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Abstract

We propose a joint source-channel coding scheme for the reliable transmission of two-tone
images over a binary channel with additive Markov noise. We first quantify the natural redundancy
inherent in two-tone images by modeling the pixel inter-spatial dependency using first and second
order Markov models. We next investigate techniques by which this redundancy can be exploited
by an appropriately designed channel decoder. A maximum a posteriori (MAP) detector which is
optimal in terms of minimizing the sequence probability of error is proposed. The MAP detector
fully exploits the redundancy of binary images in combating channel noise. It also exploits the
larger capacity of the channel with memory as opposed to the interleaved (memoryless) channel.
Experimental results indicate a superior performance of the proposed scheme as compared to more
complex schemes that do not exploit the image redundancy, such as traditional tandem coding
schemes. Finally, the scheme is applied to bit-plane encoding of grey-level images over bursty
Markov channels.

Keywords: Joint source/channel coding, MAP decoding, natural image redundancy, Markov
sources, bursty channels with memory.



1 INTRODUCTION

We present an alternate approach to coding information-bearing data for the reliable transmission
of two-tone images over noisy communication channels with memory. It consists of jointly designing

the source and channel codes, a technique referred to as joint source-channel coding.

Source and channel coding are two problems that have traditionally been implemented sepa-
rately, forming what is known as a tandem source-channel coding system. The separation of source
and channel coding is optimal only in an asymptotic sense, i.e., when no constraints exist on the
coding block lengths (delay) and on the complexity of the encoder/decoder [1, 2]. Joint source-
channel coding has recently received increased attention [3-15]. It has been shown that if delay
and complexity are constrained, performance can be increased if the source and channel codes are

jointly designed, as opposed to being treated independently.

With the exception of [17], most of the work on joint source-channel coding of images [5, 6, 8, 11—
13] has dealt with the memoryless channel, disregarding the fact that real-world communication
channels—in particular, land mobile radio (LMR) or satellite channels—often have memory. In this
work, we propose a joint source-channel coding scheme for the reliable transmission of two-tone
images over a binary channel with additive Markov noise. Applications of this work are in the

transmission of facsimile documents over bursty LMR or satellite channels.

We begin by quantifying the amount of natural redundancy inherent in binary images. This
is achieved by modeling the image as a first- or second-order causal Markov process. It is shown
that a substantial amount of redundancy exists in many binary images. We next investigate the
problem of optimal detection of binary images directly transmitted over the Markov channel. This
is an extension and application of results obtained in [14] in which the MAP detection problem for
tdeal binary Markov sources over Markov channels is analyzed. A sequence mazimum a posteriori
(MAP) detector that minimizes the sequence probability of error is proposed. The MAP detector
fully exploits the image characteristics in order to efficiently combat channel noise. It also exploits
the larger capacity of the channel with memory as opposed to the interleaved (memoryless) channel.

The MAP decoder is implemented using a modified version of the Viterbi algorithm.

It is shown via simulation that for some binary images with strong correlation redundancy, a
mismalch exists between the Markov-modeled image and the Markov channel. This is because
such images behave like symmetric Markov sources; it illustrates an analytical result demonstrated

in [14], which states that if a binary symmetric Markov source is connected to a binary Markov
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channel, a mismatch occurs in the MAP decoder and degrades its performance as the channel
noise becomes more correlated. In this case, we substantially reduce the mismatch by employing
an adaptive rate-one convolutional encoder which transforms Markov images with high correlation
redundancy into non-uniform independent and identically distributed (iid) processes.

Experimental results of the proposed scheme show very good performance, in spite of its low
complexity (which primarily resides in the MAP decoder). Comparisons with more complex tra-
ditional tandem coding schemes are also presented. Since the proposed MAP scheme employs a
model-based decoding algorithm, we assume that the image statistics are provided to the decoder.
This can be achieved by transmitting the source characteristics over the channel using a forward
error-control code. The amount of overhead information needed for this purpose is computed.

As in all joint source-channel coding techniques, it is assumed here that the channel parameters
are perfectly estimated at the receiver. We investigate the robustness of the MAP scheme when the
decoder does not have perfect knowledge of the channel parameters. Finally, the proposed scheme
is extended to bit-plane encoding of grey-level images over bursty Markov channels.

The rest of this paper is organized as follows. We introduce the Markov channel model in
Section 2. In Section 3, three image models are proposed and the resulting estimates of the
natural image redundancy are presented. The MAP joint source-channel coding scheme as well
as the related analytical results are described in Section 4. In Section 5, experimental results and

discussion are provided. Finally, conclusions are stated in Section 6.

2 CHANNEL MODEL

Consider a discrete channel with memory, with common input, noise and output binary alphabets
and described by the equation Y; = X; ¢ Z;, for ¢ = 1,2,3,..., where & represents the addition
operation modulo 2, and the random variables X;, Z; and Y; represent, respectively, the input,
noise and output of the channel. The input and noise sequences are independent of each other,
ie. {X;} L {Z;}. The noise process {Z;}$2, is assumed to be a stationary mixing (hence ergodic)
Markov process of order M. By this we mean that the noise sample, Z;, depends only on the

previous M noise samples, i.e., for ¢« > M + 1,
Pr{Z, =e|Z1=€1,....Zi 1 =€,1} =Pr{Z; = €| Zi_ps = €i_ppy- -, Zi1 = €1 }.
We assume that the marginal distribution of the noise process is given by Pr{Z; = 1} = ¢ =

1 — Pr{Z; = 0}, where € € [0,1/2) is the channel bit error rate (BER). Furthermore, we assume
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that the process {Z;} is generated by the finite-memory contagion urn model described in [18].
According to this model, the noise sample Z; depends only on the sum of the previous M noise
samples.! Thus, for i > M + 1,

€+ (Z;';_M €;)o
14+ M6 ’

Pr{Z; = 1Zi—pp = €—pts- -, Zio1 = €1} =

where e; =0 or 1, for j =¢— M,...,7i — 1. The non-negative parameter ¢ determines the amount
of correlation in {Z;}. The correlation coefficient of the noise process is §/(1 + ¢). Note that if
6 = 0, the noise process {Z;} becomes iid and the resulting additive noise channel reduces to a
binary symmetric channel (BSC). Finally, we note that the channel is entirely characterized by

three parameters: ¢, 6 and M.

Distribution of the Noise: For an input block X = (X1, X3,...,X,,) and an output block
Y = (Y1,Y2,...,Y,), we denote the block channel transition probability matrix Pr{Y = y|X = x}

by Q(y[x).

e For block length n < M, we have [18] Q(y|x) = L(n,d,€,§), where d = dy(x,y) is the
Hamming distance between x and y and
T3 (e + i) [0 (1 — e+ 8)]
T2 (1 + 1)) '

L(n,d,e,8) =

e Forn > M + 1, we have [18]

n €+ s;67°% €+ 8,67t ¢
Ak =Pr{z = e} = LMsce0) T] [50m] |i- [
o LT s 1+ Ms

where e = (e1,€3,...,6,), 6 =2, By, s=e1+---+epy and s; =e,_1 + -+ €;_M.

Channel Capacity: The capacity C' of this channel is given by [18]

M M €+ s6
f=1-— L(M 6) hy | ———
C Sz:% . ( >S5 € ) b<1—|—1\46)’

where hy(z) = —alogy(z) — (1 — z)logy(1 — @) is the binary entropy function. The capacity is
monotonically increasing with 6 (for fixed €, M) and M (for fixed ¢, §), and monotonically decreasing

with € (for fixed 6, M). Note that for fixed € and M,

as 6 — o0, (C — 1.

'For M = 1, the model is general, i.c., it can represent any binary first-order Markov chain with positive transition
probabilities.



Furthermore, it can be shown [18] that for fixed § and e,
1

as M — o, C — 1—/ hy(z) f(2) d=,
0

where hy(z) = —zlogy(z) — (1 — z)logy(1 — 2) is the binary entropy function,

r(1/6 £_ -9 4 .
f@):{mw P i<z <

0, otherwise,

and I'(+) is the gamma function, I'(z) = [;° " te~'dt for = > 0.

Comments: The motivation for the use of this contagion-based Markov channel as our model for
a channel with memory, as opposed to the Gilbert-Elliott model or others [19], is based on the fact
that the contagion model is mathematically more tractable than the Gilbert-Elliott model. It is
completely described by only three parameters, whereas the Gilbert-Elliott model is described by
four parameters. Furthermore, unlike the Gilbert model, the transition probability and capacity of

the contagion channel have closed-form expressions that can be easily computed.

3 IMAGE MODELING AND REDUNDANCY

Consider a two-tone image U = [U; ;] of row size J and column size K, where U;; = 0 or 1,
1=1,...,J,7=1,..., K. We assume that the image pixels follow a causal second-order Markov

dependency such that the pixel at location (¢,7) depends on the pixels at locations (¢ — 1, 7) and

(ivj_ 1):

— .. .. — .. J. . — . . R . . 7
Pr{Ui,j - uz,]|Uz,]—1 = Ui j—1y--+> Lz 1= U1, Uz—l,] = U159+ Ll,l}

)

- PI{UW - u27]|U21J—1 = Uij-1, 62—17] - ul—le}'

Since two-tone images are here transmitted over communication channels as one continuous bit

stream, we will represent the image pixels by a second-order Markov process {X,,} described by
Pr{Xn = $n|Xn—1 = Tp—1,-- -7X1 = ml} = Pr{Xn = $n|Xn—1 = xn—laAXVn—I\" = xn—]\"}v

for n > K. For the boundary pixels, the Markov dependency is of first order only: if n < K, X,
depends only on X,,_1, and if n = m* K + 1, where m = 1,2, ..., then X,, depends only on X,,_g.

The above second-order Markov process constitutes a causal Markov random field. Assuming {X,,}



is stationary,? its transition probabilities are given by

Pr{X, = 0| X,_1 = 0, X,_i = 0} 2 po, Pr{X, =0/X,_q =0, X, =1}

P1,

Pr{AXn = Oan—l = 17Xn—fx" = 0} é P2, PT{AXn = O|Xn—1 = 17Xn—1{ = 1} Ps,
where pg, p1,p2 and ps € (0,1). We will refer to the above second-order Markov image model as

Model 0. The following special cases of Model 0 will be of particular interest to us:

o Model 1: pg = py 2 go # 1/2 and py = ps3 2 ¢ # 1/2. In this case, the source {X,} reduces

to a first-order Markov process with one-step transition probabilities:
PI’{AXVTL = Oan_l = O} = qo, PI‘{XTL = 1|4Xn_1 = 1} =1- q1.

Note that if g9 = 1 — ¢1, then the first-order Markov process becomes symmetric; i.e., it has

a uniform marginal probability Pr{X,, =0} = 1/2.

o Model 2: pg = p1 = pa = p3 ép # 1/2. In this case, {X,} reduces to a non-uniform iid
process with marginal Pr{X, = 0} = p.

Note that in this work we do not consider non-causal Markov random field (MRF') models,
which are widely used for image processing and analysis [16]. However, the search for the MAP
estimate of MRF-modeled images involves the use of computationally intensive algorithms such as
Simulated Annealing [7] or Graduated Non-Convexity. Since these algorithms are inappropriate
for real-time applications, we restrict ourselves to causal models that are easily implemented via

sequential decoding algorithms.

We next turn to quantifying the natural redundancy that is inherent in a two-tone image if
it is represented by a random process {X,} described according to each of the three proposed
models. Let H. (X ) denote the entropy rate of process {X, }: Hoo(X) 2 lim, o = H(X™), where
xn 2 (X1,X9,...,X,) and H(X") is the entropy of the block X™:

H(X") =- > Pr{X"=2"} log, (Pr{X" =2"}).
zne{0,1}n
The total redundancy the binary process {X,,} contains is py7 = 1 — H(X ). This total redundancy
can be written as pr = pp + pam [14], where pp =R H(X1), and ppm = H(X1) - Ho(X),

20f course, image pixels do not form a stationary process. We will indeed “approximate” the pixel bit stream of
each image line by a stationary process; the extent to which our model “fits” will be judged on the basis of how well
decoding schemes matched to the model perform.



where H(X7) is the entropy of random variable X;. Here pp denotes the redundancy due to
the non-uniformity of the marginal distribution (Pr{X; = z}) of the process, and pps denotes
the redundancy due to the memory of the process. Note that if the redundancy due to the non-
uniformity of a process is high relative to its redundancy in the form of memory (pp > pum),
then the process behaves like a non-uniform iid source. Similarly, if pps > pp, the process tends
to behave like a symmetric Markov source [20]. Note that if the process is uniformly distributed
(Pr{X; =0} = 1/2), then pp = 0. Furthermore, if the process is independent (e.g., Model 2), then
pm = 0.

We compute the redundancy two-tone images possess when they are modeled according to
Model 0, Model 1, and Model 2. The two-tone test images we use are shown in Figure 1. Figure 1.a
displays a (flat) binary version of the image Lena, while Figure 1.b represents a halftone version
of Lena. Halftone images are binary (or two-tone) images that give a grey scale rendition [21].
The Headscan in Figure 1.c is a binary plane of a medical magnetic resonance (MRI) image, and
Figure 1.d shows the image of one of the eight standard facsimile test documents recommended by
CCITT? [21]. Although images are highly non-stationary, image pixels may be considered to be
locally stationary. We assume that {X,,} is stationary only within each image line; this requires an

updating of the transition probabilities for each image line.

For each model, the relative frequency of transitions between the binary pixel values is compiled
to extract the transition and marginal probabilities in each line. The entropy rate of the resulting
line process is computed to arrive at an estimate of the total redundancy pr in each line. The results
for the four test images are compiled in Figures 2.a to 2.d in which we provide the histogram (or
distribution) of the line redundancy pr under each of the proposed models: Model 0 (2D Markov),
Model 1 (1D Markov), and Model 2 (IID). Examination of the redundancy results leads to the

following observations:

o Figures 2.a, 2.b, and 2.c clearly indicate that the images Lena 1, Headscan and CCITT
are strongly redundant when modeled by a first-order (Model 1) or second-order (Model 0)
Markov chain. For example, in Figure 2.a, Model 0 yields around 95% of the image lines with
pr > 0.6 bits, and Model 1 yields nearly 90% of the lines with py > 0.5 bits. Furthermore,
images Lena 1 and Headscan has little redundancy due to non-uniformity since pp of the

IID model (Model 2) is less than 0.1 bits 95% of the time for Lena 1 and less than 0.4 bits

?“Comité Consultatif International de Téléphonie et Télégraphie” —recently renamed ITU.
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(b) Lena 2 (512 % 512)

Hhin is campok dror coran.
/M/

22-9-7|

(c) Headscan (256 * 256) (d) CCITT (594 * 432)

Figure 1: Two-Tone Test Images: Lena, Headscan and CCITT.



60% of the time for Headscan. This implies that pps is much higher than pp in Lena 1 and
moderately higher in Headscan, hence these images behave like symmetric Markov chains.

This is not the case, however, in Figure 2.c, where the distribution due to non-uniformity is

not negligible.

e The redundancy results shown in Figure 2.d demonstrate that the halftone image Lena 2
contains little redundancy under all three models (pr < 0.3). This may be due to the fact

that the halftone technique introduces more randomness in the black /white pixel distribution

in order to increase the picture resolution.
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4 MAP CHANNEL DECODING OF IMAGES

4.1 Implementation

Consider the problem of transmitting the binary second-order Markov source {X,} described in
the previous section, over a channel with memory. We will restrict our analysis to the Markov
channel of memory order one (M = 1). Extending the analysis to Markov channels of order M > 1
is straightforward.

Given that a sequence of bits is observed at the channel output, the goal of the receiver is to
determine the most probable transmitted sequence. The optimal detection method that minimizes
the sequence probability of decoding error is the sequence mazimum a posteriori (MAP) method
[14]. More specifically, if Y™ = y™ = (y1,¥2,...,yn) denotes the received binary sequence at the

output of the channel, the MAP detector “guesses” the transmitted sequence " according to

2" =arg max Pr{X" =2z"|Y" =y"}. 1
g . max { | y"} (1)

But (1) is equivalent to

" = arg max Pr{Y" =y"|X" =2"}Pr{X" = 2"}
zne{0,1}”

= arg max Pr{Z"=y"Pa"}Pr{X" =2a"}
zne{0,1}7

= arg max [PT{Z1 =y B} [[ Pri{Zc = yr @ 24l Zh1 = o1 @ xk—l}]
z ’ k=2

K
x Pr{X; =z} lH Pr{X; = 2| X1 = xk_l}]
k=2

x| [T Pr{Xe = wxlXpo1 = veo1, Xomk = 2h-r }| - (2)
k=K +1

For M = 1, the channel transition probability given in (1) can be easily expressed in terms of
Q(zn|zn-1) = Pr{Z, = z,|Zn—1 = zp—1} and Q(z,) 2 Pr{Z, = z,}, where
Qi) Qo) | 1 [ 1-cts
Q) Q) | THO 1-¢ e+

and (1) = e=1—-Q(0). We also denote the source distribution by P(-):

Pr{X; = ax} 2 Play),

1>

Pr{X; = x| Xp—1 = 21} P(ag|rr—1),

>

Pr{Xy = 2p|Xp—1 = 2p—1, Xo—g = T4-x } P(eg|zg—1,2p-K).
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Since the logarithm function is monotone increasing, equation (2) is equivalent to

K
& = arg Jmax log (Q(z1 @ y1)P(21)) + Y 1og (Qyr © aklys—1 © x—1) P(akles-1))
e k=2

+ Y 1og (QUuk ® wklyr—1 & zp—1)P(ap|va—t, 2e—k)) | - (3)
k=K 41

The sequence MAP detector described in (3) can be implemented in a straightforward way
using the Viterbi algorithm [22]. Here, z; denotes the state at time k; the trellis will hence have
two states, with two branches leaving and entering each state. For a branch leaving state z;_; at

time k — 1 and entering state z; at time k, the path metric is

—log (Q(yx B zk|yr—1 B wp—1)P(zk|rz-1)), fork < K,

and

—log (Q(yr ® zk|yk—1 ® xh—1)P(zk|zs-1, 25-K)), for k> K.

The surviving path for each state is the path with the smallest cumulative metric up to that
state. The sequence MAP decoder observes the entire received sequence y" in order to estimate

T143L2y0 03Ty,

4.2 Analytical Results for First-Order Markov Sources

In [14], we provide necessary and sufficient conditions under which the sequence MAP detection
for ideal stationary binary first-order Markov sources transmitted over the Markov channel (with
M = 1) is useless. We quote these theorems here as they will prove useful to us in interpreting the

image transmission experiments.

Theorem 1 (Asymmetric Markov Source) Consider an asymmetric binary Markov source with
parameters ¢ and ¢; as described by Model 1. The source is sent over the Markov channel with

parameters €, 6, and M = 1.

Given ¢y € [3,1), ¢1 € [1 — qo,q0], € € (0,3], & > 0, and n > 3, assume that X; = Y; and
X, =Y,. Then

(i) X™ =YY" (“believe what you see” rule) is an optimal sequence (MAP) detection rule if

(1—e+6)* (1-q)(l—aq1)
e(1—¢) q

10
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and

1—€e4 6 [

> 1. 5
0 w0 (5)

(ii) If (4) does not hold, then X” = Y” is not an optimal sequence detection rule.

(iii) If (5) does not hold, then 3 ng > 0 such that ¥ n > ng X" = Y™ is not an optimal sequence

detection rule.

Note that if go = ¢1 = 1/2, then equations (4) and (5) always hold; hence the sequence MAP
detector is always useless. This is expected since if ¢ = ¢; = 1/2, the Markov source becomes
a uniformly distributed iid random process with zero redundancy. When the source contains no
redundancy, the MAP detector reduces to a maximum likelihood (ML) decoder and fails to provide

any protection against channel noise.

The above theorem yields the conditions under which the sequence MAP decoder is useless. It
gives necessary and suflicient conditions for which the “believe what you see rule” is the optimal

MAP detection rule.

Corollary 1 (IID Source) Consider the case where the source transition distributions ¢y and ¢
are such that ¢gg = ¢1 2 p # 1/2; this results in a binary iid non-uniform source with probability

distribution P(0) = ¢ 2 p (Model 2). Assume without loss of generality that p > 1/2.

Given p € (3,1),€ € (0,1], 6 > 0, and n > 3, assume that X; = ¥; and X,, = Y,. Then

(i) X™ = Y™ is an optimal sequence (MAP) detection rule if

l—e+6 1—p
e+ 6 P

> 1. (6)

(i) If (6) does not hold, then 3 ng > 0 such that ¥V n > ng X™ = Y™ is not an optimal sequence

detection rule.

Remark: Expression (6) is equivalent to

Al—e—p
6< by = ———
>~ 01 2p_17 (7)

which holds only if 1 — € > p.
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Corollary 2 (Symmetric Markov Source) Consider the case where g = 1 — ¢ = ¢ > 1/2.
This results in a binary symmetric Markov source.

Given ¢ € (3,1), € € (0,3], § > 0, and n > 3, assume that X; = Y; and X,, = Y,,. Then
X" = Y™ is an optimal sequence (MAP) detection rule if and only if

(1-c+ ) (1_‘])2 > 1. (8)

€(1—¢) q

Remark: Condition (8) is equivalent to

6262é<i) €l—e€) +e—1. (9)
L—gq
Comments: The above necessary and sufficient condition indicates that for fixed € and ¢ (hence
fixed 83), as the channel correlation parameter § increases (hence as the channel capacity increases),
the likelihood of the uselessness of the sequence MAP detector increases (cf. (9)). Hence, sequence
MAP detection becomes useless for sufliciently large §. Therefore, the performance of the sequence
MAP detector deteriorates with increasing ¢; this shows the existence of a mismaltch between the
symmetric Markov source and the contagion Markov channel which prevents the MAP detector

from fully exploiting the correlation (and thus capacity) of the channel.

5 EXPERIMENTAL RESULTS

5.1 Images Modeled as Second-Order Markov Sources

We present simulation results to determine the performance of the proposed MAP decoding scheme.
We start by modeling the two-tone images according to the second-order causal Markov chain
described by Model 0. Image lines are each represented by a Markov chain with parameters py,
p1, p2 and ps (which are computed empirically), and transmitted uncompressed over the Markov
channel in a lexicographic order. At the receiver, the sequence MAP decoder is implemented
according to (3) via a modified version of the Viterbi algorithm to determine the most probable
transmitted sequence.

In Figures 3 and 4, simulation results for the images Lena 1 and Headscan are displayed. Each
experiment was repeated seven times and the average values of the bit probability of decoding
error P. = P{X, # X,} are plotted versus the channel bit error rate (BER) ¢ for different values

of channel correlation parameter §. We observe from the plots that as § increases (and hence
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channel capacity increases), the performance of the MAP detector deteriorates. This indicates that
there exists a mismatch between the source and the channel that prevents the decoder from fully
exploiting the noise correlation. This result is expected since—as seen in Section 3—the images
Lena 1 and Headscan behave like binary symmetric Markov processes; the image redundancy due to
the pixel memory dominates the redundancy due to the non-uniformity of the source distribution.

Corollary 2 shows the existence of this mismatch when the source is first-order Markov.

Y-axis: Logscale

001 1 1 1 1 1 1 1
0.03 0.06 0.09 0.12 0.15 0.18 021 0.24
€

Figure 3: Probability of error vs. BER (¢); Lena 1 modeled according to Model 0.

This leads us to conclude that when such images are modeled by a second-order Markov chain
(Model 0) and sent over the binary Markov channel, the best performance is obtained when § =
0; i.e., when the channel is fully interleaved and transformed into a memoryless channel (BSC).
Examples for Lena 1 and Headscan transmitted over the fully interleaved Markov channel with
BER € = 0.1, are shown in Figures 5.a to 5.d. The received images are displayed in Figures 5.a and
5.c, and the decoded images are shown in Figures 5.b and 5.d. The resulting average decoding bit

error probabilities are 0.039 for Lena 1 and 0.033 for Headscan.

We can express the above results in terms of the peak-to-peak signal-to-noise ratio (PSNR)
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Y-axis: Logscale

0.01 1 1 1 1 1 1 1
003 006 009 0.12 015 0.18 021 0.24
€

Figure 4: Probability of error vs. BER (¢); Headscan modeled according to Model 0.

assuming a mean squared error distortion criterion:
A 1 1

PIAN JK

where 0 = 5= 3707 |2 — & 2 = P. since the image is binary. Hence, the results of Figures 5.b and

5.d can be expressed as follows. The channel BER is 0.1, i.e., if no MAP decoding is performed
the image PSNR = 10 dB. With MAP decoding, PSNR = 14.08 dB for Lena 1 and 14.81 dB for

Headscan. This results in a gain of more than 4 dB for both images.

5.2 Images Modeled as First-Order Markov Sources

We next evaluate the performance of the MAP decoding scheme when the image lines are modeled
by first-order Markov chains as described by Model 1. Experiments were performed seven times for
images Lena 1 and Headscan. The resulting bit error probability P, is plotted versus e for different
values of 6 in Figures 6 and 7. The dotted curve labeled “w/o MAP” indicates the probability of
bit error when no MAP decoding is performed; i.e., P, = €. The results shown in these figures lead

to the following observations:

14



(c) Received Headscan (d) Decoded Headscan, P, = 0.033

Figure 5: Transmission of Lena 1 and Headscan, Model 0 with ¢ = 0.1 and é = 0 (Interleaved

Channel).
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e For both images a mismatch exists between the source and the channel: the best performance

is obtained when the channel is fully interleaved (6 = 0).

e The mismatch illustrates Corollary 2; these images behave like symmetric Markov sources
with nearly uniform marginal distributions. Indeed equation (12) is verified for the majority

of the lines in these images.

Y-axis: Logscale

0.10
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0.04

0.02
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Figure 6: Probability of error vs. BER (¢); Lena 1 modeled according to Model 1.

Adaptive Encoding Scheme

When a binary symmetric Markov source is directly sent over a binary Markov channel, a mis-
match occurs between the source and channel as the correlation parameter § increases seen as,
in Figures 6-7 and Corollary 2. This mismatch can be removed if the source is encoded using a
rate-one convolutional code, where by rate-one, we mean that the convolutional encoder produces
as many bits as it receives. The purpose of this code is not to introduce additional redundancy
but to transform the redundancy in the symmetric Markov source from the form of memory into
redundancy in the form of a non-uniform distribution. This is because, if the source redundancy

is in the form of a non-uniform distribution, no such mismatch occurs between the source and the

16



Y-axis: Logscale

0.03 F

0.02

001 1 1 1 1 1 1 1 1
0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.3
€

Figure 7: Probability of error vs. BER (¢); Headscan modeled according to Model 1.

channel, as predicted by Corollary 1 (cf. (10) and [14]).

Consider a rate-one convolutional code described by V,, = X,, & X,,_1,n = 1,2,..., where {X,}
is a symmetric Markov source with transition distribution gg = 1 — ¢; 2 q, and {V,,} represents the
output of the convolutional encoder. We assume that Xg = 0 almost surely; that is, V3 = X;. Due
to the symmetry in the source, we can easily verify that Pr{Vj = v;} = ¢'7% (1 — q)%, where v

isOorl,k=1,2,.... Furthermore, we can write

Pr{Vi=wVi=v1,....,Vict = vp1} = Pr{Xp=e®|X; =M, .. X,y =eF1y
= Pr{X; = eP|X}_y = -1}

= ¢ (1—q)" = Pr{Vi = v},

where e() 2 v @ ...dv, l = 1,2,...,k. Therefore, {V,} is a non-uniform iid process with
distribution given by Pr{V}, = 0} = ¢.

A new system employing a rate-one convolutional encoder will function as follows: A sequence
of K samples of the symmetric Markov source X (one image line) is fed into the rate-one convo-
lutional encoder. The output of the encoder is then sent over the Markov channel. At the receiver,

we use the sequence MAP detector which estimates the most likely transmitted sequence VE. The
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convolutional decoder is described by the relation Xk = Vk &3] Xk_l, k=1,2,...,N with Xl = Vl.
The estimate XX of the transmitted sequence is thus obtained. Note, however, that decoding
errors in the sequence MAP detector cause error propagations in the convolutional decoder, which
may be significant if an odd number of decoding errors occurs. The effect of error propagation can
be effectively limited by grouping the K source samples into small blocks of length N and trans-
mitting/decoding the N-tuples K/N times instead of the entire sequence of length K (assuming
perfect synchronization between the receiver and the transmitter).

Since images are non-stationary, image lines modeled according to Model 1 can be classified in

two ways:

1. Lines having pps > pp; they tend to behave like binary symmetric Markov chains. This

occurs when ¢q is close to 1 — ¢;. In this case, equation (5) dominates (6) in Theorem 1.
2. Lines for which neither pps nor pp is dominant. In this case no mismatch occurs.

We hence employ a new adaptive encoding system on the image lines that takes into consid-
eration the above observations. Each image line modeled according to Model 1 is processed as

follows:
o After computing gg and ¢, evaluate pps and pp.

o If ppr > 1T % pp, where T’ is some fixed threshold (e.g., 7" = 10), then use a rate-one convolu-
tional encoder as described above. Transmit the output {V,,} of the convolutional encoder in

blocks of length N over the Markov channel and decode using the iid distribution of {V,,}.

o If par < T * pp, proceed as usual: transmit the image line over the channel and decode via

the MAP algorithm using the line statistics ¢ and ¢ .

Simulation results on the performance of this new system are displayed in Figures 8-11 for all
four test images. The experiments were repeated seven times and we used 7" = 10 and N = 8.
The results clearly indicate very good performance and that the mismatch is eliminated; indeed,
the performance of the MAP decoder improves as the channel correlation parameter ¢ increases.
This is due to the fact that when the image pixels behave like a symmetric Markov chain, they are
converted into an iid non-uniform process. Hence the MAP detector observes an iid non-uniform
source corrupted by Markovian noise. As é increases, the noise correlation in the channel increases
(hence decreasing the noise entropy rate and increasing the channel capacity); this enhances the

detector’s capability to estimate the transmitted sequence.
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Figure 8: P, vs. €; Lena 1 modeled according to Model 1 using adaptive encoding scheme.
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Figure 9: P, vs. €; Lena 2 modeled according to Model 1 using adaptive encoding scheme.
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Figure 10: P, vs. ¢; Headscan modeled according to Model 1 using adaptive encoding scheme.
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Figure 11: P, vs. ¢; CCITT modeled according to Model 1 using adaptive encoding scheme.
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In Figures 12 and 13, examples of the transmission of the four two-tone test images using
the above adaptive system are displayed. In these examples the channel BER is ¢ = 0.1 and
the correlation parameter is 6 = 10. These parameters correspond to a very noisy channel with
high noise correlation. The adaptive scheme encodes the image lines via the rate-one encoder if
pamr > 10pp before sending them over the channel. For each of the images, the decoded image is
displayed after the received image as if it were not encoded, for comparison purposes. The gains in
dB achieved by the adaptive MAP decoder over the case when no MAP decoding is done are: 4.68
dB for Lena 1 (Figure 12.b), 1.94 dB for Lena 2 (Figure 12.d), 6.02 dB for Headscan (Figure 13.b),
and 7.69 dB for CCITT (Figure 13.d).

5.3 Comparison with Tandem Schemes

In a traditional tandem coding scheme, the source and channel codes are designed separately.
We show in this section that the performance of the above joint source-channel coding scheme
outperforms that of a more complex traditional tandem source-channel coding method. The tandem
scheme employed here includes the following elements: (i) Huffman encoder: Grouping the image
pixel stream in blocks of 4 bits, we encode the source stream using a 4" order Huffman code.
(ii) Convolutional encoder: The output of the Huffman coder is sent through a convolutional
encoder of rate R = % = % The convolutional code has input memory m = 2 (4 states) and tap
coefficients (1,0,1) and (1,1,1) [23]. Its minimum free distance is dfee = 5, its minimum distance
is dmin = 3, and its constraint length is n(m 4 1) = 6 bits. (iii) Interleaver, Markov channel,
de-interleaver: Since most channel codes are designed for the memoryless channel, the traditional
approach to handling a channel with memory is to convert it into a memoryless channel by use of an
interleaver/de-interleaver pair. We assume ideal interleaving which renders the channel memoryless
(6 = 0); i.e., it transforms bursts of channel errors into isolated errors and thus enhances the error
correction capability of the convolutional code. (iv) Decoders: ML decoder implemented using the
Viterbi algorithm, and a Huffman decoder.

The complexity of the tandem coding scheme is substantially higher than that of our proposed
joint coding scheme. In addition to this, interleaving introduces delay. Note also that the above tan-
dem scheme closely matches actual fax compression schemes which use run length coding followed
by Huffman encoding [21].

In Figures 14 and 15, we compare the performance of the tandem scheme, with perfect inter-
leaving, with two of our proposed MAP detection schemes on images Lena 1 and Headscan. The
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(b) Decoded Lena 1

(c) Received uncoded Lena 2 (d) Decoded Lena 2

Figure 12: Transmission of Lena 1 and Lena 2 with adaptive scheme; ¢ =
T =10.
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(d) Decoded CCITT, P. =0.017

Figure 13: Transmission of Headscan and CCITT with adaptive scheme; ¢ = 0.1, § = 10, N = 4,
T =10.
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first MAP decoding scheme is the one that models the image lines as second-order Markov chains
(according to Model 0) and uses perfect interleaving (6 = 0). The second MAP scheme is the
adaptive rate-one convolutional encoding scheme discussed in the previous section. Note that the
first MAP scheme exploits only the image redundancy, while the second adaptive MAP scheme
exploits both the image redundancy and the noise correlation. The simulations were run seven
times and average values of the bit probability of error were compiled for different values of the
channel BER. We remark that both MAP decoding schemes outperform the tandem scheme while
being substantially less complex, with the adaptive MAP scheme yielding the highest gains. For
example, when Lena 1 is sent over the channel with ¢ = 0.1 and é = 10.0, the adaptive MAP

decoding scheme outperforms the tandem scheme by as much as 8 dB.

Y-axis: Logscale
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Figure 14: Lena 1: P. vs. ¢; Tandem scheme versus MAP decoding scheme using Model 0 and
interleaving, and MAP decoding scheme using adaptive Model 1; § = 10.

5.4 Overhead Information

As in all joint source-channel coding schemes, it is assumed that the image statistics are available
at the decoder. This can be achieved by transmitting them along with the image using a forward

error-correcting code, or estimating them at the decoder during good channel conditions. We
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Figure 15: Headscan: P. vs. ¢; Tandem scheme versus MAP decoding scheme using Model 0 and
interleaving, and MAP decoding scheme using adaptive Model 1; § = 10.

will concentrate on the first method and compute the amount of overhead information needed to

transmit the image parameters.

We assume that a rate 1/R convolutional encoder is used to protect the source statistics. Note
that if we represent the image using Model 0, we need to transmit four conditional probabilities
per line, whereas we need to send two conditional probabilities per line for Model 1. Therefore
the adaptive MAP scheme using Model 1—which yields the best performance—needs as much as
half the amount of overhead required by the MAP scheme using Model 0. If we let [ denote the
number of accuracy digits for each source parameter, then we need [log,(10' — 1)] bits to describe

the parameter.
The percentage of overhead information is equal to

mR[logy (10" — 1)]

% Overhead = % )

where K is the image width and m is the number of source statistics per line (m = 4 for Model 0,
and m = 2 for Model 1). The amount of overhead needed for each of the two-tone test images is

presented in Table 1 for R =2 and [ =1, 2.
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Table 1: Percentage of Overhead; R = 2.

/ Lena CCITT Headscan
K =512 K =432 K =256
1 6.25 % 7.41 % 12.5 %
10.94 % 12.96 % 21.87 %
(a) Model 0
I Lena CCITT Headscan
K =512 K =432 K = 256
1 3.13 % 3.70 % 6.25 %
5.47 % 6.48 % 10.94 %
(b) Model 1

Remark: Note that we can avoid transmitting overhead information about the source statistics
by using training images to estimate the statistics and then evaluate the performance of the system
on a distinct sequence of testing images. Of course, this approach is valid only for applications where
the images belong to a particular class—e.g., in the transmission of medical magnetic resonance

images (MRI) [17].

5.5 Robustness Under Imperfectly Known Channel Statistics

Up to now, we have assumed that the channel statistics (e and ) are known a priori at the receiver.
In this section, we investigate the robustness of the MAP decoding system when these parameters
are not known perfectly. This may occur due to inadequate estimation of the channel parameters,
particularly when the channel is time-varying (e.g., LMR channels). Simulations using the adaptive
MAP decoding scheme were performed for all four test images; however, we display the results only
for Lena 1 since all images yielded similar performance behavior. In Table 2.a, we present PSNR
results when the receiver misestimates the BER ¢ with the correlation parameter § = 10. Note
that when ¢, = ¢4 = 0.0, then P. = 0; this results in a PSNR of infinite value (Table 2.a). In
Table 2.b, we provide PSNR results when the receiver misestimates the correlation parameter 6
with the channel BER ¢ = 0.1. We observe from Table 2 that when the channel is noisy (¢, > 0.05)
or when its correlation parameter 6, > 2, it is better to overestimate the true parameters than
to underestimate them. Finally, we can conclude that the MAP scheme is not very sensitive to
mistakes in estimating € or §, provided that we do not design ¢ or § to be zero when the actual

parameter is non-zero.
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Table 2: Lena 1: Robustness results for adaptive MAP decoding scheme in PSNR (dB); 7" =
10, N = 4; ¢4 = Design BER; ¢, = Actual BER; 64 = Design Correlation Parameter; §, = Actual
Correlation Parameter; (a) Robustness with BER (64 = 6, = 10); (b) Robustness with Correlation

Parameter (¢4 = ¢, = 0.1).

[€4=0.00 g =0.01 [ ég = 0.05 [ ¢4 = 0.10 |

o = 0.00 0 27.71 21.89 19.33

€ =001 2212 23.09 20.41 18.54

€ =005 14.94 17.35 17.45 16.27

e =010 12,07 14.73 14.68 14.79

(a)
[ 8a=0 [ éa=2 [ é4=5 [ b64=10 ]

ba =0 8.25 6.71 6.67 6.67
by =2 8.49 10.69 10.65 10.61
s =5 8.46 12.91 12.92 12.92
b, = 10 8.55 14.57 14.58 14.79

(b)
5.6 Transmission of Bit-Plane Encoded Grey-Level Images

A grey-level image can be separated into a set of 8 one-bit planes, where each plane is subsequently
compressed using binary image coding techniques such as run-length or Huffman coding [21]. This
method is very sensitive to channel errors since it employs variable length encoding schemes. Fur-
thermore, it typically yields a compression ratio on the order of 2, leaving little room for protection

against channel noise.

We can apply the adaptive MAP decoding scheme discussed above to bit-plane encoded grey-
level images transmitted over the Markov channel. Experimental results are shown in Figures 16-20
for three grey-level images: Lena, Headscan, and a bone x-ray. In Figures 1618, the resulting PSNR
plots for the MAP-decoded images show significant improvements over the received images. For

6 = 10, gains in excess of 6 dB are achieved when the channel BER is greater than or equal to 0.1.

6 CONCLUSIONS

In this paper we have presented a joint source-channel coding scheme for the reliable transmission
of two-tone images over channels with memory. Three image models are proposed and image redun-
dancy is characterized for each of these models. It is shown that a strong correlation exists between

image pixels. We demonstrate empirically that for second-order Markov models, the best results
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Figure 16: PSNR (dB) vs. €; Grey Headscan modeled according to Model 1 using adaptive encoding
scheme; 7' = 10, N = 4.

are obtained for the interleaved channel. An adaptive scheme is used for first-order Markov image
models to avoid mismatch and exploit the channel memory. The sensitivity to misspecification of
channel parameters and the amount of necessary overhead information are discussed. The MAP

scheme is extended to the transmission of bit-plane-encoded grey-level images.

Current efforts focus on low-bit-rate joint source-channel coding of grey-level images using
unequal error protection; this may be achieved by encoding the most significant bits in a way
similar to that described above, and by employing a tandem scheme (transform coding followed
by Reed-Solomon or convolutional coding) for the least significant bits. Future work will address
the use of soft decision decoding in conjunction with trellis-coded modulation (TCM) for the MAP
channel decoding of JPEG and MPEG signals over bursty fading channels.
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Figure 17: PSNR (dB) vs. €; Grey Lena modeled according to Model 1 using adaptive encoding
scheme; T = 10, N = 4.
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Figure 18: PSNR (dB) vs. ¢; Grey MRI Bone modeled according to Model 1 using adaptive encoding
scheme; T = 10, N = 4.
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(a) Grey Lena: Original

(c) Lena received uncoded; psNrR = 14.45 dB  (d) Grey Headscan: Received uncoded; PSNR =
14.25 dB

(e) Decoded Grey Lena: PsNR=19.53 dB (f) Decoded Grey Headscan: PsSNR =20.25 dB

Figure 19: Transmission of Lena and Headscan with adaptive scheme; ¢ = 0.1, § = 10, N = 4,
T =10.
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(a) Bone x-ray: Original

S ke T

(c) Bone x-ray decoded: PSNR = 20.65 dB

Figure 20: Transmission of Bone x-ray with adaptive scheme; e = 0.1, § = 10, N =4, T = 10.
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