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Abstract—We introduce space–time block coding, a new par-
adigm for communication over Rayleigh fading channels using
multiple transmit antennas. Data is encoded using a space–time
block code and the encoded data is split inton streams which
are simultaneously transmitted usingn transmit antennas. The
received signal at each receive antenna is a linear superposition
of the n transmitted signals perturbed by noise. Maximum-
likelihood decoding is achieved in a simple way through decou-
pling of the signals transmitted from different antennas rather
than joint detection. This uses the orthogonal structure of the
space–time block code and gives a maximum-likelihood decoding
algorithm which is based only on linear processing at the receiver.
Space–time block codes are designed to achieve the maximum
diversity order for a given number of transmit and receive
antennas subject to the constraint of having a simple decoding
algorithm.

The classical mathematical framework of orthogonal designs
is applied to construct space–time block codes. It is shown
that space–time block codes constructed in this way only exist
for few sporadic values ofn. Subsequently, a generalization of
orthogonal designs is shown to provide space–time block codes
for both real and complex constellations for any number of
transmit antennas. These codes achieve the maximum possible
transmission rate for any number of transmit antennas using
any arbitrary real constellation such as PAM. For an arbitrary
complex constellation such as PSK and QAM, space–time block
codes are designed that achieve1=2 of the maximum possible
transmission rate for any number of transmit antennas. For
the specific cases of two, three, and four transmit antennas,
space–time block codes are designed that achieve, respectively,
all, 3=4, and 3=4 of maximum possible transmission rate using
arbitrary complex constellations. The best tradeoff between the
decoding delay and the number of transmit antennas is also
computed and it is shown that many of the codes presented here
are optimal in this sense as well.

Index Terms—Codes, diversity, multipath channels, multiple
antennas, wireless communication.

I. INTRODUCTION

SEVERE attenuation in a multipath wireless environment
makes it extremely difficult for the receiver to determine

the transmitted signal unless the receiver is provided with
some form ofdiversity, i.e., some less-attenuated replica of
the transmitted signal is provided to the receiver.

In some applications, the only practical means of achieving
diversity is deployment of antenna arrays at the transmit-
ter and/or the receiver. However, considering the fact that
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receivers are typically required to be small, it may not be
practical to deploy multiple receive antennas at the remote
station. This motivates us to consider transmit diversity.

Transmit diversity has been studied extensively as a method
of combatting impairments in wireless fading channels [2]–[4],
[6], [9]–[15]. It is particularly appealing because of its relative
simplicity of implementation and the feasibility of multiple
antennas at the base station. Moreover, in terms of economics,
the cost of multiple transmit chains at the base can be
amortized over numerous users.

Space–time trellis coding [10] is a recent proposal that
combines signal processing at the receiver with coding tech-
niques appropriate to multiple transmit antennas. Specific
space–time trellis codes designed for 2–4 transmit antennas
perform extremely well in slow-fading environments (typical
of indoor transmission) and come close to the outage capacity
computed by Telatar [12] and independently by Foschini and
Gans [4]. However, when the number of transmit antennas
is fixed, the decoding complexity of space–time trellis codes
(measured by the number of trellis states in the decoder)
increases exponentially with transmission rate.

In addressing the issue of decoding complexity, Alamouti
[1] recently discovered a remarkable scheme for transmission
using two transmit antennas. This scheme is much less com-
plex than space–time trellis coding for two transmit antennas
but there is a loss in performance compared to space–time
trellis codes. Despite this performance penalty, Alamouti’s
scheme [1] is still appealing in terms of simplicity and
performance and it motivates a search for similar schemes
using more than two transmit antennas. It is a starting point
for the studies in this paper, where we apply thetheory of
orthogonal designsto create analogs of Alamouti’s scheme,
namely,space–time block codes, for more than two transmit
antennas.

The theory of orthogonal designs is an arcane branch
of mathematics which was studied by several great number
theorists including Radon and Hurwitz. The encyclopedic work
of Geramita and Seberry [5] is an excellent reference. A
classical result in this area is due to Radon who determined the
set of dimensions for which an orthogonal design exists [8].
Radon’s results are only concerned with real square orthogonal
designs. In this work, we extend the results of Radon to both
nonsquare and complex orthogonal designs and introduce a
theory of generalized orthogonal designs. Using this theory, we
construct space–time block codes for any number of transmit
antennas. Since we approach the theory of orthogonal designs
from a communications perspective, we also study designs
which correspond to combined coding and linear processing
at the transmitter.
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The outline of the paper is as follows. In Section II, we de-
scribe a mathematical model for multiple-antenna transmission
over a wireless channel. We review the diversity criterion for
code design in this model as established in [10]. In Section III,
we review orthogonal designs and describe their application to
wireless communication systems employing multiple transmit
antennas. It will be proved that the scheme provides maximum
possible spatial diversity order and allows a remarkably simple
decoding strategy based only on linear processing. In Section
IV, we generalize the concept of the orthogonal designs and
develop a theory ofgeneralized orthogonal designs. Using this
mathematical theory, we construct coding schemes for any
arbitrary number of transmit antennas. These schemes achieve
the full diversity order that can be provided by the transmit and
receive antennas. Moreover, they have very simple maximum-
likelihood decoding algorithms based only on linear processing
at the receiver. They provide the maximum possible transmis-
sion rate using totally real constellations as established in the
theory of space–time coding [10]. In Section V, we define
complex orthogonal designs and study their properties. We will
recover the scheme proposed by Alamouti [1] as a special case,
though it will be proved that generalization to more than two
transmit antennas is not possible. We then develop a theory
of complex generalized orthogonal designs. These designs
exist for any number of transmit antennas and again have
remarkably simple maximum-likelihood decoding algorithms
based only on linear processing at the receiver. They provide
full spatial diversity and of the maximum possible rate
(as established previously in the theory of space–time coding)
using complex constellations. For complex constellations and
for the specific cases of two, three, and four transmit antennas,
these diversity schemes are improved to provide, respectively
all, , and of maximum possible transmission rate.
Section VI presents our conclusions and final remarks.

For the reader who is interested only in the code con-
struction but is not concerned with the details, we provide a
summary of the material at the beginning of each subsection.

II. THE CHANNEL MODEL AND THE DIVERSITY CRITERION

In this section, we model a multiple-antenna wireless com-
munication system under the assumption that fading is quasi-
static and flat. We review the diversity criterion for code design
assuming this model. This diversity criterion is crucial for our
studies of space–time block codes.

We consider a wireless communication system where the
base station is equipped with and the remote is equipped
with antennas. At each time slot, signals
are transmitted simultaneously from thetransmit antennas.
The coefficient is the path gain from transmit antennato
receive antenna. The path gains are modeled as samples of
independent complex Gaussian random variables with variance

per real dimension. The wireless channel is assumed to be
quasi-static so that the path gains are constant over a frame of
length and vary from one frame to another.

At time the signal received at antenna is given by

(1)

where are independent samples of a zero-mean complex
Gaussian random variable with variance SNR per com-
plex dimension. The average energy of the symbols transmitted
from each antenna is normalized to be .

Assuming perfect channel state information is available, the
receiver computes the decision metric

(2)

over all codewords

and decides in favor of the codeword that minimizes this sum.
Given perfect channel state information at the receiver,

we may approximate the probability that the receiver decides
erroneously in favor of a signal

assuming that

was transmitted. (For details see [6], [10].) This analysis leads
to the following diversity criterion.

• Diversity Criterion For Rayleigh Space–Time Code: In
order to achieve the maximum diversity , the matrix

...
...

...
...

. . .
. . .

...

has to be full rank for any pair of distinct codewords
and . If has minimum rank over the set of pairs
of distinct codewords, then a diversity of is achieved.

Subsequent analysis and simulations have shown that codes
designed using the above criterion continue to perform well
in Rician environments in the absence of perfect channel state
information and under a variety of mobility conditions and
environmental effects [11].

III. ORTHOGONAL DESIGNS AS

CODES FORWIRELESS CHANNELS

In this section, we consider the application ofreal orthog-
onal designs(Section III-A) to coding for multiple-antenna
wireless communication systems. Unfortunately, these designs
only exist in a small number of dimensions. Encoding using
orthogonal designs is shown to be trivial in Section III-B.
Maximum-likelihood decoding is shown to be achieved by
decoupling of the signals transmitted from different antennas
and is proved to be based only on linear processing at the
receiver (Section III-C). The possibility of linear processing
at the transmitter, leads to the concept oflinear processing
orthogonal designsdeveloped in Section III-D. We then prove
a normalization result (Theorem 3.4.1) which allows us to
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focus on a specific class of linear processing orthogonal
designs. To study the set of dimensions for which linear
processing orthogonal designs exist, we need a brief review of
the Hurwitz–Radon theory which is provided in Section III-E.
Using this theory, we prove that allowing linear processing
at the transmitter only increases the hardware complexity at
the transmitter and does not expand the set of dimensions for
which a real orthogonal design exists.

A reader who is only interested in code construction and
applications of space–time block codes may choose to focus
attention on Sections III-A, III-B, and III-C as well as Theo-
rem 3.5.1, Definition 3.5.2, and Lemma 3.5.1.

A. Real Orthogonal Designs

A real orthogonal design of size is an orthogonal
matrix with entries the indeterminates .
The existence problem for orthogonal designs is known as
the Hurwitz–Radon problem in the mathematics literature [5],
and was completely settled by Radon in another context at the
beginning of this century. In fact, an orthogonal design exists
if and only if or .

Given an orthogonal design , one can negate certain
columns of to arrive at another orthogonal design where all
the entries of the first row have positive signs. By permuting
the columns, we can make sure that the first row ofis

. Thus we may assume without loss of generality
that has this property.

Examples of orthogonal designs are the design

(3)

the design

(4)

and the design

(5)

The matrices (3) and (4) can be identified, respectively,
with complex number and the quaternionic number

.

B. The Coding Scheme

In this section, we apply orthogonal designs to construct
space–time block codesthat achieve diversity. We assume that
transmission at the baseband employs a real signal constella-
tion with elements. We focus on providing a diversity

order of . Corollary 3.3.1 of [10] implies that the maximum
transmission rate is bits per second per hertz (bits/s/Hz).
We provide this transmission rate using an orthogonal
design. At time slot 1, bits arrive at the encoder and
select constellation signals . Setting for

, we arrive at a matrix with
entries . At each time slot
the entries are transmitted simultaneously
from transmit antennas .

Clearly, the rate of transmission is bits/s/Hz. We now
demonstrate that the diversity order of such a space–time block
code is .

Theorem 3.2.1:The diversity order of the above coding
scheme is .

Proof: The rank criterion requires that the matrix
be nonsingular for any two

distinct code sequences . Clearly,

where is the matrix constructed from
by replacing with for all . The

determinant of the orthogonal matrix is easily seen to be

where is the transpose of . Hence

which is nonzero. It follows that
is nonsingular and the maximum diversity

order is achieved.

C. The Decoding Algorithm

Next, we consider the decoding algorithm. Clearly, the
rows of are all permutations of the first row of with
possibly different signs. Let denote the permutations
corresponding to these rows and let denote the sign of

in the th row of . Then means that is up
to a sign change the th element of . Since the columns
of are pairwise-orthogonal, it turns out that minimizing the
metric of (2) amounts to minimizing

(6)

where

(7)
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and where denotes the complex conjugate of .
The value of only depends on the code symbol, the
received symbols , the path coefficients , and the
structure of the orthogonal design. It follows that minimiz-
ing the sum given in (6) amounts to minimizing (7) for all

. Thus the maximum-likelihood detection rule is to
form the decision variables

for all and decide in favor of among all the
constellation symbols if

(8)

This is a very simple decoding strategy that provides diversity.

D. Linear Processing Orthogonal Designs

There are two attractions in providing transmit diversity via
orthogonal designs.

• There is no loss in bandwidth, in the sense that orthogonal
designs provide the maximum possible transmission rate
at full diversity.

• There is an extremely simple maximum-likelihood decod-
ing algorithm which only uses linear combining at the
receiver. The simplicity of the algorithm comes from the
orthogonality of the columns of the orthogonal design.

The above properties are preserved even if we allow linear
processing at the transmitter. Therefore, we relax the defini-
tion of orthogonal designs to allow linear processing at the
transmitter. Signals transmitted from different antennas will
now be linear combinations of constellation symbols.

Definition 3.4.1: A linear processing orthogonal design in
variables is an matrix such that:

• The entries of are real linear combinations of variables
.

• , where is a diagonal matrix with th
diagonal element of the form ,
with the coefficients all strictly positive
numbers.

It is easy to show that transmission using a linear processing
orthogonal design provides full diversity and a simplified
decoding algorithm as above. The next theorem shows that
we may, with no loss of generality, constrain the matrixin
Definition 3.4.1 to be a scaled identity matrix.

Theorem 3.4.1:A linear processing orthogonal designin
variables exists if and only if there exists a
linear processing orthogonal designsuch that

Proof: Let be a linear processing
orthogonal design, and let

where the matrices are diagonal and full-rank (since the
coefficients are strictly positive).
Then it follows that

(9)

(10)

and is a full-rank diagonal matrix with positive diagonal
entries. Let denote the diagonal matrix having the
property that . We define .
Then the matrices satisfy the following properties:

(11)

(12)

It follows that is a linear processing
orthogonal array having the property

In view of the above theorem, we may, without any loss of
generality, assume that a linear processing orthogonal design

satisfies

E. The Hurwitz–Radon Theory

In this section, we define a Hurwitz–Radon family of
matrices. These matrices encode the interactions between
variables in an orthogonal design.

Definition 3.5.1: A set of real matrices
is called a size Hurwitz–Radon family

of matrices if

and

We next recall the following theorem of Radon [8].

Theorem 3.5.1:Let , where is odd and
with and . Any Hurwitz–Radon family of

matrices contains strictly less than
matrices. Furthermore . A Hurwitz–Radon family
containing matrices exists if and only if or .

Definition 3.5.2: Let be a matrix and let
be any arbitrary matrix. The tensor product is the

matrix given by

...
...

.. .
. . .

...
...

...
. . .

. . .
...

(13)
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Definition 3.5.3: A matrix is called an integer matrix if all
of its entries are in the set .

The proof of the next Lemma is directly taken from [5] and
we include it for completeness.

Lemma 3.5.1:For any there exists a Hurwitz–Radon
family of matrices of size whose members are integer
matrices.

Proof: The proof is by explicit construction. Let
denote the identity matrix of size. We first notice that if

with odd, then . Moreover, given a family
of Hurwitz–Radon integer matrices
of size , the set
is a Hurwitz–Radon family of integer matrices of size

. In light of this observation, it suffices to prove the
lemma for . To this end

(14)

(15)

and

(16)

Let

and

Then

We observe that is a Hurwitz–Radon integer family of size
is a Hurwitz–Radon integer

family of size and

is an integer Hurwitz–Radon family of size .
The reader may easily verify that if is an

integer Hurwitz–Radon family of matrices, then

(17)

is an integer Hurwitz–Radon family of integer matrices
.

If, in addition, is an integer Hur-
witz–Radon family of matrices, then

(18)

is an integer Hurwitz–Radon family of integer
matrices .

We proceed by induction. For , we already con-
structed an integer Hurwitz–Radon family of size
with entries in the set . Now (17) gives the transition
from to . By using (18) and letting , , we
get the transition from to . Similarly, with ,
and , , we get the transition from to and
to .

The next theorem shows that relaxing the definition of
orthogonal designs to allow linear processing at the transmitter
does not expand the set of dimensionsfor which there exists
an orthogonal design of size.

Theorem 3.5.2:A linear processing orthogonal design of
size exists if and only if and .

Proof: Let denote a linear processing orthogonal de-
sign. Since the entries of are linear combinations of variables

we can write row of as , where
is an appropriate real-valued matrix and

. Orthogonality of translates into the fol-
lowing set of matrix equalities:

(19)

(20)

where is the identity matrix. We now construct a Hur-
witz–Radon set of matrices from the original design. Let

for . Then and we have

(21)

(22)

(23)

These equations imply that is a Hur-
witz–Radonfamily of matrices. By the Hurwitz–Radon Theo-
rem (3.5.1), we can conclude that and
or .

In particular, we have the following special case.

Corollary 3.5.1: An orthogonal design of size exists if
and only if and .

Proof: Immediate from Theorem 3.5.2.

To summarize, relaxing the definition of orthogonal designs,
by allowing linear processing at the transmitter, fails to provide
new transmission schemes and only adds to the hardware
complexity at the transmitter.

IV. GENERALIZED REAL ORTHOGONAL DESIGNS

The previous results show the limitations of providing
transmit diversity through linear processing orthogonal de-
signs based on square matrices. Since the simple maximum-
likelihood decoding algorithm described above is achieved
because of orthogonality of columns of the design matrix, we
may generalize the definition of linear processing orthogonal
designs. Not only does this create new and simple transmis-
sion schemes for any number of transmit antennas, but also
generalizes the Hurwitz–Radon theory to nonsquare matrices.
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In this section, we introducegeneralized real orthogonal
designsand pose thefundamental question of generalized
orthogonal design theory. The answer to this fundamental
question provides us with transmission schemes that are in
some sense optimal in terms of the decoding delay. We
then settle the fundamental question of generalized orthogonal
design theory for full-rate orthogonal designs (in a sense to
be defined in the sequel) and construct full-rate transmission
schemes for any number of transmit antennas.

A reader who is interested only in code construction and
applications of space–time block codes is advised to go
through the results of this section.

A. Construction and Basic Properties

Definition 4.1.1: A generalized orthogonal designof size
is a matrix with entries such

that where is a diagonal matrix with diagonal
of the form

and coefficients are strictly positive integers. The
rate of is .

The following theorem is analogous to Theorem 3.4.1

Theorem 4.1.1:A generalized orthogonal design
in variables exists if and only if there exists a
generalized orthogonal designin the same variables and of
the same size such that

In view of the above theorem, without any loss of generality,
we assume that any generalized orthogonal designin
variables satisfies

Transmission using a generalized orthogonal design is dis-
cussed next. We consider a real constellationof size .
Throughput of can be achieved as described in Sec-
tion III-A. At time slot 1, bits arrive at the encoder and
select constellation symbols . The encoder pop-
ulates the matrix by setting , and at time
the signals are transmitted simultaneously from
antennas . Thus bits are sent during each
transmissions. It can be proved, as in Theorem 3.1, that the
diversity order is . It should be mentioned that the rate of a
generalized orthogonal design is different from the throughput
of the associated code. To motivate the definition of the rate,
we note that the theory of space–time coding proves that for
a diversity order of , it is possible to transmit bits per
time slot and this is best possible (see [10, Corollary 3.3.1]).
Therefore, the rate of this coding scheme is defined to be

which is equal to .
The goal of this section is to construct high-rate linear

processing orthogonal designs with low decoding complexity
and full diversity order. We must, however, take the memory
requirements into account. This means that givenand , we
must attempt to minimize .

Definition 4.1.2: For a given we define to
be the minimum number such that there exists a
generalized orthogonal design with rate at least. If no
such orthogonal design exists, we define . A
generalized orthogonal design attaining the value is
called delay-optimal.

The value of is the fundamental question of gen-
eralized orthogonal design theory. The most interesting part
of this question is the computation of since the
generalized orthogonal designs of full rate are bandwidth-
efficient. To address this question, we will need the following
construction.

Construction I: Let and .
In Lemma 3.5.1, we explicitly constructed a family of integer

matrices with members .
Let and consider the matrix whose th
column is for . The Hurwitz–Radon
conditions imply that is a generalized orthogonal design of
full rate.

Theorem 4.1.2:The value is the smallest number
such that .

Proof: Let be a number such that . Let
and apply Construction I to arrive at, a

generalized orthogonal design of full rate. By definition,
, and hence

(24)

Next, we consider any generalized orthogonal designof
size in variables (rate one) where .
The columns of are linear combinations of the variables

. The th column can be written as for
some real-valued matrix . Since the columns of are
orthogonal we have

(25)

(26)

This means that the matrices are a
Hurwitz–Radon family of size . Thus
and , and . Combining
this result with inequality (24) concludes the proof.

Corollary 4.1.1: For any .
Proof: The proof follows immediately from Theo-

rem 4.1.2.

Corollary 4.1.2: The value , where
the minimization is taken over the set

and

In particular, , , and
for .

Proof: Let . We first claim that is a power
of two. To this end, suppose that where is an odd
number. Then . But . This contradicts
the fact that and proves the claim. Thus

for some . An application of the explicit formula for
given in Theorem 3.5.1 completes the proof.
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It follows that orthogonal designs are delay optimal for
and .

We have explicitly constructed a Hurwitz–Radon family of
matrices of size with members such that all the matrices
in the family have entries in the set . Given such
a family of Hurwitz–Radon matrices of size ,
we can apply Construction I to provide a generalized
orthogonal design with full rate. This full-rate generalized
orthogonal design has entries of the form .
This is the method used to prove the following theorem
which completes the construction of delay-optimal generalized
orthogonal designs of rate one for transmit antennas.

Theorem 4.1.3:The orthogonal designs

(27)

(28)

(29)

and

(30)

are delay-optimal designs with rate one.
Proof: The orthogonal designs constructed above achieve

the value for .

V. GENERALIZED COMPLEX ORTHOGONAL

DESIGNS AS SPACE–TIME BLOCK CODES

The simple transmit diversity schemes described above
assume a real signal constellation. It is natural to ask for
extensions of these schemes to complex signal constellations.
Hence the notion ofcomplex orthogonal designsis introduced
in Section V-A. We recover the Alamouti scheme as a

complex orthogonal designs in Section V-B. Motivated by the
possibility of linear processing at the transmitter, we define
complex linear processing orthogonal designsin Section V-C,
but we shall prove that complex linear processing orthogonal
designs only exist in two dimensions. This means that the
Alamouti Scheme is in some sense unique. However, we
would like to have coding schemes for more than two transmit
antennas that employ complex constellations. Hence the notion
of generalized complex orthogonal designsis introduced in
Section V-E. We then prove by explicit construction that
rate generalized complex orthogonal designs exist in any
dimension. In Section V-F, it is shown that this is not the best
rate that can be achieved. Specifically, examples of rate
generalized complex linear processing orthogonal designs in
dimensions three and four are provided.

A reader who is only interested in code construction and
the application of space–time block codes may choose to read
Section V-B, Definition 5.4.1, Definition 5.5.2, the proof of
Theorem 5.5.2, Corollary 5.5.1, the remark after Corollary
5.5.1, and Section V-F.

A. Complex Orthogonal Designs

We define acomplex orthogonal design of size
as an orthogonal matrix with entries the indeterminates

, their conjugates ,
or multiples of these indeterminates by where .
Without loss of generality, we may assume that the first row
of is .

The method of encoding presented in Section III-A can be
applied to obtain a transmit diversity scheme that achieves the
full diversity . The decoding metric again separates into
decoding metrics for the individual symbols .
An example of a complex orthogonal design is given by

(31)

B. The Alamouti Scheme

The space–time block code proposed by Alamouti [1] uses
the complex orthogonal design

(32)

Suppose that there are signals in the constellation. At the
first time slot, bits arrive at the encoder and select two
complex symbols and . These symbols are transmitted
simultaneously from antennas one and two, respectively. At
the second time slot, signals and are transmitted
simultaneously from antennas one and two, respectively.

Maximum-likelihood detection amounts to minimizing the
decision statistic

(33)

over all possible values of and . The minimizing values
are the receiver estimates of and , respectively. As in the
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previous section, this is equivalent to minimizing the decision
statistic

for detecting and the decision statistic

for decoding . This is the simple decoding scheme described
in [1], and it should be clear that a result analogous to
Theorem 3.2.1 can be established here. Thus Alamouti’s
scheme provides full diversity using receive antennas.
This is also established by Alamouti [1], who proved that this
scheme provides the same performance aslevel maximum
ratio combining.

C. On the Existence of Complex Orthogonal Designs

In this section, we consider the existence problem for
complex orthogonal designs. First, we show that a complex
orthogonal design of size determines a real orthogonal
design of size .

Construction II: Given a complex orthogonal design of
size , we replace each complex variable

by the real matrix

(34)

In this way is represented by

(35)

is represented by

(36)

and so forth. It is easy to see that the matrix formed
in this way is a real orthogonal design of size.

We can now prove the following theorem:

Theorem 5.3.1:A complex orthogonal design of size
exists only if or .

Proof: Given a complex orthogonal design of size,
apply Construction II to provide a real orthogonal design
of size . Since real orthogonal designs can only exist for

and it follows that complex orthogonal designs
of size cannot exist unless or .

For , Alamouti’s scheme gives a complex orthogonal
design. We will prove later that complex orthogonal designs
do not exist even for four transmit antennas.

D. Complex Linear Processing Orthogonal Designs

Definition 5.4.1: A complex linear processing orthogonal
design in variables is an matrix such
that

• the entries of are complex linear combinations of
variables and their conjugates;

• , where is a diagonal matrix where
all diagonal entries are linear combinations of

with all strictly positive real coefficients.

The proof of the following theorem is similar to that of
Theorem 3.4.1.

Theorem 5.4.1:A complex linear processing orthogonal
design in variables exists if and only if there
exists a complex linear processing orthogonal designsuch
that

In view of the above theorem, without any loss of generality,
we assume that any complex linear processing orthogonal
design satisfies

We can now prove the following theorem:

Theorem 5.4.2:A complex linear processing orthogonal
design of size exists if and only if .

Proof: We apply Construction II to the complex linear
processing orthogonal design of sizeto arrive at a linear
processing orthogonal design of size. Thus or

which implies that or . For ,
Alamouti’s matrix is a complex linear processing orthogonal
design. Therefore, it suffices to prove that for complex
linear processing orthogonal designs do not exist. The proof
is given in the Appendix.

We can now immediately recover the following result.

Corollary 5.4.1: A complex orthogonal design of size
exists if and only if .

Proof: Immediate from Theorem 5.4.2.

We conclude that relaxing the definition of complex or-
thogonal designs to allow linear processing will only add to
hardware complexity at the transmitter and fails to provide
transmission schemes in new dimensions.

E. Generalized Complex Orthogonal Designs

We next define generalized complex orthogonal designs.

Definition 5.5.1: Let be a matrix whose entries are

or their product with . If where is a diagonal
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matrix with th diagonal element of the form

and the coefficients all strictly positive numbers,
then is referred to as a generalized orthogonal design of
size and rate .

The following Theorem is analogous to Theorem 3.4.1.

Theorem 5.5.1:A complex generalized linear pro-
cessing orthogonal design in variables

exists if and only if there exists a complex generalized linear
processing orthogonal design in the same variables and of
the same size such that

In view of the above theorem, without any loss of generality,
we assume that any generalized orthogonal design
in variables

satisfies the equality

after the appropriate normalization.
Transmission using a complex generalized orthogonal de-

sign is similar to that of a generalized orthogonal design.
Maximum-likelihood decoding is analogous to that of Alam-
outi’s scheme and can be done using linear processing at the
receiver. The goal of this section is to construct high-rate
complex generalized linear processing orthogonal designs with
low decoding complexity that achieve full diversity. We must,
however, take the memory requirements into account. This
means that given and , we must attempt to minimize.

Definition 5.5.2: For a given and , we define
the minimum number for which there exists a complex
generalized linear processing orthogonal design of size
and rate at least . If no such orthogonal design exists, we
define .

The question of the computation of the value of
is thefundamental question of generalized complex orthogonal
design theory. To address this question to some extent, we will
establish the following Theorem.

Theorem 5.5.2:The following inequalities hold.

• i) For any , we have .

• ii) For , we have .

Proof: We first prove Part i). If , then
there is nothing to be proved. Thus we assume that

and consider a complex generalized linear
processing orthogonal design of rate at least equal to
and size . By applying Construction II, we arrive at a

real generalized linear processing orthogonal design
of rate at least equal to. Thus .

To prove Part ii), we consider a real orthogonal design
of size and rate at least equal to in variables

where . We construct a complex
array of size . We replace the symbols
everywhere in by their symbolic conjugates
to arrive at a new array . Then we define to be the

array with the row the th row of and the row
the th row of . It is easy to see that is

a complex generalized orthogonal design of rate at least equal
to . Thus .

Corollary 5.5.1: For , we have .
Proof: It follows immediately from Part ii) of Theorem

5.5.2 and Corollary 4.1.1.

Remark: Corollary 5.5.1 proves there exists rate com-
plex generalized orthogonal designs, and the proof of Part ii) of
Theorem 5.5.2 gives an explicit construction for these designs.
For instance, rate codes for transmission using three and
four transmit antennas are given by

(37)

and

(38)

These transmission schemes and their analogs for higher
give full diversity but lose half of the theoretical bandwidth
efficiency.

F. Few Sporadic Codes

It is natural to ask for higher rates than when designing
generalized complex linear processing orthogonal designs for
transmission with multiple antennas. For , Alamouti’s
scheme gives a rate one design. For and , we construct
rate generalized complex linear processing orthogonal
designs given by

(39)
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for and

(40)
for . These codes are designed using the theory of
amicable designs [5].

Apart from these two designs, we do not know of any other
generalized designs in higher dimensions with rate greater than

. We believe that the construction of complex generalized
designs with rate greater than is difficult and we hope that
these two examples stimulate further work.

VI. CONCLUSION

We have developed the theory of space–time block coding,
a simple and elegant method for transmission using multiple
transmit antennas in a wireless Rayleigh/Rician environment.
These codes have a very simple maximum-likelihood decoding
algorithm which is only based on linear processing. Moreover,
they exploit the full diversity given by transmit and receive
antennas. For arbitrary real constellations such as PAM, we
have constructed space–time block codes that achieve the
maximum possible transmission rate for any numberof
transmit antennas. For any complex constellation, we have
constructed space–time block codes that achieve half of the
maximum possible transmission rate for any numberof
transmit antennas. For arbitrary complex constellations and for
the specific cases and , we have provided space-
time block codes that achieve, respectively, all, , and
of the maximum possible transmission rate. We believe that
these discoveries only represent the tip of the iceberg.

APPENDIX

Theorem: A complex orthogonal design of sizedoes not
exist.

Proof: The proof is divided into six steps.

Step I: In this step, we provide necessary and sufficient
conditions for a matrix of indeterminates to be a complex
linear processing generalized orthogonal design. To this end,
let be a complex linear processing generalized orthogonal
design of size . Each entry of is a linear combination
of . It follows that

(41)

where are complex matrices.
Since

we can conclude from the above that

(42)

Conversely, any set of complex matrices
satisfying the above equations defines a linear

processing complex orthogonal design.

Step II: In this step, we will prove that given a complex
linear processing generalized orthogonal design, we could
construct another complex linear processing generalized or-
thogonal design such that for any row, one of and
does not occur in the entries of that row of. In other words,
for any

where for any fixed either for all or
for all . In the former (respectively,

latter) case we say (respectively, ) does not occur in the
th row of .

Using (42), we first observe that

Hence

Similarly, . This means that the matrices
and are idempotent for . Since

, the matrices and represent
projections onto perpendicular vector spacesand and
thus are diagonalizable with all eigenvalues in the set . If

and , then exactly
(respectively, ) of eigenvalues of (respectively, )
are .

Next, using (42), we observe that for

Thus the matrices and commute. Similarly, it
follows that is a commuting
family of diagonalizable matrices. Hence, these matrices are
simultaneously diagonalizable. Since the eigenvalues of
are in the set , we conclude that there exists a unitary
transformation such that

where are diagonal matrices with diago-
nal entries in the set . Moreover, because

the th entry of is zero (respectively, one) if and only
if the th entry of is one (respectively, zero). Since

the nonzero entries of appear in those rows where
the th element of is zero. Similarly,
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implies that the nonzero entries of appear in those
rows, where the corresponding diagonal element of is
zero. Thus the nonzero entries of and occur
in different rows.

Let

then it follows from the matrix equations given in Step I that
is a complex linear processing generalized orthogonal design
with the desired property.

Step III: We can now assume without any loss of gen-
erality that is a complex linear processing generalized
orthogonal design with the properties described in Step II.

In this step, we apply Construction II to and study the
properties of the associated real linear processing generalized
orthogonal design.

By interchanging with everywhere in the design if
necessary, we can further assume that only occur
in the first row of . We next apply Construction II to
and construct a real orthogonal designof size in variables

. The matrix can be written as

(43)

where are real matrices. Furthermore,
assuming the property established in Step II, we can easily
observe by direct computation that

(44)

where

where is a diagonal matrix of size whose diagonal entries
belong to the set . Moreover, the th entry of

equals . We let denote
the vector whoseth component is the th element of .
The th element of is equal to (respectively, ) if
(respectively, ) occurs in row .

Using (43) and

we arrive at the following set of equations:

(45)

Let , then using (44) and (45) we have

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

Step IV: We next prove that the matrices
anticommute with and but commute with

and . First, we observe that by (51) and (53)

Since the matrices and are antisymmetric, the
above equations prove that anticommutes with and

. Furthermore, since , we conclude
from (46)–(53) that when and

which implies that

Since anticommutes with , we arrive at

Because is orthogonal, it is invertible and thus when-
ever and , we have

The assertion for now easily follows since .

Step V: Recall that is the vector
whose th component is the th element of . In this
step, we prove that any two vectorsand have Hamming
distance exactly equal to two.

To this end, since commutes with for
and anticommutes with and , we can easily conclude from
the nonsingularity of that , for
and for . Thus the Hamming distance
of any two distinct vectors and is neither zero nor four.
We first prove that the Hamming distance of any two distinct
vectors and cannot be one. To this end, let us suppose
that two distinct vectors and have Hamming distance one
and differ only in the th position. Then in the th row of ,
we have either occurrences of and or occurrences of
and but not both. In any other row of , we have either
occurrences of and or occurrences of and but
not both. It is easy to see that the columns of cannot be
orthogonal to each other.

We next prove that the Hamming distance of any two
distinct vectors and cannot be three. To this end, let us
suppose that two distinct vectors and have Hamming
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distance three. Since for all we
conclude that for all . We can now
choose and observe that the vector is distinct with
both and . Moreover, it coincides with both and in
the first position. It follows using a simple counting argument
that has Hamming distance one with eitheror . But we
just proved that this is not possible.

We conclude that any two distinct vectors and have
Hamming distance exactly equal to two.

Step VI: In this step, we will arrive at a contradiction
that concludes the proof.

Because any two distinct vectors and have Hamming
distance exactly equal to two, the matrix whose th row
is is a Hadamard matrix. It follows that any two distinct
columns of also have Hamming distance. Thus we can
now assume without loss of generality that (after possible
renaming of the variables and by exchanging the role of some
variables with their conjugates) occur in row one
and occur in row two of . The first row of

is thus expressible as and the
second row of is of the form
for appropriate vectors . Because

we observe that are vectors of unit length. Moreover, if
the vectors and are orthogonal to each other. Since

the first and second rows of are orthogonal, we observe
that is orthogonal to . This means that

contains a set of five orthonormal vectors
in complex space of dimension. This contradiction proves
the result.
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