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Abstract

We consider the problem of reliably transmitting CELP-encoded speech over noisy
communication channels. Our objective is to design efficient coding/decoding schemes
for the transmission of the CELP line spectral parameters (LSP’s) over very noisy
channels.

We begin by quantifying the amount of “residual redundancy” inherent in the
LSP’s of Federal Standard 1016 CELP. This is done by modeling the LSP’s as first-
and second-order Markov chains. Two models for LSP generation are proposed; the
first model characterizes the intra-frame correlation exhibited by the LSP’s, while the
second model captures both intra-frame and inter-frame correlation. By comparing the
entropy rates of the models thus constructed with the CELP rates, it is shown that as
many as one-third of the LSP bits in every frame of speech are redundant.

We next consider methods by which this residual redundancy can be exploited by an
appropriately designed channel decoder. Before transmission, the LSP’s are encoded
with a forward error control (FEC) code; we consider both block (Reed-Solomon) codes
and convolutional codes. Soft-decision decoders that exploit the residual redundancy
in the LSP’s are implemented assuming additive white Gaussian noise (AWGN) and
independent Rayleigh fading environments. Simulation results employing binary phase-
shift keying (BPSK) indicate coding gains of 2 to 5 dB over soft-decision decoders that
do not exploit the residual redundancy.

EDICS Category: SA 1.4.8 - Combined Source and Channel Coding.
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I. Introduction

The “gospel according to Shannon” tells the communication system designer that a sys-
tem’s source code and its channel code should be designed independently of one another.
Shannon’s separation principle [1] mandates that whatever performance is achievable with
a jointly-designed source-code/channel-code is also achievable with a source code designed
solely with regard to the source description and a channel code designed solely with regard
to the channel description.

Of course, the separation principle is an asymptotic result — one that permits unlim-
ited complexity and delay in the encoding/decoding operations. It is possible that — for a
fixed degree of delay and/or complexity — the best jointly-designed source-code/channel-code
could out-perform the best separately-designed pair. This observation has led a number of
researchers to consider schemes in which the source code and channel code are designed
jointly [2]-[5].

Most of the work on joint source-channel coding has focused on the design of source
codes that are robust in the face of channel errors. By contrast, Hagenauer [5] has looked at
methods by which the overall system performance can be improved by designing the channel
decoder to exploit the known characteristics of the source code — an approach he calls “source
controlled channel decoding.” The work in this paper is similar in spirit to [5].

We consider the problem of reliably transmitting speech encoded using codebook-excited
linear predictive (CELP) coding over a noisy communication channel. CELP coding is a
frame-oriented technique that breaks a speech signal into blocks of samples that are processed
as one unit. The particular implementation we consider is Federal Standard 1016 (FS 1016)
4.8 kbit/s CELP [6]. The CELP parameters that are transmitted over the noisy channel
include the stochastic code book index and gain, the adaptive code book index (pitch delay)
and gain, and 10 ordered line spectral parameters (LSP’s).

An “ideal” source encoder would accept the signal to be compressed and produce an



independent, identically distributed (i.i.d.) sequence of equiprobable bits at the output.
If the source encoder output is not i.i.d. and equiprobable, then it is usually possible to
compress it even further.

Most source encoders are not ideal; certainly, CELP is not. As a result the bitstream
produced by a CELP encoder is not i.i.d. equiprobable, and so the number of bits produced
per unit time is significantly greater than the entropy rate of the output. This residual
redundancy reflects the residual correlation and the non-uniformity of the encoded bitstream;
the CELP encoder leaves some redundancy in the encoded bitstream in the form of memory
and non-uniformity.

In this paper, we consider methods by which channel codes can take advantage of this
residual redundancy to enhance the performance of CELP-encoded speech over very noisy
channels. Specifically, we investigate techniques by which the residual redundancy inherent
in the line spectral parameters (LSP’s) of CELP-encoded speech can be quantified and
exploited. We begin by proposing two models for the generation of LSP’s. The first model
incorporates only the non-uniformity of the LSP’s and their correlation within a CELP frame;
the second model provides for correlation between frames as well. When these models are
“trained” using an actual CELP bitstream they show that as many as 12.5 of the 30 high-
order LSP bits in each frame may be redundant.

Once the residual redundancy in the LSP’s is quantified, we present decoding algorithms
that exploit that redundancy via both convolutional and block (Reed-Solomon) codes. In
the case of convolutional codes, we employ three optimal soft-decision decoding schemes, all

based on the Viterbi algorithm:
e ML - the “usual” maximum likelihood (ML) decoding algorithm.

e MAP 1 - a maximum a-posteriori (MAP) decoding algorithm that exploits only the
redundancy due to the non-uniform distribution of the LSP’s and their correlation

within a frame — approximately 10 bits/frame.



e MAP 2 - which exploits the redundancy from the non-uniform distribution of the LSP’s

and their inter-frame and intra-frame correlation — approximately 12.5 bits/frame.

All three algorithms are implemented so as to yield a decoding delay of only one frame.
In the case of block coding, we present four low complexity sub-optimal soft-decision
decoding (SDD) algorithms; the first three schemes are codeword-by-codeword decoding

algorithms, while the last one is sequence-based:

e SDD 1 — which approximates “traditional” maximum likelihood decoding and does not

attempt to exploit any of the residual redundancy.

e SDD 2 — which exploits only the redundancy due to the ordered nature of the LSP’s —

approximately 4.4 bits/frame.

e SDD 3 — which like MAP 1 exploits the redundancy due to the non-uniform distribution

of the LSP’s and their correlation within a frame — around 10 bits/frame of redundancy.

e SDD 4 - which like MAP 2 exploits both the inter- and intra-frame correlation and
the redundancy due to the non-uniform distribution — approximately 12.5 bits/frame

of redundancy.

Simulation results show that the decoding algorithms that exploit the most residual
redundancy obtain the most coding gain — especially over very noisy channels.

The rest of this paper is organized as follows. In Section II, two models for LSP generation
are proposed and the resulting estimates of the residual redundancy are presented. The
channel models are briefly described in Section III. The convolutional and Reed-Solomon
codes as well as their soft-decision decoding algorithms are investigated in Sections IV and
V, respectively. In Section VI, simulation results on the performance of the decoders are
presented and analyzed. Results of listening tests for subjective evaluation are introduced

in Section VII. Finally, conclusions are stated in Section VIII.



II. LSP Residual Redundancy

In this section, we quantify the residual redundancy in the encoded LSP’s of FS 1016
CELP [6]. In FS 1016 CELP, each LSP is quantized by either a three-bit or a four-bit scalar
quantizer. The second through fifth LSP’s are quantized by four-bit quantizers; the rest are
quantized to three bits. The quantized LSP’s are guaranteed to be ordered (LSP-1 < LSP-2
< .-+ < LSP-10). In this paper, we consider only the three most significant bits of each LSP,
ignoring the least significant bit in the second through fifth parameters.

Suppose we encode a segment of speech using F'S 1016 CELP, resulting in a sequence
of CELP frames. Let {U;; : 1 <1< 10,5 = 1,2,...} denote a random process in which
U;; is the i** (three-bit) quantized LSP in frame j. Let U; = [Uy, Usy, ..., Ulo,;] denote
the vector consisting of the 10 quantized LSP’s in frame j. If we assume that this random

process is stationary® then the entropy rate (in bits/frame) of this process is given by
Hy = li 1 H(U,,U U
F—nggoﬁ ( 1, Y2500y n)7
where
H(Uy,...,Uy)== > Pr(Ui=uy,..., U, =u,)log, Pr(Us = uy,..., Uy, = uy).

Hp represents the minimum number of bits per frame required to describe {U;; : 1 <
: <10, =1,2,...}. If we assume U; ; is represented by three bits, then the CELP encoder
produces 30 bits/frame to describe the LSP’s, so the residual redundancy - i.e., the total

redundancy (per frame) in the CELP-encoded LSP’s — is
pr = 30 — Hp (bits/frame).

We seek to estimate Hr (and so pr). We do this by observing a long training sequence

— i.e., a realization of {U;; : 1 < i < 10,5 = 1,2,...} - and matching the observations to

1We do not claim that the LSP’s form a stationary random process. However, to the extent that the
quantized LSP’s can be approrimated by a stationary random process, the following calculations indicate
how much redundancy is inherent in those quantized LSP’s.
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a particular model of a random process; we then compute the entropy rate of the model
process and use that as our estimate of Hy.

The two models are as follows:

e Model A assumes that the LSP’s in two different frames are independent, and the
LSP’s within a frame form a first-order Markov chain. More specifically, it assumes
that

Pr(U; = u;|U; =u;, Uz = uy,..., Uy = uj_y) = Pr(U; = u;),

and

Pr(Us; = uij|Ur; = urj, -, Uic1j = Ui15)
=Pr(Us; = wij|Ui1; = ui1,),
= P{) (uijluio1;), (1)

fort=2,3,...,10 and j =1,2,.... For i = 1, the above becomes Pﬁl)(ul,j).

e Model B is more complex; it assumes a second-order Markov structure — that Uj;; is
independent of all the LSP’s that came before it conditioned on knowing U;_;; and
U; j—1 — the LSP that immediately precedes it in the same frame and the corresponding

LSP in the frame immediately preceding. More specifically, it assumes
PI‘(U,',]' = ui,j|U1 =Uy,... 7Uj—1 = Uj_l, Ul,j = ’Uq’j ey Ui—l,j = ui_l,j)
= Pr(Ui; = ui|Usj—1 = uij-1, Uiy = 1),
= P (uijluij—1, uis1;), (2)

1=2,3,...,10, 7 =2,3,.... For i = 1, the above becomes Pg)(ul,j|u1,j_1).

Note that in (1) and (2), the probability transition matrix depends on 7 but not on j.

Remark: The assumption of a Markov structure both temporally (i.e., between frames)

and within a frame is based on two observations:



1. Error masking is performed on LSP’s by interpolating between the corresponding LSP’s
in adjacent frames; the success of this approach suggests the temporal Markov struc-

ture.

2. The ordering property of the LSP’s within a frame suggest an intra-frame Markov

structure.

We do not attempt to justify these models more rigorously. The extent to which a model
“fits” will be judged on the basis of how well decoding algorithms matched to that model

perform.

Procedure: A large training sequence from the TIMIT speech database [13] was used; for
every 30 msec of speech an LPC analysis was performed according to FS 1016 standards
to arrive at the 10 quantized LSP’s. The relative frequency of transitions between the
values of the three high-order bits of each LSP were compiled to extract Markov transition
probabilities for Model A and Model B. The entropy of the resulting Markov chains was
computed to arrive at an estimate of the redundancy in each LSP and in each frame. Let
H* = Y12, H(U; ;) be the process entropy rate (in bits/frame) if the LSP’s were independent
(H* is independent of j since (1) and (2) are independent of j). Note that we can write
pr = pp + pum where pp £ 30 — H* denotes the frame redundancy due to the non-uniform
distribution of the LSP’s and pp SH - Hyp denotes the frame redundancy due to the
memory between the LSP’s [7].

The results are compiled in Table 1 in which we provide the values of pp, ppr and py for

each individual LSP as well as for the entire frame.

e Model A — which does not attempt to take into account any correlation between frames
— indicates that pr = 9.867 of the 30 high-order bits in the LSP’s are redundant.
Approximately pp = 5.275 bits of redundancy were due to the non-uniform distribution
of the LSP’s, and approximately pps = 4.593 bits of redundancy were due to the

memory within a frame.



e Model B — which does take into account both inter-frame and intra-frame correlation —
indicates that pr = 12.485 of the 30 high-order bits in the LSP’s are redundant. Once
again, pp = 5.275 bits of redundancy were due to the non-uniform distribution of the
LSP’s, while pys = 7.211 bits of redundancy were due to the memory remaining both

within a frame and between frames.

Clearly, substantial redundancy exists within the LSP’s. Using Model B as our guide, there
are only 17.515 bits of “real” information buried in the 30 high-order LSP bits; it is as though
the CELP encoder had passed the description of the LSP’s through a (poorly designed) rate
17.5/30 =~ 0.584 channel encoder. In the Sections IV and V we discuss methods for exploiting
that redundancy.

Finally, the amount of redundancy due to the LSP ordering property can be computed.
It can be shown using the counting algorithm of [12] that, of the 230 possible high-order
bits in the quantized LSP’s, only 50,644,887 of them correspond to ordered LSP’s. Thus
the redundancy due to ordering is 30 — log,[5.06 - 107] = 4.406 bits. This redundancy is

embedded in the total redundancy shown in Table 1.
ITI. Channel Models

The channels considered in this paper are the additive white Gaussian noise (AWGN)
channel and the fully interleaved Rayleigh fading channel, both used with BPSK modulation.
More specifically, we assume the j* received signal y; is related to the j* transmitted signal
z; according to

Y; = a;25 + n;.

Here, z; € {++/Es, —VE,} and n; is a zero-mean Gaussian random variable with variance
No/2. (We assume n; and n; are independent for ¢ # j.) The distribution of the fading

coefficient a; depends on the channel assumption:

e For a purely AWGN channel, we assume a; = 1.
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e For the fully interleaved Rayleigh fading channel we assume a; has a Rayleigh distri-
bution with E[a?] = 1. Moreover, to accommodate the “fully interleaved” description

we assume that a; and a; are independent for i # j.

IV. Decoding Schemes for a Convolutionally Encoded System

In this section we propose soft-decision decoding algorithms for a convolutionally encoded
system.

The (three-bit) quantized LSP’s are channel encoded with the 32-state rate-3/4 convolu-
tional encoder in [11, p. 331]. This code has minimum free Hamming distance dgee = 5 and

generator matrix

14+ D D D 1+D
G(D)=| D?* 1+D 0 1+D+D?|.
0 D 1+ D? 1+ D?

The input to the encoder is a sequence of three-bit LSP’s, resulting in a sequence of four-
bit outputs; for each frame, LSP-1 is encoded first, followed by LSP-2, LSP-3, etc. Once
LSP-10 is encoded, LSP-1 from the nezt frame is encoded.

Let u; ; denote the i* quantized LSP from frame j, where 1 <¢ < 10 and j € {1,2,...}.
Letting £ = 10(j — 1) + ¢, re-index u;; as ug, SO [U1, Uy, ... U] are the quantized LSP’s
from the first CELP frame, [u11, U32, . . ., Ug] are the quantized LSP’s from the second CELP
frame, etc. Let x5, € {+vE}, —VE,}* be the real 4-tuple generated by the BPSK modulator
in response to u. Similarly, let a; and y; be the real 4-tuples corresponding to the associated

fading coefficients and channel outputs — i.e.,
Yk = apXg + N,

where agxy is the component-wise product of a; and x;, and ny is a 4-tuple of independent,
zero-mean Gaussian random variables, each with variance Ny/2. (If the channel is Rayleigh

fading; then a; consists of four independent Rayleigh random variables; if the channel is
AWGN, then ay is the all-one vector.)

We consider three soft-decision decoding schemes based on the Viterbi algorithm.

9



e ML: This decoding algorithm is maximum likelihood decoding. The decoder chooses

the code sequence {x;} that minimizes

K
> vk — anxl %,
k=1
where K is the number of received symbols (a multiple of 10).

e MAP 1: This decoder is a maximum a posteriori decoder that exploits the source
redundancy inherent in Model A. Here, the decoder chooses the code sequence {x;}
that minimizes

K
S Iy — arxs||? = Noln P ™04 (g fuy ),
k=1

where {u;} is the LSP sequence corresponding to the code sequence {x;}, and [k mod

10] is the unique integer between 1 and 10 that is equivalent to k¥ modulo 10. 2 Note
that if k + 9 is a multiple of 10 - i.e., k € {1,11,21...} — then P,g[k mod10]) (1) =
P (uy), the probability of the first LSP in frame (k + 9)/10.

e MAP 2: This is similar to the above except that the decoder exploits the source

redundancy inherent in Model B. The goal here is to minimize
s k mod10)]
3 llyk — aexil|* — Noln PN (a4 g 10, 1)
k=1

In the simulation, the decoder has a path memory of 10 (five times the encoder memory
[11, p. 338]). That is, upon receiving yx, the decoder releases the estimate @z_10. The
estimate, fix_10, is chosen as the symbol on the path that has minimum cumulative distortion
up to time-index k. This symbol release rule corresponds to a decoding delay of one frame.

In the above algorithms, if the decoded LSP vector Uj is not ordered, we simply re-order
them to yield an ordered output. For the two MAP decoders, the probability of an unordered
decoded LSP vector is small but non-zero because we have ignored the least significant bit in

LSP’s 2 through 5. These four least significant bits are also BPSK-modulated and sent over

2Qur definition of [k mod 10] differs slightly from the “usual” one which defines it as an integer between
0 and 9. We define [k mod 10] as we do because the LSP’s are numbered 1-10 instead of 0-9.

10



the noisy channel. They are, however, not protected by the convolutional code and therefore

may (with higher probability) be corrupted.
V. Decoding Schemes for the Reed-Solomon Encoded System

We now describe four different soft-decision decoding (SDD) algorithms for block codes.
In each case we assume that the ten three-bit LSP’s in each frame are encoded using a
(15,10) code C over Fg (the Galois field with eight elements). The particular code we use is
the direct sum of a (9, 6) extended Reed-Solomon code with dmyin = 4 (call this code C;) and
a (6,4) shortened Reed-Solomon code with dpi, = 3 (call this code C;). The resulting direct

sum has a generator matrix

_(Gy 0
¢=(7 @)
where
1 00000 o* o® o
01 0000 a o o
G 001 000 a1 af
1710 001 00 & o a
00001 0 a2 1 o
000001 a 1 o
and
1 000 o ot
G, = 0100 o o
2710010 o |’
0001 a ot
where « is a primitive root of z* +z +1 [11]. C; protects the first six LSP’s while C; protects

the last four LSP’s.

We then assume that the 15-symbol codewords are transmitted over either the BPSK-
modulated AWGN or Rayleigh channels. The four soft-decision decoding algorithms make
increasing use of the residual redundancy present in the LSP’s. In each algorithm, the two
codes are decoded sequentially. First, C; is decoded to obtain the first six LSP’s and then

C, is decoded to obtain the last four LSP’s. Descriptions of the decoding algorithms follow.

e SDD 1: This decoding algorithm is near-maximum likelihood (near-ML) codeword-

by-codeword decoding. We break the decoding into Stage 1 and Stage 2.

11



— Stage 1 generates a list of candidates that will “compete” to be the decoder’s
estimate of the transmitted codeword. The matched filter outputs corresponding
to the encoded LSP’s are quantized into 15-tuples over F3 in P = 2° different
ways; this is done by toggling the b least confident bits. Then for each of the
P quantizations we arrive at L different estimates of the noise, corresponding
to the L “lightest” vectors in the same coset as the quantized 15-tuple; the net
result is at most N = PL codeword candidates. We say “at most” because
the candidates thus generated need not be distinct. To generate a large list
while simultaneously bounding the required complexity, we propose quantizing
the matched filter outputs until there are N distinct codeword candidates or until

we have quantized the matched filter outputs Ppax times — whichever comes first.

— Stage 2 compares the distance between the received (unquantized) vector and each
of the codeword candidates on the list. More specifically, if y = [yo, Y1, - . ., Yad] i8
the real 45-tuple corresponding to the (unquantized) matched filter outputs, then

we choose as our estimate the codeword

44
c* = argmin {E(yj —a;z;)? : ¢ =[co,C1,- .., Caq] iS OD list.} , (3)

Jj=0
where x = [zg,Z1,...,%44] € R* denote the BPSK-modulated codeword ¢ =
[co, €15 - - -, Caq] and a; is the fading coefficient. Note that with this algorithm, the

decoded LSP vector might not be ordered. In such a case, the LSP vector is

re-ordered to yield an ordered output vector [9].

If N = P = Py, = 1, then SDD 1 reduces to hard-decision maximum likelihood
(HDML) decoding. Furthermore, if L = 1 — so that a single “best estimate” is gen-
erated for each quantization of the matched filter outputs — then SDD 1 is essentially

equivalent to a non-binary Chase algorithm [8] in which N = P = 2° different error

“test patterns” are considered.
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e SDD 2: This algorithm is identical to SDD 1 with one exception: The ordering of the
LSP’s is taken into account. More specifically, during Stage 1 we now generate a list
of at most N codewords corresponding to ordered LSP’s. This is done by quantizing
the matched filter outputs until N such distinct codewords have been generated or
until P,,, quantizations have been performed — whichever happens first. Stage 2
consists, once again, of choosing from the list the codeword that minimizes the weighted
Euclidean distance to the (unquantized) received vector. If the list is empty, we simply

repeat the LSP’s from the previous frame.

e SDD 3: This algorithm is near-maximum a posteriori (near-MAP) codeword-by-
codeword decoding. It is identical to SDD 2 except that, during Stage 2, we do not
use weighted Euclidean distance as our metric but instead the “MAP metric” - i.e.,

44
¢* = argmin {Z(% — a;z;)? — NoIn(P(c)) : ¢ =[co, c1, . . ., Ca4) is OD list.} . (@)
7=0
Note that this decoding algorithm requires knowledge of the prior distribution of the
codewords — which can be easily computed from Model A’s transition probabilities

extracted from the training sequence.

e SDD 4: This is a sequence-based near-MAP algorithm that seeks to exploit both tem-
poral correlation and correlation within a frame. Given that a sequence of codewords
is sent over the channel, SDD 4 chooses as its estimate the most probable codeword at
each step. More precisely, suppose we observe j (corrupted) frames of LSP’s; call them
Y=[Y;,Ys,...,Y;], and assume we observe Y =y = [y1,¥2,...,¥;]. Then the MAP
estimate of the j** transmitted codeword given that we also have perfect channel state

information (i.e., we know A = a = [a;,ay,...,a;]), is

A

X;, = argr;clgch(Xj =x|Y,=y,Y2=y,,...,Y;=y;, A1 =ay,...,A; = a;)

= argmax fyx, A(ylx a)P(X; = x).

13



Here x represent the BPSK-modulated version of a codeword. If we define the objective

function to be maximized by

g9 (x) = fyix; alylx,2)P(X; = x),

then by conditioning on the value of X;_; it can be shown that
gP(x) = 3 fy,ix;.a,(¥il%, 2) P(X; = x|X;1 = x)g" "V (x),
x'eC
which implies the maximum objective function can be computed recursively. Further-

more, define fi*f,-|xj A, (yjlx,a) to be an approximation to fy,x; a,(¥;lx,a):

] _ [ fyax,.a;(vilx,a), ifx € A(y;);
fY"[x"’A"(yjlx’a)_{O, n otherwise;] ©)

where A(y;) is the list of N modulated codeword candidates obtained in Stage 1 of the
SDD 2 algorithm, given the j* received vector y;. We then get the simplified objective

function:

09(x) = | Zxedw,-) Fiyix; 4, (il ) PXg = x|X; = x)guD(x), if x € A(y;);
0, otherwise.

This, coupled with the fact that the conditional probabilities P(X; = x|X;_; = x)
can be computed from the Markov parameters obtained from the Model B training
sequence, gives us an iterative decoder that exploits both the inter-frame and the intra-

frame correlation present in the LSP’s.

In each algorithm, the main computational complexity resides in Stage 2; the amount

of computation is proportional to N, the number of candidates. The storage requirement

(assuming an (n, k) code over F,) is ¢"*L and is determined by the size of the syndrome

table used in Stage 1.

VI. Simulation Results

Simulation was used to determine the performance of the proposed decoding algorithms.

A block diagram of the proposed system is in Figure 1. The three high-order bits of each of

14



the ten quantized LSP’s were channel encoded using one of the two codes described in Section
IV. The outputs of the channel encoders were then BPSK-modulated over either the AWGN
channel or the fully interleaved Rayleigh channel. After appropriate demodulation, the
signals were decoded with the proposed channel decoders and the decoded LSP’s were fed into
the CELP decoder for speech reconstruction. Note that the system using the convolutional
code requires one frame of decoding delay while the Reed-Solomon code requires none.

A large training sequence consisting of 83, 826 frames (about 42 minutes of speech) from
the TIMIT speech database [13] was used to estimate the prior LSP distributions needed
for the MAP 1, MAP 2, SDD 3, and SDD 4 decoders. The testing sequence consisted of
4753 frames (about 2.2 minutes of speech) — 48 sentences, half uttered by female speakers
and half by male speakers from different dialect regions. No speaker appeared in both the
training and testing sequences. Thus the approach used in this simulation was to use a
single “universal” model — constructed from a very large training sequence - to decode all
the speech samples. An alternative approach — not considered in this paper — would have
been to repeatedly re-train the channel decoder for different speakers.

In evaluating the performance of the various decoders we use two criteria. The first is
the average spectral distortion (SD), the most commonly used distortion measure for the

LSP’s [10]. More specifically,

1
2 dw

1 & z
== — dB
27r] ’

SD = 7 > [/_7; (1010g10 S;(w) — 101logy, Sj(ﬂ)))

j=1

where S;(w) and S;(w) are the original and reconstructed spectra associated with frame 7,
and T is the total number of frames. Roughly speaking, an average spectral distortion of 1
dB or less is equivalent to perceptually transparent encoding of the LSP coefficients [10]. In
addition to average spectral distortion, the percentage of outliers — i.e., the fraction of frames
with distortion greater than 4 dB — were also compiled during the simulation. It should be
noted that the spectral distortion introduced by CELP’s scalar quantizer alone (when the

channel is noiseless) is around 1.50 dB with 0.08 % of outliers > 4 dB.
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The second measure of the decoders’ performance is symbol error rate — i.e., the fraction
of LSP’s the decoder decoded incorrectly.

Tables 2-10 and Figures 2-3 describe the simulation results.

Observations Regarding Results:

e Table 2 describes the performance of the convolutional code over the AWGN channel.
We see that the two MAP decoders can — at an SNR as low as E;/Ny = 1dB (Ey/Ny =
2.25 dB3) — recover the LSP’s almost as if the channel was noiseless. (An average
spectral distortion of 1.61 dB compared with the best-possible 1.5.) Moreover, at
these low channel SNR values, the symbol error rates for MAP 1 and MAP 2 are less

than 1%, whereas the symbol error rate for the ML decoder is 10-30%.

e Figure 2 displays the spectral distortion results from Table 2 as a function of Ej/Np. It’s

clear that the MAP decoders provide exceptional performance for very noisy channels.

e Table 3 lists the coding gains provided by the convolutional codes for particular values
of the average spectral distortion and symbol error rate. We note, for instance, that
to decode the LSP’s with an average spectral distortion of 2.0 dB, the ML decoder

requires a channel that is 2.60 dB “cleaner” than is required by the MAP 2 decoder.

e Table 4 describes the performance of the Reed-Solomon codes over the AWGN channel.
For each quantization of the matched filter outputs we generate L = 64 codeword
estimates; these matched filter outputs are quantized by repeatedly toggling the next-
least-likely bits to generate more vectors. This continues until there are N = 64 distinct
candidates on the list or until we have quantized the matched filter outputs Py = 64
ways (i.e., we've toggled the b = 6 least likely bits through their possible values). The

rationale for the values N = L = 64 is shown in Table 5. For a fixed value of N = PL,

3Recall that Ej is the average energy per information bit. So in this case we have Ey /Ny = (1/R){(E;/Ny),
where R is the rate of the code — i.e., R = 2/3 for the Reed-Solomon code and R = 3/4 for the convolutional
code.
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the values of P and L are varied; it is shown in Table 5 that the values N = L = 64

and P =1 provide a performance that is slightly superior to any other choice.

e Figure 3 displays the results from Table 4 as a function of E,/N,. We observe that

SDD 4 provides exceptional performance at very low SNR.

e Table 6 lists the coding gains provided by the Reed-Solomon codes. We see, for in-
stance, that to decode the LSP’s with an average spectral distortion of 2.0 dB, the
(near-ML) SDD 1 decoder requires a SNR that is 1.77 dB greater than that required
by the (near-MAP) SDD 4 decoder.

e Tables 7-10 provide analogous results for the interleaved Rayleigh fading channel. We
see in Tables 7 and 8 that, for the convolutional code, the MAP decoders provide 4.35
- 5.27 dB of coding gain on such channels when compared to ML decoding. Similarly,
Tables 9 and 10 show that using SDD 4 to decode the Reed-Solomon codes provides
2.5 - 3.56 dB of coding gain compared with SDD 1.

VII. Listening Tests

Listening tests were undertaken to obtain subjective evaluations of the decoding schemes
proposed for the Reed-Solomon encoded system. We only considered the case where the
channel is AWGN. We made pairwise comparisons of three decoders: Hard-decision ML
decoding, SDD 2, and SDD 4. Before starting, each listener was asked to listen to four
sample sentences to “anchor” their perspective. The tests were conducted by playing the
same output sentence resulting from the same test conditions using two different decoding
schemes. The listeners were asked to indicate which of the two outputs sounded better;
they were not told which output corresponded to which decoder. If they failed to discern a
noticeable difference between the two outputs, they were given the option to choose “neither”.

Each listener made twelve comparisons — six pairwise comparisons at a E;/N; = —3 dB
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(Ey/Ny = —1.24 dB) and six pairwise comparisons at a E,/Ny = 0 dB (E,/N, = 1.76 dB).
The experiments were performed using four different sentences (two sentences at —3 dB and
two sentences at 0 dB) and 50 listeners (36 males and 14 females), resulting in a total number
of 100 trials for each test and signal-to-noise ratio (SNR).

The results of the listening tests are shown in Table 11. They indicate:

e SDD 4 was overwhelmingly voted the better decoder over HDML at both SNR’s.

e At E;/Ny = —3 dB, SDD 4 was clearly chosen over SDD 2; this was not the case
at 0 dB SNR. This is because, when the channel is very noisy, the advantage SDD
4 gains by exploiting more residual redundancy makes a significant difference; at the
higher SNR both decoders yield relatively good results, and the difference is much less

noticeable.

e Finally, at E;/Ny = —3 dB, both SDD 2 and HDML sounded poor, resulting in an
“undecided” vote of 62%. However, at 0 dB, nearly all the votes (84 %) were cast in

favor of SDD 2 with HDML getting no votes at all.

VIII. Summary and Conclusions

We investigated the problem of reliably transmitting CELP-encoded speech over very
noisy channels. We started by characterizing the intra-frame and inter-frame LSP residual
redundancies that exist at the output of the CELP coders. We proposed two models for
LSP generation. These models suggested that, for every frame of speech, at least one-
third of the LSP bits are redundant. We next encoded the LSP’s using both convolutional
and Reed-Solomon codes for transmission over AWGN and fully interleaved Rayleigh fading
channels used in conjunction with BPSK modulation. Soft-decision decoders that exploit
the LSP residual correlation in combating the channel noise were introduced. For the case of
convolutional encoding, three optimal decoders were implemented: one ML decoder and two

MAP decoders. For the case of Reed-Solomon encoding, four decoders were implemented:

18



one near-ML decoder, one decoder that exploited the ordering property, and two near-MAP

decoders. Simulation and listening tests results showed that the decoders offered very good

performance; coding gains as high as 5 dB were achieved over soft-decision decoders that do

not exploit the residual LSP redundancy.
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LSP Model A Model B
Redundancy pp | pm | pr pp | pm | pr
LSP 1 0.6816 [ 0.0000 | 0.6816 | 0.6816 | 0.2765 | 0.9581
LSP 2 0.4804 | 0.4415 | 0.9219 | 0.4804 | 0.8469 | 1.3273
LSP 3 0.7566 | 0.4425 | 1.1991 | 0.7566 | 0.7624 | 1.5190
LSP 4 0.7093 | 0.4303 | 1.1396 | 0.7093 | 0.7529 | 1.4622
LSP 5 0.3495 | 0.7184 | 1.0679 | 0.3495 | 0.8986 | 1.2481
LSP 6 0.3585 | 0.6287 | 0.9872 | 0.3585 | 0.9367 | 1.2952
LSP 7 0.6764 | 0.7575 | 1.4339 | 0.6764 | 0.8144 | 1.4908
LSP 8 0.4511 | 0.3521 | 0.8032 | 0.4511 | 0.7990 | 1.2501
LSP 9 0.2953 | 0.3840 | 0.6793 | 0.2953 | 0.6224 | 0.9177
LSP 10 0.5160 | 0.4377 | 0.9537 | 0.5160 | 0.5007 | 1.0167

| Frame Redundancy | 5.2747 | 4.5927 | 9.8674 | 5.2747 | 7.2105 | 12.4852 |

Table 1: Redundancy (in bits/frame) results for Models A and B using 83826 frames of the
TIMIT speech database.

SD (dB) P, (%)
E, /N, [ ML | MAPI | MAP2 | ML | MAPI | MAP2
_3dB (ggfg%) : 4;1_'052%) (3;3’;’%) 82.51 % | 25.21 % | 21.02 %
—2dB (93'523%) (23'135%) (12_'7767%) 76.60 % | 14.34 % | 10.00 %
~1dB (85 '885%) (102'5’;%) (6?:;(;;) 62.07% | 5.66 % | 3.49 %
0 dB (55’.5'(‘;’%) (3.12'39%) (1%% 35.63% | 1.63% | 0.89 %
1 dB (192_'285’%) (o?ég}%) (o?é(;}%) 10.85 % | 0.35 % | 0.28 %

Table 2: Average spectral distortion and symbol error rate for convolutional codes over
AWGN channel. (Values in parentheses are percentages of outliers > 4 dB.)
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Coding SD (dB) P, (%)
Gains 350 | 25 | 30 | 35 | 1% | 5% | 0% | 15%
MAP 1
vs ML + 213 +245 | +262 | +282 | +194 |+ 233 | +2.64 | + 2.87
MAP 2 +047|+049 | +051 | 4+051}+041 |+ 044 | +0.43 |+ 0.44
vs MAP 1
Total Gain:
MAP 2 +260{+294|+313}|+333|+235|+277|+3.07|+ 3.31
vs ML

Table 3: Coding gains for convolutional codes over AWGN channels for the same average
spectral distortion and for the same symbol error rate.
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TE,/N, | Metric | Uncoded | HDML | SDDL | SDD2 | SDD3 | SDD4 |
SD 6.4 720 6.32 2.96 3.50 3.18
(dB) | (00.66%) | (88.60%) | (76.46%) | (55.37%) | (34.40%) | (27.20%)
-3 dB (%) 40.68 % 44.82 % 36.75 % 26.57 % 17.41 % 14.75 %
SD 6.38 6.43 5.17 3.83 2.82 2.54
(dB) | (84.96%) | (80.26%) | (60.84%) | (37.29%) | (21.42%) | (16.20%)
—2dB (;):) 34.58 % 37.09 % 26.43 % 17.40 % 10.45 % 8.67 %
SD 5.70 5.43 3.90 2.80 2.27 2.08
(dB) | (76.62%) | (67.26%) | (40.93%) | (20.69%) | (11.76%) | (7.99%)
—1dB ({;j) 28.18 % 28.20 % 16.16 % 9.18 % 5.56 % 4.32 %
SD 4.97 4.34 2,77 2.13 1.89 1.80
(dB) | (65.37%) | (50.04%) | (21.98%) | (9.43%) | (5.18%) | (3.41%)
0 dB ({;j) 2185% | 1933% | 8.04% | 408% | 249% | 1.91%
SD 4.19 3.26 2.02 1.76 1.68 1.64
(dB) | (51.00%) | (31.45%) | (8.42%) | (3.49%) | (1.98%) | (1.30%)
1 (;‘;’) 15.88 % 11.34 % 2.99 % 1.49 % 0.90 % 0.73 %
SD 3.46 2.41 1.66 1.60 1.59 1.58
dB) | (36.80%) | (16.31%) | (2.25%) | (1.07%) | (0.84%) | (0.69%)
9 ({;;) 1077% | 559% | 075% | 043% | 033% | 030%

Table 4: Average spectral distortion and symbol error rate for Reed-Solomon codes over
AWGN channel. (Values in parentheses are percentages of outliers > 4 dB.) N = 64, L = 64
and P, = 64.
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SDD 1

SDD 2

SDD 3

P L ES/N()Z -2dB I ES/N()Z 0dB ES/N(): -2 dB ‘ Es/N()Z 0dB ES/N()Z -2 dB I ES/N()I 0dB
1 |64 5.17 2.77 4.14 2.25 3.44 2.05
(60.84 %) (21.98 %) (41.98 %) (11.36 %) (31.40 %) (7.83 %)
2 |32 9.18 2.83 4.17 2.32 3.54 2.13
(60.80 %) | (2273%) | (42.66%) | (12.62%) | (32.63%) (9.11 %)
4 |16 5.20 2.82 4.23 2.32 3.69 2.21
(77.67 %) (22.65 %) (43.26 %) (12.73 %) (34.90 %) (10.14 %)
8 | 8 5.19 2.83 4.30 241 3.61 2.16
6116 %) | (2269%) | (44.40%) | (14.31%) | (34.15%) (9.79 %)
16 | 4 5.26 2.93 4.44 2.45 3.90 2.36
(62.18 %) (24.59 %) (46.56 %) (14.96 %) (39.03 %) (13.15 %)
32| 2 5.30 2.98 4.53 2.55 4.03 2.47
(62.70 %) (25.51 %) (48.65 %) (16.71 %) (41.47 %) (14.92 %)
64| 1 5.40 3.09 4.59 2.71 4.12 2.60
(63.85 %) (27.69 %) (49.19 %) (19.28 %) (42.40 %) (17.29 %)

Table 5: Average spectral distortion for Reed-Solomon codes over AWGN channels as L and
P vary for fixed N = LP = 64. (Values in parentheses are percentages of outliers > 4 dB.)
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Coding SD (dB) P, (%)
Gains 2.0 J 2.5 | 3.0 | 3.5 1% ] 5% | 10 % | 15 %
HDML vs
Uncoded +010| -013 | -039 | -0.58 | +0.18| -0.38 | -0.80 | -1.12
SDD 1 vs
HDML +1.69 | +153 |+ 151+ 150 |+ 1.89 |+ 1.57 |+ 1.47 | + 1.40
S]SDDDD2 1VS +0711+4+091{+099|+1.03|+043 |+ 078 | +0.86 | + 0.85
Sg]])DSQVs +064|+087|+104|+120|+052|+0.64|+0.81|+0.94
SDD 4 vs +042 | +049|+049 |4+ 062} +0.17] +034 |+ 0.31 | + 041
SDD 3
Total Gain:
SDD 4 vs + 1771 +227 | +252|4+28 | +1.12 | +1.76 | + 1.98 | + 2.20
SDD 1
Total Gain:
SDD 4 vs +346 | +380| +4.03 | +4.35|+3.01 |+ 333 ]+ 3.45| + 3.60
HDML
Total Gain:
SDD 4 vs +356 | +367|+364|+377|+319|+295 |+ 2.65 |+ 2.48
Uncoded

Table 6: Coding gains for Reed-Solomon codes over AWGN channels for the same average
spectral distortion and for the same symbol error rate. N = 64, L = 64 and P,,,, = 64.
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SD (dB) Py (%)
E,/No| ML | MAP1 | MAP2 | ML | MAP 1| MAP?
—2dB (gg’éi}%) (5{:’.';?%) : 414_5’29%) 84.90 % | 31.68 % | 26.33 %
_14B (917(_)%2%’%) (335’3%) (25’_'3527%) 82.79 % | 22.76 % | 17.05 %
0 dB (92'251%) (253_'55%) (172_'176‘:’%) 79.06 % | 14.28 % | 9.49 %
1dB (888.'88;1%) (13.?3%) (83?%) T1.24% | 752 % | 4.55 %
2 dB (767_ '7525%) (7?;;?%) : ;;é}%) 58.20 % | 3.59 % | 2.24 %
3 dB (575.'273%) (315;}%) (fé?%) 1032 % | 1.46 % | 0.87 %
4 dB (3;‘:?;’%) (1.16?);) (023% 22.46 % | 0.71% | 0.41 %
5 dB (172"275%) (o%ég?%) (Ogg%%) 987 % | 0.28% | 0.28 %

Table 7: Average spectral distortion and symbol error rate of convolutional codes over
Rayleigh channel. (Values in parentheses are percentages of outliers > 4 dB.)

Coding SD (dB) P, (%)
Gains 20 | 25 | 30 | 35 1% | 5% | 10% | 15%
MAP 1
vs ML +370|+409|+431 | +4.48 | +3.69 |+ 4.13 | +4.40 | + 4.59
MAP 2 +065|4+077|+0.76|+0.79 | +0.72 | + 0.70 | + 0.66 | + 0.66
vs MAP 1
Total Gain:
MAP 2 4435|4486 |+ 5.07 | +527| +4.41 | +4.83 | + 5.06 | + 5.25
vs ML

Table 8: Coding gains for convolutional codes over Rayleigh channels for the same average
spectral distortion and for the same symbol error rate.
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[ E,/Ny [ Metric | Uncoded [ HDML [ SDD1 | sDD2 | SDD3 | SDD4 |
SD 7.38 7.72 6.97 5.64 417 3.79
(dB) | (93.44%) | (93.46%) | (84.67%) | (64.86%) | (42.35%) | (36.99%)
-2 dB (%) 46.51 % 51.61 % 43.17 % 32.34 % 22.26 % 19.93 %
SD 6.99 7.25 6.24 4.77 3.56 3.19
(dB) | (90.57%) | (89.72%) | (75.08%) | (51.87%) | (32.44%) | (26.11%)
—1dB (%) 42.07 % 46.64 % 35.98 % 24.92 % 16.53 % 14.16 %
SD 6.62 6.78 5.38 3.88 2.97 2.66
(dB) | (87.42%) | (84.54%) | (63.65%) | (38.35%) | (22.95%) | (17.86%)
0dB ({;g) 37.75 % 41.30 % 28.19 % 17.74 % 11.25 % 9.34 %
SD 6.20 6.20 4.41 3.12 2.47 2.28
(dB) | (83.21%) | (77.38%) | (49.08%) | (25.75%) | (14.81%) | (11.42%)
1dB ({;;) 33.29 % 35.47 % 20.37 % 11.54 % 7.04 % 5.87 %
SD 5.75 5.58 3.93 2.54 2.12 2.00
dB) | (77.22%) | (68.92%) | (34.62%) | (16.06%) | (8.94%) | (6.59%)
2 dB (%) 29.00 % 29.77 % 13.72 % 6.99 % 417 % 3.42 %
SD 5.30 4.89 2.86 2.14 1.90 1.84
(dB) | (70.51%) | (58.73%) | (22.81%) | (9.30%) | (5.18%) | (4.10%)
3dB ({;(‘:) 24.98 % 24.05 % 8.59 % 3.99 % 2.40 % 2.03 %
SD 4.85 4.19 2.34 1.89 1.76 1.72
(dB) | (63.04%) | (47.80%) | (13.79%) | (5.26%) | (2.90%) | (2.21%)
4 dB ({;:) 21.22 % 18.56 % 5.00 % 2.25 % 1.35 % 1.07 %
SD 4.46 3.61 1.99 1.74 1.66 1.65
dB) | (55.95%) | (37.83%) | (7.58%) | (2.50%) | (1.41%) | (1.26%)
5 dB ({;:) 17.94 % 14.05 % 277 % 1.24 % 0.73 % 0.64 %

Table 9: Average spectral distortion and symbol error rate for Reed-Solomon codes over
Rayleigh channels. (Values in parentheses are percentages of outliers > 4 dB.) N = 64,
L =64 and P,,,, = 64.
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Coding SD (dB) P, (%)

Gains 2.0 [ 2.5 | 3.0 | 3.5 1% | 5% | 10 % | 15 %
HDML vs +412 | +217|+127|4+060| +5.17 | +1.62 | + 0.31 | - 0.59
Uncoded
SDD 1 vs

HDML +39 [+373|+333|+316| +5.15 | +4.08|+ 3.29 | + 2.98
S[S)gDz lvs +141 | +159 | +158|+154| +1.20 | +1.34|+1.39 |+ 1.37
S]SDDDDB;S +101 |[+116 | +126|+1.40| +089 | +0.95 |+ 1.04 | + 1.15
S[S)][D)D4 Vs +055 | +052(+059|+062] +040 | +0.35]+0.44 |+ 0.44

3
Total Gain:
SDD 4 vs +297 | +327|+343 | +356| +249 | +2.64 |+ 2.87 | + 2.96

SDD 1

Total Gain:
SDD 4 vs + 687 | +700 | +6.76 | +672| +764 | +6.72| +6.16 | + 5.94

HDML

Total Gain:
SDD 4 vs +1099 | +9.17 | +803 | +732 |+ 1281 | + 834 | + 647 | + 5.35
Uncoded

Table 10: Coding gains for Reed-Solomon codes over Rayleigh channels for the same average
spectral distortion and for the same symbol error rate. N =64, L = 64 and P, = 64.

E;/Ny |SDD 2vs HDML | SDD 2: 23%  HDML: 156 %  Neither: 62 %
= SDD4vs HDML | SDD 4: 94% HDML: 1 % Neither : 5 %
-3dB|SDD4vsSDD2| SDD4:73% SDD2: 2%  Neither: 256 %

Es/N, | SDD 2 vs HDML | SDD 2: 84 % HDML: 0 % Neither : 16 %
= SDD 4 vs HDML | SDD 4: 93%  HDML: 0 % Neither : 7 %
0dB | SDD 4 vs SDD 2 SDD 4: 34 % SDD 2: 11 %  Neither: 55 %

Table 11: Reed-Solomon codes over AWGN channels: Listening tests results. N = 64,
L = 64 and P,,,, = 64.
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Figure 1: Block diagram of the communication system.
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Figure 2: Average spectral distortion for convolutional codes over AWGN channels.
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Figure 3: Average spectral distortion for Reed-Solomon codes over AWGN channels. N = 64,
L =64 and P,,,, = 64.
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