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Space-Time Block Codes from Orthogonal Designs

Vahid Tarokh,Member, IEEE Hamid Jafarkhani, and A. R. Calderbariellow, IEEE

Abstract—We introduce space-time block codinga new par- receivers are typically required to be small, it may not be
adigm for communication over Rayleigh fading channels using practical to deploy multiple receive antennas at the remote

multiple transmit antennas. Data is encoded using a space-time giai6n This motivates us to consider transmit diversity.
block code and the encoded data is split into. streams which

are simultaneously transmitted usingn transmit antennas. The ~_1ransmit diversity has been studied extensively as a method
received signal at each receive antenna is a linear superposition Of combatting impairments in wireless fading channels [2]-[4],
of the n transmitted signals perturbed by noise. Maximum- [6], [9]-[15]. It is particularly appealing because of its relative
likelihood decoding is achieved in a simple way through decou- simplicity of implementation and the feasibility of multiple

pling of the signals transmitted from different antennas rather . . .
than joint detection. This uses the orthogonal structure of the antennas at the base station. Moreover, in terms of economics,

space-time block code and gives a maximum-likelihood decoding the cost of multiple transmit chains at the base can be
algorithm which is based only on linear processing at the receiver. amortized over numerous users.
Space-time block codes are designed to achieve the maximum Space-time trellis coding [10] is a recent proposal that
diversity order for a given number of transmit and receive qmphines signal processing at the receiver with coding tech-
antennas subject to the constraint of having a simple decoding . . . . .
algorithm. nigues appropriate to multiple transmit antennas. Specific
The classical mathematical framework of orthogonal designs Space-time trellis codes designed for 2—4 transmit antennas
is applied to construct space-time block codes. It is shown perform extremely well in slow-fading environments (typical
that space-time block codes constructed in this way only exist of indoor transmission) and come close to the outage capacity
for few sporadl'c val_ues ofn. Subseq_uently, a g(_enerallzatlon of computed by Telatar [12] and independently by Foschini and
orthogonal designs is shown to provide space—time block codes -
for both real and complex constellations for any number of Gans [4]. However, when the number of transmit antennas
transmit antennas. These codes achieve the maximum possibleis fixed, the decoding complexity of space—time trellis codes
transmission rate for any number of transmit antennas using (measured by the number of trellis states in the decoder)
any arbitrary real constellation such as PAM. For an arbitrary  increases exponentially with transmission rate.

complex constellation such as PSK and QAM, space—time block . . . . .
codes are designed that achievé/2 of the maximum possible In addressing the issue of decoding complexity, Alamouti

transmission rate for any number of transmit antennas. For [1] recently discovered a remarkable scheme for transmission
the specific cases of two, three, and four transmit antennas, using two transmit antennas. This scheme is much less com-
space-time block codes are designed that achieve, respectivelyplex than space—time trellis coding for two transmit antennas

all, 3/4, and 3/4 of maximum possible transmission rate using ; ; i
arbitrary complex constellations. The best tradeoff between the but there is a loss in performance compared to space—time

decoding delay and the number of transmit antennas is also rellis COdeS'_ Des.pite this perfqrmance penal.ty, Al_""mOUti’s
computed and it is shown that many of the codes presented here Scheme [1] is still appealing in terms of simplicity and

are optimal in this sense as well. performance and it motivates a search for similar schemes
Index Terms—Codes, diversity, multipath channels, multiple USing more than two transmit antennas. It is a starting point
antennas, wireless communication. for the studies in this paper, where we apply theory of

orthogonal designdo create analogs of Alamouti’'s scheme,
namely, space—time block codefor more than two transmit
antennas.
VERE attenuation in a multipath wireless environment The theory of orthogona| designs is an arcane branch
akes it extremely difficult for the receiver to determingf mathematics which was studied by several great number
the transmitted signal unless the receiver is provided WwitReorists including Radon and Hurwitz. The encyclopedic work
some form ofdiversity, i.e., some less-attenuated replica ohf Geramita and Seberry [5] is an excellent reference. A
the transmitted signal is provided to the receiver. ~classical result in this area is due to Radon who determined the
_In some applications, the only practical means of achievirgt of dimensions for which an orthogonal design exists [8].
diversity is deployment of antenna arrays at the transmigadon’s results are only concerned with real square orthogonal
ter and/or the receiver. However, considering the fact thgésigns. In this work, we extend the results of Radon to both
nonsquare and complex orthogonal designs and introduce a
Manuscript received June 15, 1998; revised February 1, 1999. The mateméory of generalized orthogonal desighksing this theory, we
in this paper was presented in part at the IEEE Information Theory Worksho . .
Killarney, Ireland, 1998. Eonstruct sp_ace—tlme block codes for any number of trans_rmt
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Florham Park, NJ 07932 USA. from a communications perspective, we also study designs
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The outline of the paper is as follows. In Section Il, we dewhere 77{ are independent samples of a zero-mean complex
scribe a mathematical model for multiple-antenna transmissi@aussian random variable with variant2SNR) per com-
over a wireless channel. We review the diversity criterion fgrlex dimension. The average energy of the symbols transmitted
code design in this model as established in [10]. In Section Iftfom each antenna is normalized to bgn.
we review orthogonal designs and describe their application toAssuming perfect channel state information is available, the
wireless communication systems employing multiple transnmrgceiver computes the decision metric
antennas. It will be proved that the scheme provides maximum Lo . 9
possible spatial diversity order and allows a remarkably simple K i
d . . . . ZZ 7t—Zam’ct

ecoding strategy based only on linear processing. In Section —
IV, we generalize the concept of the orthogonal designs and
develop a theory ofeneralized orthogonal designidsing this over all codewords
mathematical theory, we construct coding schemes for any 12 no12 " "
arbitrary number of transmit antennas. These schemes achieve afrraaare aca

the full diversity order that can be provided by the transmit anghd decides in favor of the codeword that minimizes this sum.
receive antennas. Moreover, they have very simple maximum-Given perfect channel state information at the receiver,

likelihood decoding algorithms based only on linear processiige may approximate the probability that the receiver decides
at the receiver. They provide the maximum possible transmigroneously in favor of a signal

sion rate using totally real constellations as established in the L 1 . L .

theory of space-time coding [10]. In Section V, we define E=cpep ety rCy g

complex orthogonal designs and study thgir properties. We Wélésuming that

recover the scheme proposed by Alamouti [1] as a special case,

though it will be proved that generalization to more than two c=cicl---clchcy -y cici

transmit antennas is not possible. We then develop a theory ] ) ) )

of complex generalized orthogonal desigriEhese designs Was transmltf[ed. (_For Qetalls see [6], [10].) This analysis leads
exist for any number of transmit antennas and again halfethe following diversity criterion.

remarkably Simple maximum-likelihood deCOding algorithms . Diversity Criterion For Ray|e|gh Space_Time Code: In

based only on linear processing at the receiver. They provide qrder to achieve the maximum diversityn, the matrix
full spatial diversity andl/2 of the maximum possible rate

(2)

t=1 j=1

. . . L K Cl_cl C1_01 C1_01
(as established previously in the theory of space—time coding) O T T B
€] —C €3—C ... ... € —(q

using complex constellations. For complex constellations and
for the specific cases of two, three, and four transmit antennas, Blee)=|et -8 -6 . : ;-
these diversity schemes are improved to provide, respectively

all, 3/4, and 3/4 of maximum possible transmission rate. o .
Section VI presents our conclusions and final remarks. -6 f—6 ... o G

For the reader who is interested only in the code con- has to be full rank for any pair of distinct codewords
struction but is not concerned with the details, we provide a ande. If B(e, €) has minimum rank over the set of pairs

summary of the material at the beginning of each subsection. of distinct codewords, then a diversity ofz is achieved.

T
=i

Subsequent analysis and simulations have shown that codes
] ) ) ] designed using the above criterion continue to perform well
In this section, we model a multiple-antenna wireless comy Rician environments in the absence of perfect channel state

munication system under the assumption that fading is qUa§iormation and under a variety of mobility conditions and
static and flat. We review the diversity criterion for code desigty, ironmental effects [11].

assuming this model. This diversity criterion is crucial for our
studies of space-time block codes.

We consider a wireless communication system where the
base station is equipped witth and the remote is equipped
with mm antennas. At each time slatsignalsci,i = 1,2,---,n In this section, we consider the applicationrefl orthog-
are transmitted simultaneously from thetransmit antennas. onal designs(Section 1lI-A) to coding for multiple-antenna
The coefficienty; ; is the path gain from transmit antenhto ~ Wireless communication systems. Unfortunately, these designs
receive antenng. The path gains are modeled as samples 6fly exist in a small number of dimensions. Encoding using
independent complex Gaussian random variables with variarf¢éhogonal designs is shown to be trivial in Section IlI-B.
0.5 per real dimension. The wireless channel is assumed toMaximum-likelihood decoding is shown to be achieved by
quasi-static so that the path gains are constant over a framé@goupling of the signals transmitted from different antennas
length! and vary from one frame to another. and is proved to be based only on linear processing at the

At time ¢ the signalr{ received at antenngis given by receiver (Section IlI-C). The possibility of linear processing
at the transmitter, leads to the conceptliokar processing

vl = Z e+ n (1) orthogonal designsleveloped in Section IlI-D. We then prove
= a normalization result (Theorem 3.4.1) which allows us to

Il. THE CHANNEL MODEL AND THE DIVERSITY CRITERION

I1l. ORTHOGONAL DESIGNS AS
CoODES FORWIRELESS CHANNELS
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focus on a specific class of linear processing orthogomaider ofnm. Corollary 3.3.1 of [10] implies that the maximum
designs. To study the set of dimensions for which line@iransmission rate i$ bits per second per hertz (bits/s/Hz).
processing orthogonal designs exist, we need a brief reviewMsé provide this transmission rate using @anx n orthogonal
the Hurwitz—Radon theory which is provided in Section IlI-Edesign. At time slot 1,»b bits arrive at the encoder and
Using this theory, we prove that allowing linear processingglect constellation signals,,---,s,. Settingz; = s; for
at the transmitter only increases the hardware complexityat 1,2, ---,n, we arrive at a matri€ = O(sy, -+, s,) with
the transmitter and does not expand the set of dimensions éoitries+s;, +s»,-- -, +s,. At each time slot = 1,2,---,n,
which a real orthogonal design exists. the entrieC,;, i = 1,2,---,n are transmitted simultaneously
A reader who is only interested in code construction arftbm transmit antennas, 2, - - -, n.
applications of space—time block codes may choose to focuClearly, the rate of transmission fs bits/s/Hz. We now
attention on Sections IlI-A, IlI-B, and 1lI-C as well as Theo-demonstrate that the diversity order of such a space—time block
rem 3.5.1, Definition 3.5.2, and Lemma 3.5.1. code isnm.

Theorem 3.2.1:The diversity order of the above coding
scheme ispm.

A real orthogonal design of size is ann x n orthogonal Proof: The rank criterion requires that the matrix
matrix with entries the indeterminatesz;, £xs,---,+x,. O(31,---,3,) — O(s1,-++,s,) be nonsingular for any two
The existence problem for orthogonal designs is known dgstinct code sequencés, - --,s,) # (s1,---, s, ). Clearly,
the Hurwitz—Radon problem in the mathematics literature [5],
and was completely settled by Radon in another context at tHg(51 = 515+ 8 — sn) = O(51,+,80) = O(s1,-+ -, 5n)
_begmnmg of this century. In fact, an orthogonal design ex's\t/vsnere(’)(§1 —s1,-++ &, — ) is the matrix constructed from
if and only if n = 2, 4, or 8.

. . . O by replacingz; with s; — s; for all ¢ = 1,2,-..,n. The
Given an orthogonal desigd’, one can negate certain . . )
; g eterminant of the orthogonal matré is easily seen to be

columns ofQ to arrive at another orthogonal design where aﬂ
the entries of the first row have positive signs. By permuting n/2
the columns, we can make sure that the first row(bfis det (OOT)/2 = [Z xf]
T1,%2,, Tn. THUS We may assume without loss of generality i
that O has this property.

Examples of orthogonal designs are the 2 design

A. Real Orthogonal Designs

where O7 is the transpose of?. Hence

n/2
<_i; ﬁf) () det[O(5 — 51,010 — 5a)] = lz 5 — si|2]
T
the 4 x 4 design which is nonzero. It follows thatO(s,---,5,) —
1 To X3 T4 O(s1,-++,s,) is nonsingular and the maximum diversity
—x9 T1 —T4 3 4) ordernm is achieved. O
—Z3 T4 1 —X2
—%4 —T3 T2 Ty C. The Decoding Algorithm
and the8 x 8 design Next, we consider the decoding algorithm. Clearly, the
- - - . - - - - rows of (’)_ are all .permutations of the first row d@ wit_h
possibly different signs. Let;, - - -, ¢,, denote the permutations
—XT2 Xy Xy —X3 g —Xz —Xg X7

corresponding to these rows and &{¢) denote the sign of
x; in the kth row of 0. Thene(p) = ¢ means that, is up

to a sign change thé:, ¢)th element of©. Since the columns
of O are pairwise-orthogonal, it turns out that minimizing the

—x3 —T4 X1 X2 X7 rg —Ts —xg
—Lq r3 —x2 T Ty —x7 Te —s
—Ty —Xg —X7 —Tg T T T3 T4

¥ Fs o TmEs 7 Td2 I TE 0 metric of (2) amounts to minimizing
—&7 xg Ty —Tg —I3 T4 Ty —T2
—xg —X7 xe T3 —T4 —T3 To 1 L
5) > 5 (6)
=1
The matrices (3) and (4) can be identified, respective%h
. . A ere
with complex number:; + 22 ¢ and the quaternionic number
X1 +$2i+$3j+$4k n m ) 2
| Si= || |20 2 rtaliw . 8) | =i
B. The Coding Scheme t=1 j=1
In this section, we apply orthogonal designs to construct
space—time block codéisat achieve diversity. We assume that
pace-im y. Ve =14 ol | Isif? (7)
transmission at the baseband employs a real signal constella- —

tion A with 2° elements. We focus on providing a diversity
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and wherea? Y denotes the complex conjugate ®f, ;) ;. Proof: Leté =z A1+ .- +x, A, be alinear processing
The value ofS only depends on the code symbgl, the orthogonal design, and let

received symbolgr}}, the path coefficient§«; ;}, and the T 2

structure of the orthogonal desigh. It follows that minimiz- R R
ing the sum given in (6) amounts to minimizing (7) for allwhere the matrice®; are diagonal and full-rank (since the

1 <4 < n. Thus the maximum-likelihood detection rule is tacoefficientsli, 74, - - -, 11, i = 1,2,---,n are strictly positive).
form the decision variables Then it follows that
n o m ) A?AZIDZ, L=1,,7’L (9)
Ri=) > rial ;60 ATA;=—ATA;,  1<i<j<n (10)
t=1 j=1

and D; is a full-rank diagonal matrix with positive diagonal

for all i = 1,2, -- -, n and decide in favor of; among all the entries. LetD/? denote the diagonal matrix having the
constellation symbols if property thatDi‘/QDil/2 = D;. We definell; = A;D; /%
Then the matrice$/; satisfy the following properties:

. 2 2 2
s; =argmin|R; —s|"+ | -1+ Okl s, (8)
sEA' | Z' s ulv; = -Ul'y;, 1<i<j<n. (12)

It follows that £ = =z, U} + -- -+ =, U, is a linear processing
This is a very simple decoding strategy that provides diversitythogonal array having the property
_ , _ Ll =L = (2 + 234+ 22)1. O
D. Linear Processing Orthogonal Designs

There are two attractions in providing transmit diversity via In view of the above theorem, we may, without any loss of

orthogonal designs. generality, assume that a linear processing orthogonal design

e There is no loss in bandwidth, in the sense that orthogon%l satisfies

designs provide the maximum possible transmission rate LLl=L"C= (z7+ 234+ +z)1.
at full diversity.

« There is an extremely simple maximum-likelihood decods. The Hurwitz—Radon Theory

ing algorithm which only uses linear combining at the |n this section, we define a Hurwitz—Radon family of

receiver. The simplicity of the algorithm comes from thenatrices. These matrices encode the interactions between
orthogonality of the columns of the orthogonal design. yariables in an orthogonal design.

The above properties are preserved even if we allow IinearDefmmon 351:A set of n x n real matrices
processing at the transmitter. Therefore, we relax the deﬂan1 B,,---, By} is called a sizek Hurwitz—Radon family
tion of orthogonal designs to allow linear processing at th§ matrices if

transmitter. Signals transmitted from different antennas will -

now be linear combinations of constellation symbols. B Bi=1

Definition 3.4.1: A linear processing orthogonal design in i
variablesz, s, - - -, x,, IS @ann x n matrix £ such that: and

. . s . B.B: = —B.B. 1<1< <k,
« The entries of are real linear combinations of variables Lt I SE<J=

L1, %2, L. We next recall the following theorem of Radon [8].

« £T¢ = D, whereD is a diagonal matrix with(¢, i)th Theorem 3.5.1:Letn — 296, whereb is odd anc = 4c+ d
diagonal element of the fornﬁlxl bz +-+ 1), with 0 < d < 4 and0 < ¢. Any Hurwitz—Radon family of
with the coefficientsls,l;,--, 1, all strictly positive , ., matrices contains strictly less than) = 8c + 2¢
numbers. matrices. Furthermorg(n) < n. A Hurwitz—Radon family

It is easy to show that transmission using a linear processié@ntainingn — 1 matrices exists if and only it = 2, 4, or 8.

orthogonal design provides full diversity and a simplified pefinition 3.5.2: Let A4 = [a;;] be ap x ¢ matrix and let

decoding algorithm as above. The next theorem shows thatyq any arbitrary matrix. The tensor produtt® B is the
we may, with no loss of generality, constrain the ma@xn  atrix given by

Definition 3.4.1 to be a scaled identity matrix.
allB algB cee e aqu

Theorem 3.4.1:A linear processing orthogonal designn anB apB ... ... ayB
variablesz1, z2,- -+, z, exists if and only if there exists a 13
linear processing orthogonal designsuch that (13)

/j/jT:/jT/j:(a;§+a;§+...+xi)]. apB  apB ... . apB
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Definition 3.5.3: A matrix is called an integer matrix if all is an integer Hurwitz—Radon family of + m + 1 integer

of its entries are in the set—1,0,1}.

matrices(2nk x 2nk).

The proof of the next Lemma is directly taken from [5] and We proceed by induction. For = 22, we already con-

we include it for completeness.

Lemma 3.5.1:For any n there exists a Hurwitz—Radon
family of matrices of sizey(n) — 1 whose members are intege

matrices.
Proof: The proof is by explicit construction. Lef,
denote the identity matrix of sizZe We first notice that if» =

r

structed an integer Hurwitz—Radon family of siz&?®) — 1
with entries in the sef—1,0,1}. Now (17) gives the transition
from n1 to no. By using (18) and letting: = nq, n = 2, we
get the transition from; to ns. Similarly, withk = ny, n = 4
andk = ny, n = 8, we get the transition from; to n, and
to ns. O

2%b with b odd, thenp(n) = p(2%). Moreover, given a family ~ The next theorem shows that relaxing the definition of
of 2% x 2* Hurwitz—Radon integer matricdsd;, A»,---,As}  orthogonal designs to allow linear processing at the transmitter
of sizes = p(2*)—1, theset{A, ® I}, A, @1, -- ,A; @ I,} does not expand the set of dimensienfor which there exists

is a Hurwitz—Radon family of x n integer matrices of size an orthogonal design of size.

p(n) — 1. In light of this observation, it suffices to prove the

lemma forn = 2¢. To this end Theorem 3.5.2:A linear processing orthogonal design of

sizen > 2 exists if and only ifn = 2, 4, and 8.

R= < 0 1) (14) Proof: Let £ denote a linear processing orthogonal de-
-10 sign. Since the entries df are linear combinations of variables
p_ 0 1 (15) T1,%2, ,Tn, WE can write row: of £ as XA;, where
“\1 0 A; is an appropriate real-valued x n matrix and X =
and (x1,22, -+, 2,). Orthogonality ofL translates into the fol-
. 0 lowing set of matrix equalities:
QI(O —1)' (16) MAT = ATA; =1, i=1,2,---,n  (19)
Let AiA]T = A ;AT 1<i<j<n (20)
ny = 24713 where I is the identity matrix. We now construct a Hur-
ny = 2406+ witz—Radon set of matrices from the original design. Let
oA(s+1) 1 B; = AT A, fori=1,2,---,n. ThenB; = I and we have
ng =
ny = 242 BIB, =1, i=2--,n (21)
and B = —-B;, i=2,-,n (22)
ny = 24(5—1—1)-1—3. BZBJ = —BjBi, 2 < 1< J <n. (23)
Then These equations imply thaf{Bs, Bs,---, B,} is a Hur-
witz—Radorfamily of matrices. By the Hurwitz—Radon Theo-
p(nz) = p(n1) +1 rem (3.5.1), we can conclude thatn) =n — 1 andn = 2, 4,
p(ns) = p(ny) + 2 or 8. U
p(na) = p(n1) + 4

In particular, we have the following special case.

Corollary 3.5.1: An orthogonal design of size exists if
We observe thaR is a Hurwitz—Radon integer family of sizeand only if n = 2, 4, and 8.
p(2)—1,{R® L, P®R,Q ® R} is a Hurwitz—Radon integer Proof: Immediate from Theorem 3.5.2. O

family of si 22y — 1 . . _— .
amily of size p(2°) » and To summarize, relaxing the definition of orthogonal designs,

{LRERRL, LOEPRR, QRQ®R, PRQ®R, by allowing linear processing at the transmitter, fails to provide
ReP®Q, RoP®P, RoQ®l,} new transmission schemes and only adds to the hardware

) ) . ) ) complexity at the transmitter.
is an integer Hurwitz—Radon family of siz&23) — 1.

The reader may easily verify that §fA;, A2, -, A;} is an

. . . X IV. GENERALIZED REAL ORTHOGONAL DESIGNS
integer Hurwitz—Radon family ok x n matrices, then

The previous results show the limitations of providing

{RoLu{Q®A,i=1,2,---,s} (17)  transmit diversity through linear processing orthogonal de-
is an integer Hurwitz—Radon family of+ 1 integer matrices Signs based on square matrices. Since the simple maximum-
(2n x 2n). likelihood decoding algorithm described above is achieved

If, in addition, {Li,Ly,---,Ly,} is an integer Hur- because of orthogonality of columns of the design matrix, we
witz—Radon family ofk x & matrices, then may generalize the definition of linear processing orthogonal
designs. Not only does this create new and simple transmis-
{Poh©A;,i=12,-,s} sion schemes for any number of transmit antennas, but also

WL, ®IL,j=1,2,---,m}U{R® L.} (18) generalizes the Hurwitz—Radon theory to nonsquare matrices.



TAROKH et al. SPACE-TIME BLOCK CODES FROM ORTHOGONAL DESIGNS 1461

In this section, we introducegeneralized real orthogonal Definition 4.1.2: For a givenR,n, we defineA(R,n) to
designsand pose thefundamental question of generalizedbe the minimum numbep such that there exists a x n
orthogonal design theoryThe answer to this fundamentalgeneralized orthogonal design with rate at least If no
question provides us with transmission schemes that aresich orthogonal design exists, we defidéR,n) = oco. A
some sense optimal in terms of the decoding delay. Weneralized orthogonal design attaining the vall(@?,n) is
then settle the fundamental question of generalized orthogonalled delay-optimal.
design theory for full-rate orthogonal designs (in a sense toThe value ofA(R,n) is the fundamental question of gen-
be defined in the sequel) and construct full-rate transmissieralized orthogonal design thearirhe most interesting part
schemes for any number of transmit antennas. of this question is the computation of(1,n) since the
A reader who is interested only in code construction argkneralized orthogonal designs of full rate are bandwidth-
applications of space—time block codes is advised to gdficient. To address this question, we will need the following

through the results of this section. construction.
_ _ _ Construction I: Let X = (z1,22,---,%,) andn < p(p).
A. Construction and Basic Properties In Lemma 3.5.1, we explicitly constructed a family of integer
Definition 4.1.1: A generalized orthogonal desighof size p X p matrices withp(p) —1 members{ Ay, Ay, - -, Ay)—1}.
n is ap X n matrix with entries0, £z, +z,- - -, tz;, such Let Ao = [ and consider the x n matrix G whose jth

that GTG = D whereD is a diagonal matrix with diagonal column isA; ; X* for j = 1,2,---,n. The Hurwitz-Radon
Diiyi = 1,2,--+,n of the form (lix? + 23 + -+ + liz3) conditions imply thaly is a generalized orthogonal design of
and coefficientsi, I3, - - -, i, are strictly positive integers. Thefull rate.

rate ofG is R = k/p.

, . Theorem 4.1.2:The value A(1,n) is the smallest number
The following theorem is analogous to Theorem 3.4.1

p such thatrn < p(p).

Theorem 4.1.1:A p x n generalized orthogonal desigh Proof: Let p be a number such that < p(p). Let
in variablesz1, z3, - - -, zx exists if and only if there exists a-X = (21,2, -+, x,) and apply Construction | to arrive &t a
generalized orthogonal desighin the same variables and ofp X n generalized orthogonal design of full rate. By definition,
the same size such that A(1,n) < p, and hence

< mi .
Grg = (a:f—i—a:%—i—---—i—a:i)]. Alln) < nlérl;&)(p) = @4

Next, we consider any generalized orthogonal desigof
ize p x n in p variables (rate one) where = A(1,n).

he columns ofG are linear combinations of the variables
T1,T2,---,%p. Theith column can be written as; X” for
some real-valueg x p matrix B;. Since the columns af are
orthogonal we have

BB, =1, i=1,2,---,n (25)

Transmission using a generalized orthogonal design is dis- BI'B; = -BYB,, 1<i<j<n. (26)
cussed next. We consider a real constellatidrof size 2°. !

Throughput ofkb/p can be achieved as described in Sedthis means that the matricet; = BY B;,j = 2,---,n are a

tion Il-A. At time slot 1, kb bits arrive at the encoder andHurwitz—Radon family of size: — 1. Thusn — 1 < p(p) — 1

In view of the above theorem, without any loss of generalit
we assume that any x n generalized orthogonal desighin
variableszy, zo, - - -, x, Satisfies

G'G= (274234 +a3)l.

select constellation symbols, sz, - -, s,. The encoder pop- andn < p(p), and A(1,n) = p > min, <, (p). Combining
ulates the matrix by setting; = s;, and attimet = 1,2, ... ,p this result with inequality (24) concludes the proof. O
the signalsG,s, - --, G, are tran_smitted simultan_eously from Corollary 4.1.1: For anyR, A(R,n) < .

antennasl, 2,---,n. Thus kb bits are sent during each

g g Proof: The proof follows immediately from Theo-
transmissions. It can be proved, as in Theorem 3.1, that the, 4 1 2. 0

diversity order ishm. It should be mentioned that the rate of a

generalized orthogonal design is different from the throughputCorollary 4.1.2: The valueA(1,n) = min (2**), where

of the associated code. To motivate the definition of the ratBe minimization is taken over the set

we _note_that the theory_of_ space_—time coding proves that for {e,d]0<¢,0<d< 4andsc+2¢>n).

a diversity order ofnm, it is possible to transmit bits per ) ’

time slot and this is best possible (see [10, Corollary 3.3.1]p particular, A(1,2) = 2, A(1,3) = A(1,4) = 4, and

Therefore, the raté? of this coding scheme is defined to bed(1,n) = 8 for 5 < n < 8.

kb/pb which is equal tok/p. Proof: Let p=A(1,n). We first claim thatp is a power
The goal of this section is to construct high-rate lineasf two. To this end, suppose that=2%b whereb> 1 is an odd

processing orthogonal designs with low decoding complexitumber. Therp(2%) = p(p) >n. But 2% <p. This contradicts

and full diversity order. We must, however, take the memottpe fact thatp = min,.<,;)(p) and proves the claim. Thus

requirements into account. This means that gifieandn, we p=2* for somea. An application of the explicit formula for

must attempt to minimize. p(2%) given in Theorem 3.5.1 completes the proof. O
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It follows that orthogonal designs are delay optimal focomplex orthogonal designs in Section V-B. Motivated by the
n = 2,4, and 8. possibility of linear processing at the transmitter, we define

We have explicitly constructed a Hurwitz—Radon family o€omplex linear processing orthogonal designsSection V-C,
matrices of size» with p(p) members such that all the matricedut we shall prove that complex linear processing orthogonal
in the family have entries in the s¢t-1.0,1}. Given such designs only exist in two dimensions. This means that the
a family of Hurwitz—Radon matrices of size = A(1,n), Alamouti Scheme is in some sense unique. However, we
we can apply Construction | to providegax n generalized would like to have coding schemes for more than two transmit
orthogonal design with full rate. This full-rate generalizedntennas that employ complex constellations. Hence the notion
orthogonal design has entries of the fortrr,,---,+x,. of generalized complex orthogonal desigissintroduced in
This is the method used to prove the following theorer8ection V-E. We then prove by explicit construction that
which completes the construction of delay-optimal generalizedte 1/2 generalized complex orthogonal designs exist in any
orthogonal designs of rate one for< 8 transmit antennas. dimension. In Section V-F, it is shown that this is not the best
rate that can be achieved. Specifically, examples of 3ate

Theorem 4.1.3:The orthogonal designs . . : . .
generalized complex linear processing orthogonal designs in

T1 T2 T3 dimensions three and four are provided.
G — —Z2 T —T4 27) A reader who is only interested in code construction and
3 —x3 T4 1 the application of space—time block codes may choose to read
—x4 —X3 To Section V-B, Definition 5.4.1, Definition 5.5.2, the proof of

Theorem 5.5.2, Corollary 5.5.1, the remark after Corollary
5.5.1, and Section V-F.

L1 X2 €3 L4 L5
—T2 xy Ty —I3 Tg
—T3 —T4 x1 T2 T
—X4 xr3 —T2 & &g

G, = 28)

A. Complex Orthogonal Designs

—T5 —Tg —T7 —Xg  T1 We define acomplex orthogonal desig). of size n
—rg Ty —Tg Xy —T2 as an orthogonal matrix with entries the indeterminates
—x7  Tg Ty —Tg —I3 +wx1, 29, -, £x,, their conjugatestzxy,tzh, -, xxk,
—T3 —T7 T Tz —T4 or multiples of these indeterminates By where: = /—1.
#, g T3 T4 s 6 W|thou_t loss of generality, we may assume that the first row
gy 2 €, -3 T —=s of O. is z1,x9, -+, Zp. . . .
s -y 1 zy 17 T The method of encoding presented in Section IlI-A can be
—z, I3 —Iy 1 I8 —i7 applied to obtain a transmit diversity scheme that achieves the
G = e —ge  —pe — (29)  full diversity nm. The decoding metric again separates into
5 6 —I7 8 T1 T2 . . s
— g Ts —=g T —o - decoding metrics for the individual symbols , zz,- -, z,.
[ . . .
— 7 5 €y -z —=3 T4 An example of & x 2 complex orthogonal design is given by
—x —Z7 x Ts —X —x
’ ’ L ( i “i) (31)
and T2 N
1 P - L B. The Alamouti Scheme
Trron T4 TEs o ¥e TS T The space-time block code proposed by Alamouti [1] uses
—X3 —T4 X1 T2 X7 xrg —T3 .
the complex orthogonal design
G, = —X4 L3  —d2 L1 xrg  —I7 Ze
—&3 —%e —x7 —Tg XL T2 T3 T1 T2
T (32)
—Ze Ly  —L8 L7 —L2 L1 —2a —x5; X7
—27 8 T35 —Tg —I3 T4 £ . . .
—z3 —a7 X Ty —Ti —T3 T2 Suppose that there ag¢ signals in the constellation. At the
(30) first time slot, 2b bits arrive at the encoder and select two
complex symbolss; and s». These symbols are transmitted
are delay-optimal designs with rate one. simultaneously from antennas one and two, respectively. At
Proof: The orthogonal designs constructed above achietlee second time slot, signalssj and si are transmitted
the valueA(1,n) forn =3,5,6,7. O simultaneously from antennas one and two, respectively.

Maximum-likelihood detection amounts to minimizing the
decision statistic

m

g 2 J * x| 2
; T : E :(|71 — a1 s — o gse| |y 4 anysh —assi|)
The simple transmit diversity schemes described above’(—

assume a real signal constellation. It is natural to ask for (33)
extensions of these schemes to complex signal constellations.

Hence the notion ofomplex orthogonal desigrns introduced over all possible values of; and ss. The minimizing values
in Section V-A. We recover the Alamouti scheme a8 a2 are the receiver estimates gf and s,, respectively. As in the

V. GENERALIZED COMPLEX ORTHOGONAL
DESIGNS AS SPACE-TIME BLocK CODES
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previous section, this is equivalent to minimizing the decision For n = 2, Alamouti’'s scheme gives a complex orthogonal
statistic design. We will prove later that complex orthogonal designs
9 do not exist even for four transmit antennas.

m

o (rlet;+ (1) as,) | — s

g=1 D. Complex Linear Processing Orthogonal Designs
m 2 .. . .
Definition 5.4.1: A complex linear processing orthogonal
2 2 A : . 4
-1+ Z Z i |7 | [l design in variables:, zo,-- -, z, IS ann x n matrix £, such
i=ti=t that
for detectings; and the decision statistic « the entries of€. are complex linear combinations of
9 variableszy, x2,- - -, z, and their conjugates;
il . i « £&¢., = D, where D is a diagonal matrix where
2(7’10‘2,3' = (r3) ;)| — 52 all diagonal entries are linear combinations |af;|?,
i=1 |z2|2, -+ -, |z, |* with all strictly positive real coefficients.
m 2
2 2 The proof of the following theorem is similar to that of
Rl ZZ Jevi 517 |52 Theorefn 3.4.1. ’

j=1 =1
: . . . . Theorem 5.4.1:A complex linear processing orthogonal
for decodings,. This is the simple decoding scheme descrlbqﬁjesigngc in variableszy, s, - - -, x,, exists if and only if there

in 1], and it should be clear that a result analogous Qqis 5 complex linear processing orthogonal degigrsuch

Theorem 3.2.1 can be established here. Thus Alamoutjs,,

scheme provides full diversit§m usingm receive antennas. . . ) ) )
This is also established by Alamouti [1], who proved that this ~ £efe = £ole = (Je|” 4 [w2]” + -+ + |on 7).
scheme provides the same performancgradevel maximum

ratio combining, In view of the above theorem, without any loss of generality,

we assume that any complex linear processing orthogonal
design £, satisfies

, , ) ) L LY=L= |z P+ ae + - - + |an|P).
In this section, we consider the existence problem for o ke = (ol +] _2| |_ )
complex orthogonal designs. First, we show that a complex'Ve can now prove the following theorem:
orthogonal design of size: determines a real orthogonal Theorem 5.4.2:A complex linear processing orthogonal

C. On the Existence of Complex Orthogonal Designs

design of size2n. design of sizen exists if and only ifn = 2.
Construction II: Given a complex orthogonal desigh. of Proof: We apply Construction Il to the complex linear
size n, we replace each complex variabte = z} + 22, processing orthogonal deS|.gn of smeto arrive at a linear
1 < i < n by the2 x 2 real matrix processing orthogonal design of si2e. Thus2n = 4 or
2n = 8 which implies thatn = 2 or n = 4. Forn = 2,
< x} xf) (34) Alamouti’'s matrix is a complex linear processing orthogonal
—z? xt ) design. Therefore, it suffices to prove that foe= 4 complex
] ] linear processing orthogonal designs do not exist. The proof
In this way z7 is represented by is given in the Appendix.
<xé —x§> (35)  We can now immediately recover the following resuit.
i i Corollary 5.4.1: A complex orthogonal design of size
ix; is represented by exists if and only ifn = 2.
) . Proof: Immediate from Theorem 5.4.2. O
<_i:1 _i?) (36)  We conclude that relaxing the definition of complex or-

thogonal designs to allow linear processing will only add to
and so forth. It is easy to see that the x 2n matrix formed hardware complexity at the transmitter and fails to provide
in this way is a real orthogonal design of size. transmission schemes in new dimensions.
We can now prove the following theorem:

Theorem 5.3.1:A complex orthogonal desig®.. of sizen
exists only ifn = 2 orn = 4.

Proof: Given a complex orthogonal design of size We next define generalized complex orthogonal designs.
apply Construction Il to provide a real orthogonal design pefinition 5.5.1: Let G, be apx n matrix whose entries are
of size 2n. Since real orthogonal designs can only exist for . . .

n = 2, 4, and 8, it follows that complex orthogonal designs 0, @y, £y, £z, £23, -+, £k, £,
of sizen cannot exist unless = 2 or n = 4. O or their product withé. If G:G. = D. whereD.. is a diagonal

E. Generalized Complex Orthogonal Designs
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matrix with (¢,)th diagonal element of the form To prove Part ii), we consider a real orthogonal design
(U | |? + Blaal® + - - + L]aes]?) G of size p x n and rate at least equal R in variables
o o ; ] - x1,x2, -, Tk, Wherep = A(2R,n). We construct a complex
and the 'coeff|0|ent$1, i,---, 0 all strmtly positive numbgrs, arrayG, of size2p x n. We replace the symbols, , o, - - -, s
then G. |sdref(tar;§d_tokas a generalized orthogonal design 8(/erywhere ing by their symbolic conjugatesy, a3, -- -,
sizen and rateR = k/p. to arrive at a new arrag*. Then we defineg. to be the
The following Theorem is analogous to Theorem 3.4.1. 2p x 1 array with the rowi < p the ith row of G and the row
Theorem 5.5.1:A p x n complex generalized linear pro-p < @ < 2p the (i — p)th row of G*. It is easy to see thal. is
cessing orthogonal desigf. in variables a complex generalized orthogonal design of rate at least equal
to R. ThusA.(R,n) < 2p =2A(2R,n). O

Corollary 5.5.1: For R < 0.5, we haveA.(R,n) < oco.

exists if and only if there exists a complex generalized linear ~Proof: It follows immediately from Part ii) of Theorem
processing orthogonal desigh in the same variables and of9-5-2 and Corollary 4.1.1. O

the same size such that Remark: Corollary 5.5.1 proves there exists rat¢2 com-
. 2 2 2 plex generalized orthogonal designs, and the proof of Part i) of
GeGe = (laa" + faa" -+ Janl )1 Theorem 5.5.2 gives an explicit construction for these designs.

_ _ _ For instance, raté /2 codes for transmission using three and
In view of the above theorem, without any loss of generalitypyr transmit antennas are given by

we assume that any x n generalized orthogonal desigh

0, tx1, £a], £ae, £ab, -+, Lay, o,

in variables €1 xx T3
0, +ay, +a*, £xg, £ah, - -, £ap, £} Tr2 L T
—I3 T4 X1
satisfies the equality g3=| % TE3 B2 (37)
‘ SIS T
GiGe = (|loa? + |wal® + oo+ |2al DI —xy  x] -y
. o —z5 oz
after the appropriate normalization. —zi -3 o
Transmission using a complex generalized orthogonal de-
sign is similar to that of a generalized orthogonal desiggq
Maximum-likelihood decoding is analogous to that of Alam-
outi’'s scheme and can be done using linear processing at the T Ta w3 T4
receiver. The goal of this section is to construct high-rate —%o T —x4 T3
complex generalized linear processing orthogonal designs with —23 T4 T —To
low decoding complexity that achieve full diversity. We must, 4 —24 —m3 T T
however, take the memory requirements into account. This g: = R B (38)
means that giverR andrn, we must attempt to minimizg. R B
Definition 5.5.2: For a givenR andn, we defineA.(R,n) _xé xf{% xi _xé
the minimum numberp for which there exists a complex —ry TE3 I &

generalized linear processing orthogonal design of gizen

and rate at leasR. If no such orthogonal design exists, welhese transmission schemes and their analogs for higher

define A.(R,n) = . give full diversity but lose half of the theoretical bandwidth
The question of the computation of the value4f(R,n) efficiency.

is thefundamental question of generalized complex orthogonal

design theoryTo address this question to some extent, we Wit Few Sporadic Codes

establish the following Theorem.
g It is natural to ask for higher rates thayp2 when designing

Theorem 5.5.2:The following inequalities hold. generalized complex linear processing orthogonal designs for
« i) For any R, we haveA(R, 2n) < 24.(R,n). transmissi_on withn. multiple ar_1tennas. Fot = 2, Alamoulti’s
’ scheme gives a rate one design. kee 3 and4, we construct
* i) For R < 0.5, we haveA.(R,n) < 24(2R,n). rate 3/4 generalized complex linear processing orthogonal
Proof: We first prove Part i). IfA.(R,n) = oo, then designs given by
there is nothing to be proved. Thus we assume that

A.(R,n) < oo and consider a complex generalized linear 1 T2 %

processing orthogonal desigh. of rate at least equal t& —x5 z] %

and sizep x n. By applying Construction II, we arrive at a # my (cm—witwa—a)) (39)
2p x 2n real generalized linear processing orthogonal design v2 V2 (m2+m*+.27:1—m*)

of rate at least equal t&. Thus2A.(R,n) = 2p > A(R, 2n). v
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for n = 3 and Conversely, any set of x 4 complex matricesd;, B, As,
z1 Z2 % % Bs,---, Ay, By satisfying the above equations defines a linear
—a3 z % B processing complex orthogonal design.
f/% \“}”5 Cmoydeany)  (Cwazeade —o) Step Il In this step, we will prove that given a complex
3 _®y  (@etwidmi—al) _ (witwi4as—ah) linear processing generalized orthogonal designwe could
V2 V2 2

(40) construct another complex linear processing generalized or-

for n = 4. These codes are designed using the theory Yogonal desigrt’ such that for any row, one of; andz}

amicable designs [5]. does not occur in the entries of that row&fIn other words,
Apart from these two designs, we do not know of any othdpr any ¢ = 1,2,3,4

generalized designs in higher dimensions with rate greater than 4 4

0.5. We believe that the construction of complex generalized Eip = Zai:j:kxi + Z bi 1T

designs with rate greater tharb is difficult and we hope that j=1 j=1

these two examples stimulate further work. . .
P where for any fixed eitherd,; ;, =0 for all £ =1,2,3,4 or

a; ;- = 0 for all £ = 1,2,3,4. In the former (respectively,

latter) case we say; (respectivelyz;) does not occur in the
We have developed the theory of space—time block codings row of €.

a simple and elegant method for transmission using multipleysing (42), we first observe that

transmit antennas in a wireless Rayleigh/Rician environment.

These codes have a very simple maximum-likelihood decoding ~ 4i = Ai({) = Ai(A7A; + B/ B;) = A; AT A;.
algorithm which is only based on linear processing. Moreovq_rrenCe

they exploit the full diversity given by transmit and receive

antennas. For arbitrary real constellations such as PAM, we A AT = AjAT A AT = (A A2,

have constructed space—-time block codes that achieve the

maximum possible transmission rate for any numbeof Similarly, B;Bf = (B;B})*. This means that the matrices
transmit antennas. For any complex constellation, we haveA; and B;B; are idempotent for. = 1,2,3,4. Since
constructed space—time block codes that achieve half of thed; + BiB = I, the matricesd; A7 and B; B} represent
maximum possible transmission rate for any numheof Projections onto perpendicular vector spaéésand ;" and
transmit antennas. For arbitrary complex constellations and fBHs are diagonalizable with all eigenvalues in the{get }. If
the specific cases = 2, 3, and4, we have provided space-Pi = rank (W;) andg; = rank (W;") = 4—p;, then exactly;
time block codes that achieve, respectively, afi4, and3/4 (respectivelyg;) of eigenvalues ofi; A7 (respectively B; BY)
of the maximum possible transmission rate. We believe thaf€ 1.

these discoveries only represent the tip of the iceberg. Next, using (42), we observe that for~ j

AATAAT = —ABIB;AY = AjBI BiA;
= —A;BIBjAf = AjATA AL

VI. CONCLUSION

APPENDIX

Theorem: A complex orthogonal design of sizedoes not
exist. Thus the matrices4; A7 and AjA’;. commute. Similarly, it
Proof: The proof is divided into six steps. follows that {A;AY, B;BY,i = 1,2,3,4} is a commuting
r1;?mily of diagonalizable matrices. Hence, these matrices are

Step I: In this step, we provide necessary and sufficie . . . . .
- . . . simultaneously diagonalizable. Since the eigenvalue$; af;
conditions for ad x 4 matrix of indeterminates to be a complexX X .
X : . . . are in the sef0,1}, we conclude that there exists a unitary
linear processing generalized orthogonal design. To this end

let £. be a complex linear processing generalized orthogo%&?nsmrmaﬂon[] such that

design of sizen = 4. Each entry ofL.. is a linear combination UAATU* = D}
Of 371,37{,372,3:;’ R ’,’13'4’./171. It fO”OWS that UBZB:(U* — DZQ
Le=x1 A +2]By + 22A2 + 25By + -+ + x4 Ay + 23 B ) i i i
LTI S e T 441 whereD!, D2, i = 1,2,3,4 are diagonal matrices with diago-
(41) nal entries in the sef0,1}. Moreover, because
whereAl,Bl,AQ,BQ, -+, Ay, By are complex x 4 matrices. D! + D2 = U(A, AT + BBU™ = I
Since
LoLr=LL, = (Jar)? + |aa]? + - + |z the (4, j)th entry of D} is zero (respectively, one) if and only

if the (4, 7)th entry of D? is one (respectively, zero). Since
we can conclude from the above that

AjAT + B;Bf = AT A; + BB, =1, i=1,---,4
AAT + BB = ATA; + B B; =0, 1<i#5<4 the nonzero entries cﬁfBiU* appear ip those rows where
BiA + BjAf = ;B! + A;Bf =0, 1<i#j<4, the (4, 7)th element ofD} is zero. Similarly,

A;Bf = AXB; =0, 1<i<4. (42) DIUAU* =UB;B;U*UA;U* =0

DIUB,U* = UA,ATUUB,U* =0
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implies that the nonzero entries ofA;U* appear in those E,=JFE; (48)
rows, where the corresponding diagonal elementDf is Es = JoE5 (49)
zero. Thus the nonzero entries GiA,U* and U B,;U* occur

in different rows. Bs = JuE7 (50)
Let EzT = _Eiv L:2778 (51)
4 El'E;=EEf=I, i=1,--,8 (52)
€= (VAU*z; + UBU"z}) EET = —E,ET, 1<i#j<8. (53)

=1
then it follows from the matrix equations given in Step | that Step IV: We next prove that the matriceBs;_1, Fo;,
is a complex linear processing generalized orthogonal desigs 2, 3,4 anticommute with/; and./; but commute with/;,
with the desired property. j #1,andj # i. First, we observe that by (51) and (53)

Step Ill: We can now assume without any loss of gen-  Ey; 1 Ji + 1 E3, | = By 1ET + ExES. | =0
erality that L. is a _complex Ilnea_r processing _generallzed JiEsiy + EL_ JT = By + EL = 0.
orthogonal design with the properties described in Step II.

In this step, we apply Construction Il t6. and study the Since the matrices:, J;, and E;_; are antisymmetric, the
properties of the associated real linear processing generaliaddve equations prove thab; ; anticommutes with/; and
orthogonal design. J;. Furthermore, sinceJ; Eo; 1)" = E3;_, Ji', we conclude

By interchangingz; with z; everywhere in the design if from (46)—(53) that whery # 1 andj # ¢
necessary, we can further assume that eflycs, x3, x4 occur o T ‘ T 4T _p T ‘ T
in the first row of £.. We next apply Construction Il t&, JiB2j1 B+ Boia By _EQJEQi—1+EQZ_1f21_O
and construct a real orthogonal desigrof size8 in variables Eyj 1By +Ez 1B =0

xt, 22, 25, 23, -z}, 3. The matrixO can be written as which implies that

O = Crat + Coa? + Caad + Cyal + -+ + Crat + Cgah
1L7 + 2&1 + 3Lo + 4o + + 7L + 8Ly —JjE2j,1E2i71 _ EQj,lEQZ‘,le

43
43) = J;Eyj 1E3,_ — By 1E3_J}
whereCy, Cs, - - -, C7, Cg are reall x 8 matrices. Furthermore, = J;Ey; 1EL_ |+ E2i_1E2Tj_1JjT —0.
assuming the property established in Step Il, we can easily _ _ _
observe by direct Computation that Since Jj anticommutes WlthEQj_l, we arrive at
Co = J,C; Ey; 1Jj By = Eoj 1B 1J;.
Cy = JCs (44) BecauseE,;_; is orthogonal, it is invertible and thus when-
Cs = J3Cj everj # 1 andj # i, we have
Cy = JuC7 JiEi—1 = Eyi_1J;.

where The assertion foE,; now easily follows sincé,; = J; Es;_1.

J=F® <_(1) é) Step V: Recall thate; = (¢;1,---,¢.4) is the vector
whose jth component is thej, j)th element ofF;. In this
where£; is a diagonal matrix of sizé whose diagonal entries step, we prove that any two vectorsande¢; have Hamming
belong to the sef{—1,1}. Moreover, the(1,1)th entry of distance exactly equal to two.
F;,i =1,2,3,4 equalsl. We lete; = (¢;1,---,¢ 4) denote  To this end, sincé&z;_; commutes with/; for j # 1,5 #4
the vector whosgth component is thé€j, j)th element ofF;. and anticommutes witl; and./;, we can easily conclude from
The jth element ofe; is equal tol (respectively,—1) if z; the nonsingularity offs;_; that.J; # J;, for 1 <4 # j < 4

(respectively,xz}) occurs in rowy. and.J; # —J; for 1 <4 # j < 4. Thus the Hamming distance
Using (43) and of any two distinct vectors; ande¢; is neither zero nor four.
4 We first prove that the Hamming distance of any two distinct
00T = 0T — <Z [(x3)2 n (%2)2]>I vectorse; _an_d ¢; cannot be one. To this en_d, Iet_ us suppose
— that two distinct vectors; ande¢; have Hamming distance one

and differ only in thekth position. Then in théth row of £,
we have either occurrences of anda:;“: or occurrences of}
C;0F = I, i=1,--,8 andz; but not both. In any other row of., we have either
45 ‘ , * «
COT = —C,CF,  1<i<j<s. (45) occurrences ofr; andx; or occurrences ofr; andx} but
J v - - not both. It is easy to see that the columns£qf cannot be

we arrive at the following set of equations:

Let E; = C;CT, then using (44) and (45) we have orthogonal to each other.
We next prove that the Hamming distance of any two
By =1 (46)  distinct vectorse; ande; cannot be three. To this end, let us

Ey=J; (47) suppose that two distinct vectors and ¢; have Hamming
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distance three. Sincey ; 1 for all 4 = 1,2,3,4, we
conclude that; , = —¢; for all £ = 2,3,4. We can now
choosel # i, 7 and observe that the vecter is distinct with
both ¢; and¢;. Moreover, it coincides with botl; ande; in
the first position. It follows using a simple counting argument?]
that¢; has Hamming distance one with eithgror ¢;. But we
just proved that this is not possible.

We conclude that any two distinct vectorsand ¢; have
Hamming distance exactly equal to two.

(1]

(3]

[4]
Step VI: In this step, we will arrive at a contradiction

that concludes the proof.

Because any two distinct vectots and¢; have Hamming
distance exactly equal to two, the matdx whoseith row
is ¢; is a Hadamard matrix. It follows that any two distinct
columns of H also have Hamming distanc Thus we can
now assume without loss of generality that (after possiblé’]
renaming of the variables and by exchanging the role of somg;
variables with their conjugates) , x2, x3, z4 OCcur in row one
and z3, x5, x3, x4 OCCUr in row two ofL.. The first row of
L. is thus expressible asjv; + zove + x3v3 + 24v4 and the
second row of.. is of the formz}w; + x3ws + x3ws + Taws
for appropriate vectors;,w;,¢ = 1,2, 3,4. Because

LoLy= (o + -+ waHI

(5]

(6]

El

[20]

we observe that;, w; are vectors of unit length. Moreover, if
o U]
i # j the vectorsy; andv; are orthogonal to each other. Slncé
the first and second rows df. are orthogonal, we observe
that w3 is orthogonal tov;,« = 1,2,3,4. This means that
{ws,v1,v2,vs,v4} cONtains a set of five orthonormal vectorélz]
in complex space of dimensiof This contradiction proves [13]
the result. O

[14]
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