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Packet-Based Modeling of Reed–Solomon
Block-Coded Correlated Fading Channels

Via a Markov Finite Queue Model
Cecilio Pimentel and Fady Alajaji, Senior Member, IEEE

Abstract—We consider the transmission of a Reed–Solomon
(RS) code over a binary modulated time-correlated flat Rician
fading channel with hard-decision demodulation. We define a
binary packet (symbol) error sequence that indicates whether an
RS symbol is successfully transmitted across the discrete (fading)
channel whose input enters the modulator and whose output
exits the demodulator. We then approximate the packet error
sequence of the discrete channel (DC) using the recently devel-
oped queue-based channel (QBC), which is a simple finite-state
Markov channel model with M th-order Markovian additive
noise. In other words, we use the QBC to model the binary
DC at the packet level. We propose a general framework for
determining the probability of codeword error (PCE) for QBC
models. We evaluate the modeling accuracy by comparing the
simulated PCE for the DC with the numerically evaluated PCE
for the QBC. Modeling results identify accurate low-order QBC
models for a wide range of fading conditions and reveal that
modeling the DC at the packet level is an efficient tool for non-
binary coding performance evaluation over binary channels with
memory.

Index Terms—Burst-noise channels, finite-state Markov chan-
nels (FSMCs), packet-error sequence, probability of codeword
error (PCE), queue-based channel (QBC), Reed–Solomon (RS)
codes, Rician fading.

I. INTRODUCTION

THE DEVELOPMENT of binary additive (first-order)
Markov noise channel (BAMNC) models to represent

the successes and failures of the transmission of informa-
tion packets over correlated flat-fading channels was con-
sidered in [1]–[4]. In these works, the packet-error (i.e.,
noise) process is constructed by taking into consideration
the packet length, the parameters of the fading channel, the
modulation/demodulation/diversity techniques, and the coding/
decoding schemes (if coded transmission is considered). It is
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assumed in [1]–[4] that the fading process is constant within
the packet duration, which makes these methodologies suit-
able for slowly fading channels. Binary finite-state Markov
channel (FSMC) models with more than two states were also
proposed to model the information blocks produced by the
physical layer of a coded communication system [5], [6]. Such
FSMC models characterize the residual correlation structure
of the successes and failures of consecutive blocks of infor-
mation symbols at the output of the decoder. In this sce-
nario, closed-form expressions for the performance analysis of
error-correcting codes on FSMCs [7]–[9] may be employed
for further protocol performance evaluation in a higher layer
network.

Binary FSMC models were also used to characterize the bit
error process of the discrete communication fading channel
(from the input of the modulator to the output of the de-
modulator) [10]–[16]. In this case, the FSMC model allows
analytical coding performance evaluation with arbitrary fading
rates and, hence, provides the tools for the construction of
powerful coding techniques that effectively exploit the channel
statistical memory, as opposed to ignoring it via interleaving.
Indeed, codes that were designed to take into account the
channel memory can considerably outperform traditional codes
designed for the equivalent memoryless channel (realized via
perfect interleaving) [17]–[19]. This is information theoreti-
cally justified by the fact that, for a wide class of information
stable channels (e.g., channels with additive stationary ergodic
noise), memory increases capacity (e.g., see [20]).

In this paper, we consider the transmission of Reed–Solomon
(RS) codes over hard-decision binary frequency-shift keying
(BFSK) demodulated time-correlated flat Rayleigh and Rician
fading channels. RS codes are nonbinary error-correcting block
codes of considerable importance in transmission systems op-
erating over fading channels [21]–[26]. Due to their symbol [an
element of the Galois field GF(2b)] orientation, RS codes are
well suited to an environment where errors occur in bursts. The
binary communication channel from the input of the modulator
to the output of the demodulator is herein referred to as the
discrete channel (DC) model. We construct a binary packet
error process for the DC model from its bit error process, where
the packet (or symbol) length is equal to b (which is the length
of the binary representation of the RS field element). Here-
inafter, we refer to a packet as a binary sequence of length b.
In this case, the kth packet error bit is equal to 0 whenever the
kth RS symbol is successfully transmitted across the DC model.
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Authorized licensed use limited to: Queens University. Downloaded on August 24, 2009 at 11:46 from IEEE Xplore.  Restrictions apply. 



PIMENTEL AND ALAJAJI: PACKET-BASED MODELING OF RS BLOCK-CODED CORRELATED FADING CHANNEL 3125

Otherwise, the packet error bit is equal to 1. The objectives of
this work are twofold.

1) Develop accurate FSMC models for the DC (symbol)
packet-error process. This is an extension of prior works
where the DC is modeled via FSMCs at the bit error
process level [10]–[16].

2) Provide the tools for evaluating the probability of code-
word error (PCE) for nonbinary block codes over our
FSMC models under bounded distance decoding.

We will show that the derivation of the recently introduced
queue-based channel (QBC) model [20] at the packet level
facilitates both the DC modeling and its RS coding performance
analysis.

To achieve the first objective, we approximate the binary
packet-error process of the DC model using the QBC model,
which is a simple FSMC model. Specifically, the QBC is
a stationary M th-order additive Markov noise channel with
only four parameters [20]. Closed-form expressions for sev-
eral statistics of the QBC model with arbitrary memory order
M (e.g., capacity, autocorrelation function (ACF), and block
error probability) are provided in [20]. It should be noted
that the QBC has several interesting attributes. These include
its mathematical tractability for the design and analysis of
coding systems over channels with memory (due to the closed-
form expressions for its statistical and information-theoretic
quantities) while being an accurate model (at the bit level) for
the Gilbert–Elliott channel [20] and the class of time-correlated
Rician fading channels [11]. Note also that the BAMNC with a
nonnegative noise correlation coefficient is a special case of the
QBC. (It is obtained by setting the memory order to M = 1.)
The QBC at the packet level (i.e., at the symbol level) generates
a binary sequence that indicates whether an RS symbol is
successfully transmitted across the DC model and captures the
correlation among consecutive RS symbols within a codeword.
Under this setup, we investigate the appropriateness of the QBC
in modeling the DC packet-error process.

Our contributions in the modeling part of this paper are given
as follows: We first identify the range of fading parameters
for which the BAMNC at the packet level is accurate. For the
fading regime where the BAMNC is not accurate (slow fading),
we generalize the results obtained in [4] by developing an ex-
pression for the probability of a binary packet-error sequence of
length n of the DC model with Rician fading under the assump-
tion of constant (quasi-static) fading within a packet to param-
etrize higher order Markovian QBC models in slow-fading
environments. Modeling results identify the QBC param-
eters for several fading conditions and reveal that low-order
QBCs (M ≤ 4) provide a good fit for the packet-error process
of the DC model, as opposed to higher order QBC models that
are required to model the DC error process at the bit level for
slow fading [11].

The accuracy of the QBC approximation is measured in
terms of ACF and PCE. Under bounded distance decoding, the
PCE for RS codes is obtained from the probability of m symbol
(packets) errors in a block with a length of n symbols, which
is denoted by Ps(m,n). Methods for calculating Ps(m,n) for
the binary transmission of nonbinary block codes with symbols

over GF(2b) are proposed in [26] and [27]. However, the PCE
performance analysis of binary block codes over FSMCs at
the bit level is simpler and requires the calculation of the
probability that the FSMC generates m erroneous bits in a block
with a length of n bits, i.e., P (m,n). It is worth mentioning that
the methods developed in the literature for calculating P (m,n)
for some classes of FSMC models such as the BAMNC [9],
[28], the Gilbert–Elliott channel [12], [29], and the simplified
Fritchman channel [30] can readily be applied to study the PCE
performance of RS codes over FSMCs at the packet level. In
the latter case, the code’s field size is a parameter of the model
and is not considered in the P (m,n) calculation. Thus, the
development of FSMC models at the packet level, such as the
QBC modeling studied in this paper, can significantly simplify
the performance analysis of RS codes over channels with
memory. Packet error modeling and RS coding performance
evaluation in magnetic storage channels were also recently
considered in [31].

Our contributions toward the second objective are given as
follows: a novel closed-form formula for P (m,n) that can
be used with the BAMNC, which is much simpler than that
derived in [9, eq. (39)]. In addition, an iterative matrix-based
algorithm for computing P (m,n) for general binary FSMC
models is proposed and applied for QBC models with M > 1.
The proposed algorithm is easy to implement using a symbolic
manipulation program and takes advantage of the sparse struc-
ture of the transition probability matrix of the QBC to reduce
the computational complexity.

The rest of this paper is organized into six sections. Section II
describes the communication system and the generation of
the packet error process. Preliminaries on the QBC models
are also provided in this section. The derivation of packet
error statistics required for channel modeling is presented in
Section III. The QBC parameter estimation for best fitting the
DC at the packet level is discussed in Section IV. Section V
presents a matrix-based methodology for computing P (m,n)
for general FSMC models. In particular, a new closed-form
formula for the BAMNC is derived. Numerical fitting results
in terms of PCE are provided in Section VI. Conclusions are
given in Section VII.

II. COMMUNICATION SYSTEM

We consider an (n, k) RS-coded communication system with
RS symbols over Galois field GF(2b), whose codewords are of
length n = 2b − 1 symbols and contain k information symbols.
The code can correct up to t = �(n − k)/2� symbols (under
bounded distance decoding), where �x� is the greatest integer
that is less than or equal to x. Each symbol in GF(2b) is
mapped to a binary b-tuple (the vector space representation of
the corresponding field element) and transmitted across a binary
(binary-input, binary-output) DC.

The DC model, as shown in Fig. 1, is composed of a BFSK
modulator, a time-correlated flat Rician fading channel with
additive white Gaussian noise, and a hard quantized demod-
ulator. The complex envelope of the fading process G̃(t) is a
complex wide-sense stationary Gaussian process with normal-
ized second moment, i.e., E[|G̃(t)|2] = 1 (where E[·] denotes
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Fig. 1. Communication system with a binary DC.

the expectation), and covariance function given by Clarke’s
model

C(τ) =
(

1
1 + KR

)
J0(2πfDτ) (1)

where J0(x) is the zero-order Bessel function of the first kind,
fD is the maximum Doppler frequency, and KR is the Rician
factor. We define a binary error process {Ek}∞k=1, where Ek =
0 indicates no bit error at the kth signaling interval of length
T and Ek = 1 indicates a bit error. The probability of an error
sequence of length n, en = e1, e2, . . . , en at the bit level for the
DC model is denoted by PDC(en) and is given by [32]
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· · ·
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)−1

1
}
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(
I + Es

N0
(1 + KR)−1CF

)
(2)

where G is a column vector composed of n complex Gaussian
random variables G̃i, i = 1, . . . , n; Es/N0 is the signal-to-
noise ratio; the (i, j)th entry of the normalized n × n co-
variance matrix C is J0(2πfD|i − j|T ), 1 ≤ i, j ≤ n; F is a
diagonal matrix defined as F = diag(l1/(l1 + 1)), . . . , (ln/
(ln + 1)); 1 is a length-n column vector of ones; I is the
n × n identity matrix; and superscripts [·]T and [·]† indicate the
transpose and transpose conjugate of a matrix, respectively.

To construct the binary success/failure process {βk}∞k=1 of
the transmitted packets (sequences of b bits) of the DC model,
the binary error process {Ek}∞k=1 is divided into packets of
length b. Event βk = 0 indicates the successful transmission
of the kth packet, i.e., sequence E(k−1)b+1, . . . , Ekb is an all-
zero sequence (which is denoted by 0b), and βk = 1 indicates

a packet error. (At least one bit in this packet is incorrectly
decoded.) Thus, each binary random variable βk is a function
of sequence E(k−1)b+1, . . . , Ekb, and it is binary packet-error
process {βk}∞k=1 that the QBC model will herein attempt to
emulate. Thus, sequence {βk}∞k=1 specifies the DC model at
the packet level.

A. QBC Model

The QBC model generates a binary M th-order stationary
ergodic Markov noise process {Zk}∞k=1 using a finite queue
[20]. The model is defined in terms of four parameters, i.e., the
size of the queue M , bit error rate (BER) p = Pr(Zk = 1), and
correlation parameters ε and α, where 0 ≤ ε < 1 and α ≥ 0.
We briefly describe the generation of the noise symbol at the
kth interval. More details are provided in [20]. First, one of
two parcels (an urn and a queue of size M ) are selected with
probability distribution {ε, 1 − ε}. If the urn is selected, the
model generates an error (Zk = 1) with probability p. If the
queue is selected, a binary noise symbol is selected with a
probability distribution that depends on M and parameter α. (α
determines the bias for operating on the last cell of the queue of
length M and is equal to 1 when M = 1 [20].) The state process

of the QBC {Sk}∞k=1, where Sk
Δ= (Zk, Zk−1, . . . , Zk−M+1),

is a first-order Markov process with 2M × 2M transition proba-
bility matrix P = [pij ] given by [20, eq. (4)] and state stationary
distribution column vector Π = [πi] given by [20, eq. (5)].

We define two 2M × 2M matrices P(0) and P(1), P(0) +
P(1) = P, where the (i, j)th entry of matrix P(z) is the prob-
ability that the model generates an error bit z when the QBC
state process transitions from states i to j. For the QBC, the
first 2M−1 columns of P(0) are exactly the same as those of P,
whereas the remaining 2M−1 columns are zeros. Similarly, the
first 2M−1 columns of P(1) are all zeros, whereas the remain-
ing 2M−1 columns are exactly the same as those of P. Channel
noise block probability Pr(Z1 = z1, Z2 = z2, . . . , Zn = zn) =
Pr(Zn = zn) is expressed in the following (see also [20]).

• For block length n ≤ M , Pr(Zn = zn) is given by (3),
shown at bottom of the page, where db

a = zb + zb−1 +
· · · + za(db

a = 0 if a > b), and
∏a

j=0(·)
Δ= 1 if a < 0.

PQBC(zn) Δ= Pr(Zn = zn) =

∏n−dn
1 −1

j=0

[
j ε

M−1+α + (1 − ε)(1 − p)
]∏dn

1 −1
j=0

[
j ε

M−1+α + (1 − ε)p
]

∏M−1
j=M−n

[
1 − (α + j) ε

M−1+α

] (3)
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• For block length n ≥ M + 1

PQBC(zn) Δ= Pr(Zn = zn)

= L(M)
n∏

i=M+1

[ (
di−1

i−M+1 + αzi−M

)

× ε

M − 1 + α
+ (1 − ε)p

]zi

×
{[(

M − 1 − di−1
i−M+1

)
+ α(1 − zi−M )

]
× ε

M − 1 + α
+ (1 − ε)(1 − p)

}1−zi

(4)

where L(M) is given by the expression shown at the
bottom of the page.

The ACF of the QBC, i.e., RQBC[m] = E[ZiZi+m], satisfies
the second expression shown at the bottom of the page [20].
The correlation coefficient of a binary stationary process is
defined as

Cor
Δ=

R[1] − Pr2(1)
Pr(1) (1 − Pr(1))

. (5)

The correlation coefficient for the QBC, CorQBC, is a non-
negative quantity given by [20]

CorQBC =
ε

M−1+α

1 − (M − 2 + α) ε
M−1+α

. (6)

The BAMNC with nonnegative noise correlation coefficient
is a special case of the QBC with M = α = 1 and noise
correlation coefficient ε. Its transition probability matrix is
written as

P =
[

ε + (1 − ε)(1 − p) (1 − ε)p
(1 − ε)(1 − p) ε + (1 − ε)p

]
. (7)

In particular, the ACF of the BAMNC is given by

RBAMNC[m] = p2 + εmp(1 − p), for m ≥ 1. (8)

Next, we derive some statistics of the packet-error process
{βk}∞k=1 of the DC model in terms of (2). These statistics will

be used in Section IV to derive QBC models for the DC model
at the packet level, i.e., approximate {βk}∞k=1 by {Zk}∞k=1.

III. DERIVATION OF DC PACKET-ERROR STATISTICS

A. Packet-Error Correlation Coefficient

The probability of a packet error of the DC model, which is
denoted by PPEβ , is given by

PPEβ = Pr(βi = 1) = 1 − Pr(βi = 0) = 1 − PDC(0b) (9)

where PDC(0b) is obtained from (2). Let Ωm−1 denote the set of
all binary sequences of length m − 1 and ω denote a particular
sequence in Ωm−1. The ACF of a binary stationary process
may be expressed as R[m] = Pr(bk = 1, bk+m = 1). We then
compute this probability equivalently as

R[m] Δ= Pr(1Ωm−11) =
∑

ω∈Ωm−1

P (bk = 1, ω, bk+m = 1).

It is convenient to express R[m] in terms of Pr(0Ωm−10).
First, note that

Pr(0) = Pr(0Ωm) = Pr(0Ωm−11) + Pr(0Ωm−10)

= Pr(Ωm0) = Pr(0Ωm−10) + Pr(1Ωm−10).

We substitute Pr(0Ωm−11) = Pr(1Ωm−10) = Pr(0) −
Pr(0Ωm−10) into

Pr(0Ωm−10)+Pr(1Ωm−10)+Pr(0Ωm−11)+Pr(1Ωm−11)=1

and we express the ACF of a binary stationary process as

R[m] = Pr(1Ωm−11) = 1 + Pr(0Ωm−10) − 2Pr(0). (10)

For the packet-error process of the DC model, Pr(0) =
Pr(βk = 0) = PDC(0b) and Pr(0Ωm−10) = Pr(βk = 0,
βk+m = 0) are obtained from PDC(02b), with the (i, j)th
entry of the 2b × 2b normalized covariance matrix modified to
J0(2πfD|i1 − j1|T ), where

j1 =
{

j + (m − 1)b, if j ≥ b + 1
j, if j < b + 1.

L(M) =

∏M−1−dM
1

j=0

[
j ε

M−1+α + (1 − ε)(1 − p)
]∏dM

1 −1
j=0

[
j ε

M−1+α + (1 − ε)p
]

∏M−1
j=0

[
1 − (α + j) ε

M−1+α

]

RQBC[m] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p, if m = 0
ε

M−1+α +(1−ε)p

1−M−2+alpha
M−1+α ε

p, if 1 ≤ m ≤ M − 1

(1 − ε)p2 + ε
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(
m−1∑
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RQBC[i] + αRQBC[m − M ]
)

, if m ≥ M − 1
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A similar definition holds for i1. We denote Pr(βk = 0,

βk+m = 0) Δ= P ′
DC(02b). Thus, the ACF for the packet-error

process of the DC model is expressed from (10) as

Rβ [m] = 1 + P ′
DC(02b) − 2PDC(0b). (11)

Substituting (10) evaluated at m = 1 into (5) yields an al-
ternative expression for the correlation coefficient of a binary
stationary process

Cor =
Pr(00) − Pr2(0)
Pr(0) (1 − Pr(0))

. (12)

The correlation coefficient of the packet-error process of the
DC model, which was denoted by Corβ , is thus expressed from
(12) as

Corβ =
PDC(02b) − P 2

DC(0b)
PDC(0b) (1 − PDC(0b))

. (13)

B. Approximated Probability of the Packet-Error Process
Under Slow Fading

An approximation for Pr(βk = 1) and R[m] for the packet-
error process of the DC model with Rayleigh fading was
derived in [4] under the assumption that the fading process
is constant within a packet but varying from packet to packet
according to Clarke’s model. These approximations were ap-
plied in [4] to derive BAMNC models for the DC model at the
packet level under slow-fading conditions. We herein generalize
the results obtained in [4] by developing an expression for
the probability of a packet-error sequence of length n for the
DC model with Rician fading under the same assumptions to
parametrize higher order QBC models, as may be required in a
slow-fading environment.

The probability of the packet error sequence for the DC
model under slow-fading conditions is given by (the detailed
derivation is provided in Appendix I)

Pr(β1 = �1, β2 = �2, . . . , βn = �n)

=
b∑

k1=�1

· · ·
b∑

kn=�n

n∏
i=1

(−1)ki+�i

(
b
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)(
1
2

)ki

×
exp

{
−Es

N0
KR1T F

(
(KR + 1)I + Es

N0
CF

)−1

1
}

det
(
I + Es

N0
(1 + KR)−1CF

)
(14)

where matrix F = diag(k1/2, . . . , kn/2), and the (i, j)th entry
of C is J0(2πfD|i − j|bT ), 1 ≤ i, j ≤ n. In particular, two
special cases of (14) are considered next, i.e.,

Pr(1)=
b∑

k=1
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(
b

k

)(
1
2

)k 1+KR
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× e
−KREs
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(−1)k1+k2

(
b
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)(
b

k2

)(
1
2

)k1
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1
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)k2 (1+KR)2
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KREs
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(
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2N0

)
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(16)

where ρ = J0(2πfDT ), and

D=(1+KR)2+
Es

2N0
(1+KR)(k1+k2)+

(
Es

2N0

)2
(1−ρ2)k1k2.

The next section considers the problem of fitting the dis-
cretized Rayleigh and Rician DC models at the packet level
using QBC models (including the BAMNC model).

IV. QBC MODEL PARAMETER ESTIMATION

A. BAMNC Model

We apply the formulas derived in the previous section to find
the parameters of the BAMNC that best fit the DC model at
the packet level. In this section, the accuracy of the BAMNC is
measured in terms of the ACF criterion.

Given a DC model with fixed Es/N0, fDT , and KR, we
first calculate PDC(0b) and PDC(02b) using (2) and then the
probability of packet error PPEβ and the correlation coefficient
Corβ using (9) and (13), respectively. The two parameters of
the BAMNC are obtained by setting p = PPEβ and ε = Corβ .
We denote by BAMNC under slow fading (BAMNC-SF) a
BAMNC whose parameters p and ε are derived from (15) and
(16), respectively.

Fig. 2 compares (at the packet level) the ACF of the Rayleigh
DC model with the ACF of the BAMNC and BAMNC-SF mod-
els that are fitted to the DC model. The DC model has param-
eters Es/N0 = 20 dB and KR = −∞ dB (Rayleigh fading),
with fDT = 0.005 in Fig. 2(a) and fDT = 0.001 in Fig. 2(b).
The packets are of length 8. The ACF of the DC model at
the packet level is calculated using (11), and the estimated
parameters of the BAMNC (e.g., p = 0.0419, ε = 0.46 for
fDT = 0.005 and p = 0.0395, ε = 0.6518 for fDT = 0.001)
and BAMNC-SF (e.g., p = 0.0394, ε = 0.453 for fDT =
0.005 and p = 0.0394, ε = 0.6522 for fDT = 0.001) are sub-
stituted into (8) to get the ACF of the BAMNC models. We
observe a good ACF agreement between the BAMNC and DC
models when fDT is greater than (curves not shown) or equal to
0.005. For fDT = 0.005, the ACF curves for these two models
coincide. The BAMNC-SF may be considered acceptable for
fDT = 0.005, but this will further be investigated in the next
section. When fDT = 0.001, the ACF curves for the BAMNC
and BAMNC-SF are identical, but these curves exhibit greater
discrepancies when compared with those of the DC model,
which indicates that higher order QBC models are required for
modeling DC models at the packet level with slowly varying
fading channels.

B. QBC Model With M > 1

We next employ (14) to find the probability of all packet-
error sequences of length M + 1 and use these probabilities
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Fig. 2. Comparison of the ACFs of the Rayleigh DC and the BAMNC for
Es/N0 = 20 dB, KR = −∞ dB, and (a) fDT = 0.005 or (b) fDT =
0.001. The packets are of length 8.

to parametrize the M th-order QBC model (M > 1) at the
packet level under slow-fading conditions. We denote these
models as M -QBC-SF. This is achieved using the methodology
proposed in [11] and [20], which selects the QBC parameters
that minimize the Kullback–Leibler divergence rate between
the DC and QBC packet error processes defined as

D(Pβ‖PQBC) Δ= lim
n→∞

1
n

∑
zn∈{0,1}n

Pβ(zn) log2

Pβ(zn)
PQBC(zn)

(17)

for identical packet error rates and noise correlation co-
efficients.1 Expressions for PQBC(zn) in terms of the
QBC parameters are given in (3) and (4), and Pβ(zn) Δ=

1Note that, for the same BER, matching the correlation coefficient between
the two binary channels is equivalent to matching their probabilities of two
consecutive errors. Ideally, when matching one channel with memory to an-
other, one would want to match their n-dimensional distributions for every
n. However, as this is infeasible in general, a natural way to fit the two
binary channels is to match their lower order statistics, such as their BER
(for n = 1) and their probabilities of two consecutive errors (for n = 2), and
minimize the Kullback–Leibler divergence rate between the channels’ n-fold
error distributions since one would desire identical statistical behaviors on both
channels for large block lengths (as large block lengths are required to achieve
reliable communication by the channel coding theorem).

Pr(β1 = z1, β2 = z2, . . . , βn = zn). It is known (e.g., [11] and
[20]) that D(Pβ‖PQBC) exists and is given by

D(Pβ‖PQBC) = − lim
n→∞

1
n

H (Pβ(zn))

−
∑

zM+1

Pβ(zM+1)
[
log2 PQBC(zM+1|zM )

]
(18)

where PQBC(zM+1|zM ) is the QBC conditional probability of
noise symbol zM+1, given the previous M symbols, which is
evaluated using the QBC noise block probability (3) and (4).
Let the probability in (15) be denoted by PPEβ−SF and the
noise correlation coefficient obtained by substituting (15) and
(16) into (5) be denoted by Corβ−SF. We then set p = PPEβ−SF

and CorQBC = Corβ−SF. Parameter α is then expressed
from (6) as

α =
ε + Corβ−SF(1 − M) + (M − 2)ε

Corβ−SF(1 − ε)
.

For a fixed CorQBC > 0 and M , parameter α is a nondecreasing
function of ε and is nonnegative whenever ε is in interval Δ
given by

Δ =
[

CorQBC(M − 1)
1 + CorQBC(M − 2)

, 1
]

.

For example, for CorQBC = 0.8, then Δ = [0.8888, 1] if
M = 3 and Δ = [0.9412, 1] if M = 5. Parameter ε ∈ Δ is
selected to minimize (18) or, equivalently, to maximize∑

zM+1

Pβ(zM+1)
[
log2 PDC(zM+1|zM )

]
.

As a result of the optimization procedure, the QBC-SF pa-
rameters for selected values of Es/N0, Rayleigh fading (KR =
−∞ dB), packets of length b= 8, and fDT = 0.001(M = 2
and M =3) and fDT = 0.0005(M = 4) are given in Table I.
The ACFs of the DC and M -QBC-SF models, for M = 1, 2,
and 3, are compared in Fig. 3 for the DC model with Rayleigh
fading, Es/N0 = 20 dB, and fDT = 0.001. A significant
modeling improvement is obtained over the BAMNC models
[compared with Fig. 2(b)] when M > 1. Similar results were
observed for packet lengths of b = 6 and 10.

V. PROBABILITY OF CODEWORD ERROR

While the ACF has empirically been shown to be an effective
criterion for measuring the similarity between channels with
memory (e.g., two channels with closely similar ACFs also
agree in terms of capacity or error exponent) [10], [11], [20],
[33]–[35], it may not necessarily indicate that two channels
with matching ACFs will experience identical PCE perfor-
mances when subjected to the same code (under the same
decoding scheme). Thus, to further investigate and validate the
accuracy of the QBC models in approximating the packet-error
process {βk}∞k=1 of the DC model, we analyze the PCE per-
formance of (n, k) RS codes over these models. Our numerical
results will show that it is not always the case that the agreement
between the DC and the QBC in terms of ACF also holds
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TABLE I
GOOD M -QBC-SF MODELS FOR RAYLEIGH FADING (KR = −∞ dB). THE PACKETS ARE OF LENGTH b = 8

Fig. 3. Comparison of the ACFs of the Rayleigh DC (KR = −∞ dB) and
the M -QBC-SF (M = 1, 2, and 3) for Es/N0 = 20 dB and fDT = 0.001.
The packets are of length b = 8.

in terms of the PCE performance.2 It is nevertheless worth
pointing out that, in all our results, we did note that the ACF
was still useful in predicting the memory order of the QBC that
best fits the DC in terms of PCE.

Under bounded distance decoding, the PCE for RS codes
over binary FSMC models is obtained using Ps(m,n), which is
the probability that m-packet (symbols) errors occur in a block
of n packets [26]–[28], where each packet is given by sequence
E(k−1)b+1, . . . , Ekb, k ≥ 1. However, determining Ps(m,n)
can be quite complicated, particularly when b � 1. Since the
binary FSMC model at the packet level generates a binary
process {βk}∞k=1, where βk = 1 indicates an RS symbol error,
the simpler expressions for the probability that m-bit errors
occur in a block with a length of n bits, i.e., P (m,n), that were
developed to study the performance of binary codes over binary
FSMC models at the bit level can thus be applied to study the
performance of RS codes over these models at the packet level.
Thus, for a t error-correcting RS code over an FSMC model at
the packet level, the PCE under bounded distance decoding is
given by

PCE = 1 −
t∑

m=0

P (m,n) = 1 − Pc (19)

where Pc is the probability of correct decoding. Henceforth, we
concentrate on the calculation of P (m,n). Recursive formulas

2See the next section, and compare Fig. 2(b) with Fig. 4 for the BAMNC and
Fig. 3 with Fig. 6 for the 2-QBC-SF.

for P (m,n) have been derived for some classes of FSMC
models in [9] and [28]–[30].

A. Closed-Form Expression of P (m,n) for the BAMNC

A closed-form formula for P (m,n) for the BAMNC3 is
derived in [9, eq. (39)]. A much simpler closed-form expression
is derived in this section, following the approach proposed in
[29] that expresses P (m,n) in terms of a coefficient in a formal
power series. This is outlined next.

Given indeterminates s and z, we define the formal power
series P (s, z) =

∑∞
n=0

∑n
m=0 P (m,n)smzn. Thus, P (m,n)

for a binary FSMC is written as the coefficient of smzn in
P (s, z), which is denoted by P (m,n) = [smzn]P (s, z). An
expression for P (s, z) in terms of matrices P(0) and P(1) that
specifies a binary FSMC is given in [29]

P (s, z) Δ= ΠT [I − z {P(0) + sP(1)}]−1 1. (20)

The generating series P (s, z) for the BAMNC model is given
by substituting matrices P(0) and P(1) obtained from (7) and
state stationary vector ΠT = [1 − p, p] into (20). Thus

P (s, z) =
1 − ε(1 − p)sz − εpz

1 − (p + ε(1 − p)) sz − (εp + (1 − p)) z + εsz2]
.

Following the partial fraction technique described in [29, App.]
to extract the coefficient of P (s, z), we arrive at (the detailed
derivation is provided in Appendix II)

P (m,n) = xmyn−m

⎧⎨
⎩

m∑
�=0

[∏M−1+�
j=�+1 (n − j)

]
(m − �)!�!

(
−ε

xy

)�

×
[
(1 − p)(n − �)

y
− ε(1 − p)(m − �)

x
+

εpm

y

]⎫⎬
⎭ (21)

for n ≥ 2m + 1, where⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

b∏
j=a

(·) = 1, if a = b + 1

b∏
j=a

(·) = 1
a−1∏

j=b+1

(·)
, if a > b + 1.

(22)

3The simplified Gilbert channel studied in [9] is exactly identical to the
BAMNC considered here.
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TABLE II
PCE ALGORITHM DESCRIPTION

Equations (19) and (21) are used to calculate the PCE for the
BAMNC. We now consider two special cases of (21). When
ε = 0, we obtain x = p and y = 1 − p, and the nonzero term in
the summation (corresponding to � = 0) becomes

(
n
m

)
. When

m = 0 and n > 0, we obtain from (22)

P (0, n) = yn 1
n

[
(1 − p)n

y

]
= ((1 − p) + εp)n−1 (1 − p).

Equations (19) and (21) are used to calculate the PCE for the
BAMNC. Note that the closed-form expression for P (m,n) in
(21) is significantly simpler than that derived in [9, eq. (39)].
Furthermore, if we are to model the system at the bit level,
we would need to determine Ps(m,n), but the latter admits a
recursive expression for the BAMNC [28], unlike the simple
closed-form formula in (21).

B. P (m,n) Algorithm for the QBC With M > 1

Given a QBC with M > 1, the derivation of a closed-form
expression for P (m,n) is tedious. Let B(s) = P(0) + sP(1).
The method proposed in [36], which is suitable for FSMC
models with a small number of states, calculates P (m,n) as

P (m,n) = [sm]ΠT Bn(s)1, for 0 ≤ m ≤ n. (23)

The calculation of Bn(s) is a complex task, especially for
high-order FSMC models, and Bn(s) contains much more
information that is needed to calculate Pc in (19), i.e., P (m,n)
for 0 ≤ m ≤ t.

We propose in Table II a matrix-based iterative algorithm
that is valid for any FSMC model. The nth power of B(s)
can iteratively be calculated as Bn(s) = Bn−1(s)B(s) (for
loop in step 3). The (i, j)th entry of B�(s) is a polynomial
of the form

∑�
j=0 p�,j

i,j s
j , where p�,j

i,j is the probability that the
FSMC, starting from state i and ending at state j, generates
an error sequence of length � with Hamming weight j. These
probabilities will never be used in the calculation of Pc when
j > t and can be discarded at each iteration of the for loop.
(This is performed in step 6.) Thus, the algorithm discards at
each iteration the probability that the FSMC, starting from state
i and ending at state j, generates an error sequence of length
� > t with a Hamming weight that is larger than t. As a result,
the computational complexity of the algorithm is reduced. The
(i, j)th entry of Pc(1) after step 6 is the probability that the

Fig. 4. PCE versus fDT for the (255,197) RS code (b = 8, t = 29) over the
BAMNC and M -QBC-SF (M = 1, 2, 3). A DC model with Rayleigh fading
(KR = −∞ dB) and Es/N0 = 20 dB was used.

FSMC, starting from state i and ending at state j, generates an
error sequence with a Hamming weight that is less than or equal
to t. Thus, Pc is calculated in accordance to (19). It is worth
noting that, due to the structure of the QBC, the 2M × 2M

matrix B(s) in step 2 is sparse, having only two nonzero entries
in each row and each column, which facilitates the computation
of Pc(s) in the main loop of the algorithm.

VI. NUMERICAL PCE RESULTS

This section presents the PCE curves when an RS code is
transmitted over the DC model and its QBC approximation at
the packet level. For specific values of the DC model parameters
(Es/N0, fDT , and KR), we first calculate the QBC parameters
according to the procedure described in Section IV and then
use the development in Section V to numerically determine
the PCE for the QBC model. To verify the effectiveness of
a particular QBC model, the PCE results for RS codes over
the DC model (as described in Fig. 1) are obtained by simula-
tions (PCE simulations over the binary BFSK modulated hard-
decision demodulated fading channels). In this case, the binary
representation of each RS codeword is transmitted across the
binary DC model. Specific M -QBC models that match the
simulated results for several codes and DC model parameters
are discussed in the succeeding sections.

A. Rayleigh Fading

Fig. 4 shows PCE versus fDT for the (255, 197) RS code
(b = 8, t = 29 symbols) over the BAMNC and M -QBC-SF
(M = 1, 2, and 3), which approximates the DC model with
Rayleigh fading (KR = −∞ dB) for Es/N0 = 20 dB. Simula-
tion results for the DC model are labeled as DC in the figures of
this section. We observe that the BAMNC-SF is not adequate
for modeling the considered DC models. The PCE curves
of the DC model and the 2-QBC-SF and 3-QBC-SF match
quite well when fDT ≤ 0.002. In particular, the PCE values
of the DC model and the 3-QBC-SF are almost identical when
fDT ≤ 0.001. (We observed in Fig. 3 a good agreement in ACF
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Fig. 5. PCE versus Es/N0 for the (255,155) RS code (b = 8, t = 50) over
the M -QBC-SF (M = 2 and 3). A DC model with Rayleigh fading (KR =
−∞ dB) and fDT = 0.001 was used.

between the DC model and its 3-QBC-SF approximation when
fDT = 0.001.) The BAMNC is reasonably accurate for fast
and medium fading rates, i.e., fDT ≥ 0.01. Surprisingly, the
accuracy of the BAMNC shown in Fig. 2(b) for fDT = 0.005
(according to the ACF criterion) is not validated in Fig. 4 (under
the PCE criterion).

Fig. 5 shows the PCE curves versus Es/N0 for the (255,
155) RS code (b = 8, t = 50 symbols) over the M -QBC-SF
(M = 2 and 3) for the DC model with Rayleigh fading (KR =
−∞ dB) for fDT = 0.001. We clearly note that 3-QBC-SF
is an accurate model for the Rayleigh DC model with fDT =
0.001 for a broad range of Es/N0. The robustness of this model
is also verified for RS codes with different values of t, as
shown in Fig. 6. It is seen from this figure that the 2-QBC-SF
is good for high rate codes (t ≤ 25); in this case, further
PCE improvement may be achieved by incorporating symbol
interleaving into the communication system. We observe that
the discrepancies between the 2-QBC-SF and the 3-QBC-SF
increases when Es/N0 and t increase; for low rate codes (t >
25), the 2-QBC-SF does not match the DC in terms of PCE in
spite of a relatively good agreement between the two channels
in terms of ACF (see Fig. 3). As shown in Fig. 7, the 4-QBC-SF
provides accurate results in a slower varying fading channel
with fDT = 0.0005 over a broad range of Es/N0. Thus, the
QBC-SF parameters in Table I are accurate when M = 3 and
M = 4, whereas the case M = 2 is valid in some special
cases.

We conclude from the figures shown in this section that, for
a packet of length 8, the BAMNC is an accurate model for
fDT > 0.01 and that, for fDT ≤ 0.001, the M -QBC-SF with
M ≥ 3 is adequate. The same trend is observed for other values
of b, as shown in Fig. 8, where the PCE curves are plotted
versus t for an RS code with parameters n = 63 and b = 6. In
the scenario of medium varying fading 0.01 < fDT < 0.001,
neither the BAMNC nor the M -QBC-SF fits the DC model.
We also observe from this figure (fDT = 0.005) that the
2-QBC is capable of approximating the DC model in this range.

Fig. 6. PCE versus t for the RS code (n = 255, b = 8) over the M -QBC-SF
(M = 2 and 3). A DC model with Rayleigh fading (KR = −∞ dB), fDT =
0.001, and Es/N0 = 20 dB was used.

Fig. 7. PCE versus Es/N0 for the (255,95) RS code (b = 8, t = 80) over
the M -QBC-SF (M = 2, 3, and 4). A DC model with Rayleigh fading (KR =
−∞ dB) and fDT = 0.0005 was used.

Fig. 8. PCE versus t for the RS code (n = 63, b = 6) over the 3-QBC-SF
(fDT = 0.001), the 2-QBC (fDT = 0.005), and the BAMNC (fDT =
0.01) for Rayleigh fading (KR = −∞) and Es/N0 = 20 dB.
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Fig. 9. PCE versus fDT for the (255,197) RS code (b = 8, t = 29) over the
BAMNC and M -QBC-SF (M = 2, 3, and 4). A DC model with Rician fading,
KR = 5 dB, and Es/N0 = 15 dB was used.

A similar behavior was observed for b = 10 (curves not shown).
The Rician DC channel is considered next.

B. Rician Fading

Fig. 9 shows PCE versus fDT for the (255, 197) RS code
(b = 8, t = 29 symbols) over the BAMNC and M -QBC-SF
(M = 2, 3, and 4) for the DC model with Rician fading, KR =
5 dB, and Es/N0 = 15 dB. The BAMNC is accurate in the
same range of fDT observed in the Rayleigh case (fDT >
0.01), whereas the 4-QBC-SF is a good model when fDT <
0.001. We also observe that the PCE is smallest for fDT ≈ 0.05
(see Figs. 4 and 9) and increases when fDT increases beyond
0.05. This is because, for fast fading, the channel behaves
like a memoryless channel, making the errors occur at random
within a codeword; hence, the RS code does not correct enough
error symbols (as it is better suited for correcting errors that
occur in bursts). When fDT decreases, the error bits become
more concentrated within bursts and affect fewer symbols of
a codeword. Therefore, for the used RS codes, short bursts
yield the best performance. When fDT = 0.001 and Es/N0 =
15 dB, Fig. 10 shows that the 4-QBC-SF is valid for a broad
range of values of t. In Fig. 11, the behavior of PCE versus
Es/N0 is shown for the (255,155) RS code (b = 8, t = 50) over
the M -QBC-SF (M = 2, 3, 4). We remark that the 4-QBC-SF
is adequate when Es/N0 < 17 dB. This limiting value of
Es/N0 is increased to 20 dB when t = 29. Thus, the robustness
of a given M -QBC-SF model for different values of t and
Es/N0 observed in the Rayleigh case is not observed for Rician
fading.

The parameters of the QBC model at the bit level that fit
the DC model considered in this work are found in [11].
For Es/N0 = 15 dB and fDT = 0.001, the QBC at the bit
level requires M = 20 for Rayleigh fading (KR = −∞ dB)
and M = 18 for Rician fading (KR = 5 dB). These values
of memory order are significantly larger than those found in
this work (M ≤ 4). Therefore, whenever the performance of
nonbinary codes is considered, significant modeling complex-

Fig. 10. PCE versus t for the RS code (n = 255, b = 8) over the M -QBC-SF
(M = 3 and 4). A DC model with Rician fading, KR = 5 dB, fDT = 0.001,
and Es/N0 = 15 dB was used.

Fig. 11. PCE versus Es/N0 for the (255,155) RS code (b = 8, t = 50) over
the M -QBC-SF (M = 2, 3, and 4). A DC model with Rician fading, KR =
5 dB, and fDT = 0.001 was used.

ity reduction is achieved by the QBC model at the packet
level.

VII. CONCLUSION

The majority of previous works on modeling the physical
layer of a communication system using FSMC models can
be divided into two categories: 1) modeling the information
packet-error process from the input of the channel encoder to
the output of the channel decoder and 2) modeling the bit error
process of the DC model (from the input of the modulator to
the output of the demodulator). This work models the packet
(symbol) error process of the DC model via the QBC.

We developed the M th-order Markovian QBC models at
the packet (symbol) level for an RS-coded DC representing a
hard-decision demodulated Rician fading channel. We denoted
by M -QBC-SF a QBC model with memory M parametrized
with the probabilities of the DC model derived under the
assumption that the fading process is constant within a packet.
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The ACF of the DC model at the packet level can theoretically
be computed and can give an estimate of the memory order
required by the QBC. However, since one of the main goals
of a model is to generate a PCE, which is approximately the
same as the PCE for the original channel, we evaluated the
QBC models in terms of the PCE criterion. The comparison
of the PCE obtained analytically (for the QBC model) and by
simulation (for the DC model) revealed that the M -QBC-SF is
a good approximation for the DC model when fDT ≥ 0.001. In
particular, such QBC models with M ≤ 4 were shown to well
approximate the DC models with slow Rayleigh fading for a
broad range of signal-to-noise ratios. In addition, the 4-QBC-SF
is adequate for Rician DC models with fDT = 0.001. An
interesting direction for future work is to use the QBC models
developed in this paper to derive (block-by-block and iterative)
decoding strategies (e.g., see [17]–[19] and [37]–[39]) for RS
codes that can exploit channel memory.

APPENDIX I
DERIVATION OF (14)

Let Ak = |G̃(kT )| be a constant fading amplitude within a
packet. For a packet of length b, using the binomial theorem,
the conditional packet error probability can be written as [4]

Pr(β1 = 1|a1)
Δ= Pr(β1 = 1|A1 = a1)

= 1 − [1 − Pr(E1 = 1|a1)]
b

=
b∑

k=1

(−1)k+1

(
b

k

)
[Pr(E1 =1|a1)]

k. (24)

On the other hand

Pr(β1 = 0|a1) =
b∑

k=0

(−1)k

(
b

k

)
[Pr(E1 = 1|a1)]

k . (25)

Combining (24) and (25), we get

Pr(β1 = �1|a1) =
b∑

k=�1

(−1)k+�1

(
b

k

)
[Pr(E1 = 1|a1)]

k .

The conditional probability of a packet error sequence is
written as

Pr(β1 = �1, β2 = �2, . . . , βn = �n|a1, a1+b, . . . , a1+(n−1)b)

=
b∑

k1=�1

· · ·
b∑

kn=�n

n∏
i=1

(−1)ki+�i

(
b

ki

)

×
[
Pr
(
E1+(i−1)b = 1|a1+(i−1)b

)]ki .

For BFSK modulation with noncoherent demodulation

[
Pr
(
e1+(i−1)b = 1|a1+(i−1)b

)]ki =
(

1
2

)ki

e
− Es

0N0

ki
2 a2

1+(i−1)b .

We then write the probability of the packet error sequence for
the DC model as

Pr(β1 = �1, β2 = �2, · · · , βn = �n)

=
b∑

k1=�1

· · ·
b∑

kn=�n

n∏
i=1

(−1)ki+�i

(
b

ki

)(
1
2

)ki

× E
[
e
− Es

N0

ki
2

∑n

i=1
a2
1+(i−1)b

]

=
b∑

k1=�1

· · ·
b∑

kn=�n

n∏
i=1

(−1)ki+�i

(
b

ki

)(
1
2

)ki

× E
[
e−

Es
N0

G†FG
]

=
b∑

k1=�1

· · ·
b∑

kn=�n

n∏
i=1

(−1)ki+�i

(
b

ki

)(
1
2

)ki

×
exp

{
−Es

N0
KR1T F

(
(KR + 1)I + Es

N0
CF

)−1

1
}

det
(
I + Es

N0
(1 + KR)−1CF

) .

APPENDIX II
DERIVATION OF (21)

Let

P (s, z) =
1 − ε(1 − p)sz − εpz

1 − (p + ε(1 − p)) sz − (εp + (1 − p)) z + εsz2]
.

Using the partial fraction technique described in [29,
App.] to extract the coefficient of P (s, z), we express
P (m,n) as

P (m,n)=g(m,n)− ε(1− p)g(m− 1, n− 1)− εpg(m,n− 1)

where

g(m,n) =
[p + ε(1 − p)]m [(1 − p) + εp]n−m

2n

×
�n/2�∑
j=0

min{m,j,n−m}∑
�=0

(
n + 1
2j + 1

)(
j

�

)(
n − 2�

m − �

)

×
[

−4ε

[p + ε(1 − p)] [(1 − p) + εp]

]�

. (26)

Defining x = p + ε(1 − p), y = (1 − p) + εp, and m0 =
min{m,n − m} and exchanging the order of summation in
(26), we get

g(m,n)=
xmyn−m

2n

m0∑
�=0

(
n−2�

m−�

)(
−ε

xy

)�

4�

�n/2�∑
j=�

(
n+1
2j+1

)(
j

�

)
.
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Since

�n/2�∑
j=�

(
n + 1
2j + 1

)(
j

�

)
= 2n4−�

(
n − �

�

)

the expression for g(m,n) now becomes

g(m,n) = xmyn−m
m0∑
�=0

(
n − 2�

m − �

)(
n − �

�

)(
−ε

xy

)�

. (27)

Let

F (m,n) =
m0∑
�=0

(
n − 2�

m − �

)(
n − �

�

)(
−ε

xy

)�

=
m0∑
�=0

⎡
⎣m0−1+�∏

j=�

(n − j)

⎤
⎦ (−ε/xy)�

(m0 − �)!�!
(28)

for n ≥ 0 and m ≥ 0, and F (m,n) = 0 for n < 0 or m < 0.
Substituting (27) and (28) into (26), we express P (m,n) as

P (m,n) = xmyn−m

[
F (m,n) − ε(1 − p)

x
F (m − 1, n − 1)

− εp

y
F (m,n − 1)

]
.

If n ≥ 2m + 1, F (m,n) and F (m,n − 1) are a summation
of m + 1 terms, and F (m − 1, n − 1) has m terms. These
three quantities have several terms in common, and P (m,n)
becomes

P (m,n) = xmyn−m

⎧⎨
⎩

m∑
�=0

[∏M−1+�
j=�+1 (n − j)

]
(m − �)!�!

(
−ε

xy

)�

×
[
(1 − p)(n − �)

y
− ε(1 − p)(m − �)

x
+

εpm

y

]⎫⎬
⎭ .

ACKNOWLEDGMENT

The authors would like to thank the reviewers for providing
constructive comments and suggestions that have improved the
quality of this paper.

REFERENCES

[1] M. Zorzi, R. Rao, and L. B. Milstein, “ARQ error control for fading
mobile radio channels,” IEEE Trans. Veh. Technol., vol. 46, no. 2, pp. 445–
455, May 1997.

[2] F. Babich and G. Lombardi, “A Markov model for the mobile propa-
gation channel,” IEEE Trans. Veh. Technol., vol. 49, no. 1, pp. 63–73,
Jan. 2000.

[3] M. R. Hueda and C. E. Rodríguez, “On the relationship between the
block error and channel-state Markov models in transmissions over slow-
fading channels,” IEEE Trans. Commun., vol. 52, no. 8, pp. 1269–1275,
Aug. 2004.

[4] R. Annavajjala, A. Chockalingam, P. C. Cosman, and L. B. Milstein,
“First-order Markov models for packet transmission on Rayleigh fading
channels with DPDK/NCFSK modulation,” in Proc. IEEE Int. Symp. Inf.
Theory, Seattle, WA, Jul. 2006, pp. 2864–2868.

[5] Y. Yu and S. Miller, “A four-state Markov frame error model for the
wireless physical layer,” in Proc. IEEE Wireless Commun. Netw. Conf.,
Hong Kong, Mar. 2007, pp. 2055–2059.

[6] V. Tralli and M. Zorzi, “Markov models for the physical layer block
error process in a WCDMA cellular system,” IEEE Trans. Veh. Technol.,
vol. 54, no. 6, pp. 2102–2113, Nov. 2005.

[7] C. H. C. Leung, Y. Kikumoto, and S. A. Sorensen, “The throughput
efficiency of the go-back-N ARQ scheme under Markov and related
error structures,” IEEE Trans. Commun., vol. 36, no. 2, pp. 231–234,
Feb. 1988.

[8] P. M. Soni and A. Chockalingam, “Analysis of link-layer backoff schemes
on point-to-point Markov fading links,” IEEE Trans. Commun., vol. 51,
no. 1, pp. 29–32, Jan. 2003.

[9] J. Yee and E. Weldon, “Evaluation of the performance of error-correcting
codes on a Gilbert channel,” IEEE Trans. Commun., vol. 43, no. 8,
pp. 2316–2323, Aug. 1995.

[10] C. Pimentel, T. H. Falk, and L. Lisbôa, “Finite-state Markov modeling of
correlated Rician-fading channels,” IEEE Trans. Veh. Technol., vol. 53,
no. 5, pp. 1491–1501, Sep. 2004.

[11] L. Zhong, F. Alajaji, and G. Takahara, “A model for correlated Rician
fading channels based on a finite queue,” IEEE Trans. Veh. Technol.,
vol. 57, no. 1, pp. 79–89, Jan. 2008.

[12] L. Wilhelmsson and L. B. Milstein, “On the effect of imperfect interleav-
ing for the Gilbert–Elliott channel,” IEEE Trans. Commun., vol. 47, no. 5,
pp. 681–688, May 1999.

[13] F. Babich, O. Kelly, and G. Lombardi, “Generalized Markov modeling
for flat fading,” IEEE Trans. Commun., vol. 48, no. 4, pp. 547–551,
Apr. 2000.

[14] W. Turin and R. van Nobelen, “Hidden Markov modeling of flat fading
channels,” IEEE J. Sel. Areas Commun., vol. 16, no. 9, pp. 1809–1817,
Dec. 1998.

[15] W. Zhu and J. Garcia-Frias, “Stochastic context-free grammars and hid-
den Markov models for modeling of bursty channels,” IEEE Trans. Veh.
Technol., vol. 53, no. 3, pp. 666–676, May 2004.

[16] P. Sadeghi and P. Rapajic, “Capacity analysis for finite-state Markov
mapping of flat-fading channels,” IEEE Trans. Commun., vol. 53, no. 5,
pp. 833–840, May 2005.

[17] C. Nicola, F. Alajaji, and T. Linder, “Decoding LDPC codes over binary
channels with additive Markov noise,” in Proc. 9th Can. Workshop Inf.
Theory, Montreal, QC, Canada, Jun. 2005, pp. 187–190.

[18] J. Garcia-Frias, “Decoding of low-density parity-check codes over finite-
state binary Markov channels,” IEEE Trans. Commun., vol. 52, no. 11,
pp. 1840–1843, Nov. 2004.

[19] A. W. Eckford, F. R. Kschischang, and S. Pasupathy, “Analysis of low-
density parity-check codes for the Gilbert–Elliott channels,” IEEE Trans.
Inf. Theory, vol. 51, no. 11, pp. 3872–3889, Nov. 2005.

[20] L. Zhong, F. Alajaji, and G. Takahara, “A binary communication channel
with memory based on a finite queue,” IEEE Trans. Inf. Theory, vol. 53,
no. 8, pp. 2815–2840, Aug. 2007.

[21] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G. Gulak, “Applica-
tions of algebraic soft-decision decoding of Reed–Solomon codes,” IEEE
Trans. Commun., vol. 54, no. 7, pp. 1224–1234, Jul. 2006.

[22] H. J. Kim, Y. G. Kim, I. Song, and J. D. Kim, “Difference threshold test
for M-FSK signaling with Reed–Solomon coding and diversity combining
in Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 54, no. 3,
pp. 977–982, May 2005.

[23] J. D. Choi, D.-S. Yoo, and W. E. Stark, “Performance limits of M-FSK
with Reed–Solomon coding and diversity combining,” IEEE Trans.
Commun., vol. 50, no. 11, pp. 1787–1797, Nov. 2002.

[24] J. Lai and N. Mandayam, “Performance of Reed–Solomon codes
for hybrid-ARQ over Rayleigh fading channels under imperfect in-
terleaving,” IEEE Trans. Commun., vol. 48, no. 10, pp. 1650–1659,
Oct. 2000.

[25] H. Labiod, “Performance of Reed Solomon error-correcting codes on fad-
ing channels,” in Proc. IEEE Int. Conf. Pers. Wireless Commun., Jaipur,
India, Feb. 1999, pp. 259–263.

[26] C. Pimentel and I. F. Blake, “Concatenated coding performance for FSK
modulation on time-correlated Rician fading channels,” IEEE Trans.
Commun., vol. 46, no. 12, pp. 1610–1618, Dec. 1998.

[27] K. Sakakibara and J. Yamakita, “Performance comparison of imperfect
symbol- and bit-interleaving of block codes over GF(2m) on a Markovian
channel,” IEEE Trans. Wireless Commun., vol. 3, no. 1, pp. 269–277,
Jan. 2004.

Authorized licensed use limited to: Queens University. Downloaded on August 24, 2009 at 11:46 from IEEE Xplore.  Restrictions apply. 



3136 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 7, SEPTEMBER 2009

[28] H. Al-Lawati, F. Alajaji, and C. Pimentel, “When can interleaving be
avoided for Reed–Solomon coded binary Markov channels?” in Proc.
IEEE Pacific Rim Conf. Commun., Comput. Signal Process., Victoria, BC,
Canada, Aug. 2007, pp. 530–533.

[29] C. Pimentel and I. F. Blake, “Enumeration of Markov chains and burst
error statistics for finite state channel models,” IEEE Trans. Veh. Technol.,
vol. 48, no. 2, pp. 415–428, Mar. 1999.

[30] A. I. Drukarev and K. P. Yiu, “Performance of error-correcting codes
on channels with memory,” IEEE Trans. Commun., vol. COM-34, no. 6,
pp. 513–521, Jun. 1986.

[31] S. G. Srinivasa, P. Lee, and S. W. McLaughlin, “Post-error correcting code
modeling of burst channels using hidden Markov models with applications
to magnetic recording,” IEEE Trans. Magn., vol. 43, no. 2, pp. 572–579,
Feb. 2007.

[32] C. Pimentel and I. F. Blake, “Modeling burst channels using partitioned
Fritchman’s Markov models,” IEEE Trans. Veh. Technol., vol. 47, no. 3,
pp. 885–899, Aug. 1998.

[33] C. Tan and N. C. Beaulieu, “On first-order Markov modeling for the
Rayleigh fading channel,” IEEE Trans. Commun., vol. 48, no. 12,
pp. 2032–2040, Dec. 2000.

[34] W. Kumwilaisak, C. Kuo, and D. Wu, “Fading channel modeling via
variable-length Markov chain technique,” IEEE Trans. Veh. Technol.,
vol. 57, no. 3, pp. 1338–1358, May 2008.

[35] A. E. Drougas, A. D. Panagopoulos, and P. G. Cottis, “Stochastic veri-
fication of the first-order Markovian assumption of rain attenuation for
satellite channel dynamic modeling,” IEEE Commun. Lett., vol. 12, no. 9,
pp. 663–665, Sep. 2008.

[36] J. K. Wolf, “ECC performance of interleaved RS codes with
burst errors,” IEEE Trans. Magn., vol. 34, no. 1, pp. 75–79,
Jan. 1998.

[37] T. Li and O. M. Collins, “A successive decoding strategy for channels
with memory,” IEEE Trans. Inf. Theory, vol. 53, no. 2, pp. 628–646,
Feb. 2007.

[38] H. Al-Lawati and F. Alajaji, “On decoding binary perfect and quasi-
perfect codes over Markov noise channels,” IEEE Trans. Commun.,
vol. 57, Apr. 2009.

[39] W. Griffiths, H.-J. Zepernick, and M. Caldera, “APP decoding of
non-binary block codes on Gilbert-Elliott channels using generalized
weight polynomials,” in Proc. Int. Symp. Inf. Theory Appl., Auckland,
New Zealand, Dec. 2008, pp. 1077–1082.

Cecilio Pimentel was born in Recife, Brazil, in
1966. He received the B.Sc. degree from the Fed-
eral University of Pernambuco, Recife, in 1987, the
M.Sc. degree from the Catholic University of Rio
de Janeiro, Rio de Janeiro, Brazil, in 1990, and
the Ph.D. degree from the University of Waterloo,
Waterloo, ON, Canada, in 1996, all in electrical
engineering.

Since October 1996, he has been with the Depart-
ment of Electronics and Systems, Federal University
of Pernambuco, where he is currently an Associate

Professor. From 2007 to 2008, he was a Visiting Research Scholar with the
Department of Mathematics and Statistics, Queen’s University, Kingston, ON,
Canada. His research interests include digital communications, information
theory, and error-correcting coding.

Fady Alajaji (S’90–M’94–SM’00) was born in
Beirut, Lebanon, on May 1, 1966. He received the
B.E. degree (with distinction) from the American
University of Beirut and the M.Sc. and Ph.D. degrees
from the University of Maryland, College Park, all
in electrical engineering, in 1988, 1990, and 1994,
respectively.

In 1994, he held a postdoctoral appointment with
the Institute for Systems Research, University of
Maryland. In 1995, he joined the Department of
Mathematics and Statistics, Queen’s University,

Kingston, ON, Canada, where he is currently a Professor of mathematics and
engineering. Since 1997, he has held a cross-appointment position with the
Department of Electrical and Computer Engineering at the same university. His
research interests include information theory, joint source-channel coding, error
control coding, data compression, and digital communications.

Dr. Alajaji currently serves as Area Editor and Editor for Source and Source-
Channel Coding for the IEEE TRANSACTIONS ON COMMUNICATIONS. He
served as Cochair of the 1999 Canadian Workshop on Information Theory,
Cochair of the Technical Program Committee (TPC) of the 2004 Biennial
Symposium on Communications, and TPC member of several international
conferences and workshops. He was the recipient of the Premier’s Research
Excellence Award from the Province of Ontario.

Authorized licensed use limited to: Queens University. Downloaded on August 24, 2009 at 11:46 from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


