76 | 7.08 | 6.44 | 5.62
3| 811 | 6.61|4.55|3.38|| 840 | 8.16 | 7.07 | 6.38
T 970 708 [ 421|354 984 9I5| 8.01 [ 6.78
3 12| 10.92| 852 | 596| 4.36|| 11.27| 10.91| 9.33 | 8.17
3| 11.40| 9.25 | 6.41| 4.65|| 12.26| 11.97| 10.23| 9.10
1] 290 270 [221|1.77]] 290 | 270 | 221 | 1.77
1|2]|| 350 | 3.22 |259|2.06| 352 | 3.25 | 2.63 | 2.08
3 || 414 | 3.63 | 2.66|2.03|| 431 | 4.04 | 3.46 | 3.10
I/ 685] 579 396|277 6.95| 6.05 | 448|474
2|1 2|2| 791 | 659 | 4.88|3.73| 8.06 | 7.01 | 6.69 | 5.98
3| 837 | 7.13 | 524|394 866 | 7.62| 7.25|6.51
1 10.32] 7.84 [ 597 4411 10.63| 846 | 845 | 7.31
32|/ 1145| 951 | 7.04| 5.30|| 11.71| 10.52| 9.02 | 8.51
3 || 12.08| 10.13| 7.52| 5.62 || 12.53| 11.58| 10.36| 9.65
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