Errata - An Introduction to Single-User Information Theory

F. Alajaji and P.-N. Chen

August 242018

- p. 6, Theorem 2.1: replace " $p \in[0,1]$ " with " $p \in(0,1]$ " and replace " $0 \leq p \leq 1$ " with " $0<p \leq 1$ "
- p. 7, lines 8-10: replace

$$
\frac{k}{r} \leq \frac{I(1 / 2)}{I(1 / n)} \leq \frac{k+1}{r}
$$

with

$$
\frac{k}{r} \leq \frac{I(1 / 2)}{I(1 / n)}<\frac{k+1}{r}
$$

and replace

$$
\log _{b} n^{k} \leq \log _{b} 2^{r} \leq \log _{b} n^{k+1} \Leftrightarrow \frac{k}{r} \leq \frac{\log _{b}(2)}{\log _{b}(n)} \leq \frac{k+1}{r}
$$

with

$$
\log _{b} n^{k} \leq \log _{b} 2^{r}<\log _{b} n^{k+1} \Leftrightarrow \frac{k}{r} \leq \frac{\log _{b}(2)}{\log _{b}(n)}<\frac{k+1}{r}
$$

- p. 10, line above Lemma 2.4: a space should be inserted before "(its proof is left as an exercise)"
- p. 27, line 1: add "between X and \hat{X} (or equivalently between P_{X} and $P_{\hat{X}}$)" before is "denoted by"
- pp. 44-45: replace the plus sign with the minus sign in front of the terms $\frac{1}{n} \log _{2}\left(1-\alpha_{n}\right)$ and $\frac{1}{n} \log _{2}\left[1-\varepsilon-P_{X^{n}}\left(\mathcal{A}_{n}^{c}(\delta)\right)\right]$
- p. 48, Problem 2.15: assume that X and \hat{X} have a common alphabet \mathcal{X} and that Z and \hat{Z} have a common alphabet \mathcal{Z}.
- p. 65, three lines above Observation 3.7: the strict inequality should be equality
- p. 76, caption (a) of the table should be:
"A stationary ergodic (irreducible) first-order Markov source $\left\{X_{n}\right\}_{n=1}^{\infty}$ with alphabet \mathcal{X} is symmetric if its (unique) stationary distribution is the uniform distribution. This is achieved when the source's transition probability matrix $\left[p_{x_{1}, x_{2}}\right]$, where $p_{x_{1}, x_{2}}=P_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right), x_{1}, x_{2} \in \mathcal{X}$, is doubly stochastic (i.e., it is a square non-negative matrix in which every row sums to 1 and every column sums to 1)."
- p. 82 , lines 10-11: replace " $\ell_{\max }$ should be less than" with " $\ell_{\max }$ should be no larger than"
- p. 90, line 6 of Observation 3.35: replace "one can get" with "one may get"
- p. 94, item 2 of Definition 3.37: replace "node" with "nodes"
- p. 97, line 9 of item 2 : " $L=3$ " should be " $L=7$ "
- p. 101, Problem 3.12: source symbols x should be replaced with sourcewords x^{n} as in Theorem 3.27 (but the upper bound on the average code rate is unchanged)
- p. 114, line 2 of Definition 4.5: the second "code" is redundant
- p. 116, Definition 4.7: in the definition of $\mathcal{F}_{n}(\delta), "<\delta$ " should be " $\leq \delta$ "
- p. 127, line 13 of Section 4.4: after "capacity of the BEC" add "(see Example 4.22 in Section 4.5)"
- p. 149 , line 8 of the second item: "an output quantization" should be "and output quantization"
- p. 149 , line 4 of the third item: the linebreak should be removed
- p. 151, problem 7: "DMC" should be "a DMC"
- p. 172, Definition 5.11: a logarithm is missing in the expectation; i.e., we have $D(X \| Y)=E\left[\log _{2} \frac{f_{X}(X)}{f_{Y}(X)}\right]$
- p. 176, item 11: function g is invertible, continuously differentiable, with a non-zero Jacobian
- p. 180, line 3 of Theorem 5.20: replace " $S_{X^{n}}=\mathbb{R}^{n "}$ with " $S_{X^{n}} \subseteq \mathbb{R}^{n}$ "
- p. 181: line 1 of the scalar case, replace " $S_{X}=\mathbb{R}$ " with " $S_{X} \subseteq \mathbb{R}$ ". Also in the proof, the three integrals should be over " S_{X} " instead of " \mathbb{R} "
- p. 185-186: in Lemma 5.29, replace "strictly increasing" with "non-decreasing"
- p. 197, second line after (5.4.19): replace " $p(A)$ " with " p * (A) "
- p. 203, line 5 of Observation 5.39: "radom fading" should be "random fading"
- p. 207, first line after (5.7.3): replace "(or equivalently 5.7.3)" with "(or equivalently (5.7.3))"
- p. 207, line 4 of Section 5.8: replace "[30]" with "[29]"
- p. 216, Problem 19.(c): σ_{j}^{2} should be σ_{i}^{2} and assume that X, N_{1} and N_{2} are independent.
- p. 225: the logarithm in Definition 6.11 should be in base 2
- p. 234, bottom line: the logarithm should be in base 2
- p. 246, the upper bound result of Theorem 6.29 should be " $\log _{2}\left(\frac{\lambda}{D}+1\right)$ " instead of " $\log _{2} \frac{\lambda}{D}$." Thus for the sake of completeness, the introductory paragraph of Section 6.4.3, Theorem 6.29 and its proof are revised as follows:

We herein focus on the rate-distortion function of continuous memoryless sources under the absolute error distortion measure. In particular, we provide the expression of the rate-distortion function for Laplacian sources with parameter λ (i.e., with variance $2 \lambda^{2}$) and derive an upper bound on the rate-distortion function of arbitrary zero-mean real-valued sources with absolute mean λ (i.e., $E[|Z|]=\lambda$). When $\lambda / D \gg 1$, the upper bound approaches the rate-distortion function of Laplacian sources; hence in this low-distortion regime, Laplacian sources maximize the rate-distortion function (while Theorem 6.26 shows that Gaussian sources maximize the rate-distortion function under the squared error distortion measure for all distortion values). It is worth pointing out that in image coding applications, the Laplacian distribution is a good model to approximate the statistics of transform coefficients such as discrete cosine and wavelet transform coefficients [315, 375]. Finally, analogously to Theorem 6.27, we obtain a Shannon lower bound on the rate-distortion function under the absolute error distortion.

Theorem 6.29 Under the additive absolute error distortion measure, namely $\rho_{n}\left(z^{n}, \hat{z}^{n}\right)=\sum_{i=1}^{n}\left|z_{i}-\hat{z}_{i}\right|$, the ratedistortion function of a memoryless Laplacian source $\left\{Z_{i}\right\}$ with mean zero and parameter $\lambda>0$ (variance $2 \lambda^{2}$ and pdf $\left.f_{Z}(z)=\frac{1}{2 \lambda} e^{-\frac{|z|}{\lambda}}, z \in \mathbb{R}\right)$ is given by

$$
R(D)= \begin{cases}\log _{2} \frac{\lambda}{D}, & \text { for } 0<D \leq \lambda \\ 0, & \text { for } D>\lambda\end{cases}
$$

Furthermore, the rate-distortion function of any continuous memoryless source $\left\{Z_{i}\right\}$ with a pdf of support \mathbb{R}, zero mean and $E[|Z|]=\lambda$ (where $\lambda>0$ is a fixed parameter) satisfies

$$
R(D) \leq \log _{2}\left(\frac{\lambda}{D}+1\right) \quad \text { for } 0<D \leq \lambda
$$

Proof: For $0<D \leq \lambda$, a zero-mean Laplacian Z with parameter λ and any $f_{\hat{Z} \mid Z}$ satisfying $E[|Z-\hat{Z}|] \leq D$,

$$
\begin{aligned}
I(Z ; \hat{Z}) & =h(Z)-h(Z \mid \hat{Z}) \\
& =\log _{2}(2 e \lambda)-h(Z-\hat{Z} \mid \hat{Z}) \\
& \geq \log _{2}(2 e \lambda)-h(Z-\hat{Z}) \quad(\text { by Lemma } 5.14) \\
& \geq \log _{2}(2 e \lambda)-\log _{2}(2 e D) \\
& =\log _{2} \frac{\lambda}{D}
\end{aligned}
$$

where the last inequality follows since $h(Z-\hat{Z}) \leq \log _{2}(2 e E[|Z-\hat{Z}|]) \leq \log _{2}(2 e D)$ by Observation 5.21 and the fact that $E[|Z-\hat{Z}|] \leq D$. Subject to $D \leq \lambda$, we can choose independent V and \hat{Z} such that $Z=V+\hat{Z}$ and V
is a zero-mean Laplacian random variable with parameter D (i.e., $E[|V|]=D) .{ }^{1}$ Thus, $h(Z-\hat{Z} \mid \hat{Z})=h(V \mid \hat{Z})=$ $h(V)=\log _{2}(2 e D)$ and the lower bound $\log _{2}(\lambda / D)$ is achieved.
For $D>\lambda$, let \hat{Z} satisfy $\operatorname{Pr}(\hat{Z}=0)=1$ and be independent of Z. Then $E[|Z-\hat{Z}|] \leq E[|Z|]+E[|\hat{Z}|]=\lambda<D$. For this choice of $\hat{Z}, R(D) \leq I(Z ; \hat{Z})=0$ and hence $R(D)=0$. This completes the derivation of $R(D)$ for a Laplacian Z.

We next prove the upper bound on $R(D)$ for an arbitrary Z with mean zero and $E[|Z|]=\lambda$. Since

$$
R(D)=\min _{f_{\hat{Z} \mid Z}: E[|Z-\hat{Z}|] \leq D} I(Z ; \hat{Z})
$$

we have that for any $f_{\hat{Z} \mid Z}$ satisfying the distortion constraint,

$$
R(D) \leq I(Z ; \hat{Z})=I\left(f_{Z}, f_{\hat{Z} \mid Z}\right)
$$

For $0<D \leq \lambda$, choose $\hat{Z}=Z+W$, where W is a zero-mean Laplacian random variable that is independent of Z and that satisfies $E[|W|]=D$. Thus

$$
E[|\hat{Z}|]=E[|Z+W|] \leq E[|Z|]+E[|W|]=\lambda+D
$$

and

$$
E[|Z-\hat{Z}|]=E[|Z+W-Z|]=E[|W|]=D
$$

Hence this choice of \hat{Z} satisfies the distortion constraint. We can therefore write for this \hat{Z} that

$$
\begin{aligned}
R(D) & \leq I(Z ; \hat{Z}) \\
& =h(\hat{Z})-h(\hat{Z} \mid Z) \\
& =h(\hat{Z})-h(W+Z \mid Z) \\
& =h(\hat{Z})-h(W \mid Z) \\
& =h(\hat{Z})-h(W) \quad(\text { by independence of } Z \text { and } W) \\
& =h(\hat{Z})-\log _{2}(2 e D) \\
& \left.\leq \log _{2}[2 e(\lambda+D)]-\log _{2}(2 e D) \quad \text { (by Observation } 5.21\right) \\
& =\log _{2}\left(\frac{\lambda}{D}+1\right)
\end{aligned}
$$

Note: (Tighter upper bounds) A tighter upper bound than $\log _{2}\left(\frac{\lambda}{D}+1\right)$ can be shown using a similar proof with the exception that $E[|\hat{Z}|]$ above is determined exactly; it is as follows:

$$
R(D) \leq \log _{2}\left(g\left(\frac{\lambda}{D}\right)\right) \quad \text { for } 0<D \leq \lambda
$$

where, setting $U=Z / \lambda$ (with pdf $f_{U}(u)=\lambda f_{Z}(\lambda u), u \in \mathbb{R}$), the function

$$
g(a):=\int_{-\infty}^{\infty} f_{U}(u) \int_{-\infty}^{\infty}|s+a u| \frac{1}{2} e^{-|s|} d s d u, \quad a \geq 1
$$

${ }^{1}$ Indeed, with a zero-mean Laplacian Z and $Z=V+\hat{Z}$, where V and \hat{Z} are independent of each other, we can write

$$
\frac{1}{1+\lambda^{2} t^{2}}=\frac{1}{1+D^{2} t^{2}} \cdot \phi_{\hat{Z}}(t) \Rightarrow \phi_{\hat{Z}}(t)=\frac{1+D^{2} t^{2}}{1+\lambda^{2} t^{2}}=\frac{D^{2}}{\lambda^{2}}+\left(1-\frac{D^{2}}{\lambda^{2}}\right) \frac{1}{1+\lambda^{2} t^{2}}
$$

where $\phi_{\hat{Z}}(t):=E\left[e^{j t \hat{Z}}\right]$ is the characteristic function of \hat{Z} (where $j=\sqrt{-1}$). Thus \hat{Z} equals zero with probability D^{2} / λ^{2} and is zero-mean Laplacian distributed with parameter λ with probability $1-D^{2} / \lambda^{2}$.
can be numerically computed. Furthermore, it can be shown that if the source has a symmetric pdf (i.e., $f_{Z}(z)=$ $f_{Z}(-z)$ for all $z \in \mathbb{R}$), then $g(a) \leq g(1)+a-1$ for $a \geq 1$; resulting in the following simpler upper bound (that is still tighter than $\left.\log _{2}\left(\frac{\lambda}{D}+1\right)\right)$:

$$
R(D) \leq \log _{2}\left(\frac{\lambda}{D}+b\right) \quad \text { for } 0 \leq D \leq \lambda
$$

where $b:=2 \int_{0}^{\infty} e^{-u} f_{U}(u) d u \leq 1$. For example, if Z is uniform over $[-2 \lambda, 2 \lambda]$, then $b=\frac{1}{2}\left(1-e^{-2}\right)=0.432$.

- p. 247, line 4 of Observation 6.31: replace " $d(\cdot, \cdot)$ " with " $d(\cdot)$ "
- p. 252, $257 \& 258$, Tables 6.1-6-3: The top of the last column should be $D_{S L}=10^{-2}$
- p. 265 , Property 4 of Property A.10: replace " $(\forall A \in \mathbb{R})$ " with " $(\forall L \in \mathbb{R})$ "
- p. 271, item 5: the inequalities hold provided we do not have sums of the form $\infty-\infty$.
- p. 281: in the item before last, the first displayed equation should be:

$$
\operatorname{Pr}\left[X_{n}=x_{k+1} \mid X_{n-1}=x_{k}, \ldots, X_{n-k}=x_{1}\right]=\operatorname{Pr}\left[X_{k+1}=x_{k+1} \mid X_{k}=x_{k}, \ldots, X_{1}=x_{1}\right]
$$

- p. 282: the last line should end with a period instead of a comma
- p. 288, statement in parentheses in Theorem B.13: replace "-" with " μ "
- p. 292, Theorem B. 16 and footnote 11: replace " $\mathcal{O} \in \mathbb{R}^{m \text { " }}$ with " $\mathcal{O} \subset \mathbb{R}^{m}$ " a
- p. 294, bottom line: after "both convex" add "(where $\mathcal{X} \subseteq \mathbb{R}^{n}$ is a convex set)"

