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Although vector products on R
n are rare, every coordinate space

R
n is equipped with an operation that sends a pair of vectors to a

scalar. This chapter explores this scalar product. We highlight its
applications to inequalities, orthogonal projections, and hyperplanes.

3.0 The Dot Product

How do we combine two vectors to obtain a scalar? The dot
product may be defined algebraically or geometrically.

The name "dot product" and the
notation were introduced in 1881 by
J.W. Gibbs.

3.0.0 Definition. For any two vector ~v and ~w in R
n, the following two

definitions of the dot product ~v · ~w 2 R are equivalent.
(geometric) When 0 6 q 6 p is the angle between the vectors ~v and

~w, we set ~v · ~w := k~vk k~wk cos(q). q

~v

~w

Figure 3.0: The angle q between the
vectors ~v and ~w

(algebraic) Assuming that ~v := v1~e1 + v2~e2 + · · · + vn~en and
~w := w1~e1 + w2~e2 + · · ·+ wn~en, we set

~v · ~w := v1w1 + v2w2 + · · ·+ vnwn .

3.0.1 Problem. For all 1 6 j 6 k 6 n, demonstrate that ~ej ·~ek = �j,k. The Kronecker delta is the function
defined by

�j,k :=

(
1 if j = k,
0 if j 6= k.

Geometric solution. Since the standard basis ~e1,~e2, . . . ,~en consists of
pairwise perpendicular unit vectors, the geometric definition of the
dot product implies that ~ej ·~ek =

��~ej
�� k~ekk cos

�
p
2
�
= (1)(1)(0) = 0,

for all j 6= k, and ~ej ·~ej =
��~ej
�� ��~ej

�� cos(0) = (1)(1)(1) = 1.

Algebraic solution. Since the vector ~ej has 1 in the j-th entry and zero
elsewhere, the algebraic definition of the dot product gives

~ej ·~ek = (0)(0) + (0)(0) + · · ·+ (1)(0)| {z }
j-th summand

+ · · ·+ (0)(1)| {z }
k-th summand

+ · · ·+ (0)(0) = 0 ,

~ej ·~ej = (0)(0) + (0)(0) + · · ·+ (1)(1)| {z }
j-th summand

+ · · ·+ (0)(0) = 1 ,

and we conclude that ~ej ·~ek = �j,k.

3.0.2 Proposition (Properties of the dot product). For all ~u,~v, ~w 2 R
n

and all c 2 R, the dot product has the following five properties.

(commutativity) ~v · ~w = ~w · ~v
(compatibility with scalar multiplication) ~v · (c ~w) = c(~v · ~w) = (c~v) · ~w
(distributivity) ~u · (~v + ~w) = ~u · ~v + ~u · ~w
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(nonnegativity) ~v · ~v > 0
(positivity) ~v · ~v = 0 if and only if ~v =~0

Geometric proof. Let 0 6 q 6 p be the angle between ~v and ~w. Since
multiplication in R is commutative, it follows that

~v · ~w = k~vk k~wk cos(q) = k~wk k~vk cos(q) = ~w · ~v ,

proving the commutativity of the dot product.
Scalar multiplication by a nonnegative number c rescales the

magnitude without changing the direction, so we have

(c~v) · ~w = kc~vk k~wk cos(q) = c
�
k~vk k~wk cos(q)

�
= c(~v · ~w)

= k~vk kc ~wk cos(q) = ~v · (c ~w) .

In contrast, scalar multiplication by negative number c gives a vector
in the opposite direction and rescales the magnitude by |c|, so

(c~v) · ~w = kc~vk k~wk cos(p � q) = � |c|
�
k~vk k~wk cos(q)

�
= c(~v · ~w)

= k~vk kc ~wk cos(p � q) = ~v · (c ~w) .

Hence, the dot product is compatible with scalar multiplication.

q

p � q

p � q
~v�~v

~w

�~w

Figure 3.1: Angles between ±~v and ±~w

If the angle between ~u and ~v + ~w is J, the angle between ~u and ~v is
f, and the angle between ~u and ~w is y, then trigonometry and vector
addition imply that k~v + ~wk cos(J) = k~vk cos(f) + k~wk cos(y). We
deduce that

~u · (~v + ~w) = k~uk k~v + ~wk cos(J)
= k~uk

�
k~vk cos(f) + k~wk cos(y)

�
= ~u · ~v + ~u · ~w ,

which shows that the dot product is distributive.

p�J
~w

~v + ~w

~u

~v
f

y

k~vk cos(f)
k~wk cos(y)

k~v + ~wk cos(q)

Figure 3.2: Angles between the vector ~u
and the vectors ~v, ~w, ~v + ~w

We have ~v · ~v = k~vk k~vk cos(0) = k~vk2 > 0 because the square
of any real number is nonnegative. Since the number 0 has a unique
square root and the zero vector is the unique vector with magnitude
equal to 0, we have ~v · ~v = 0 if and only if ~v =~0.

Algebraic proof. Since multiplication in R is commutative, we have

~v · ~w = v1w1 + v2w2 + · · ·+ vnwn = w1v1 + w2v2 + · · ·+ wnvn = ~w · ~v ,

(c~v) · ~w = (cv1)w1 + (cv2)w2 + · · ·+ (cvn)wn = c(v1w1 + v2w2 + · · ·+ vnwn) = c(~v · ~w)

= v1(cw1) + v2(cw2) + · · ·+ vn(cwn) = ~v · (c ~w) .

proving commutativity and compatibility with scalar multiplication.
Similarly, multiplication in R is distributive, so we obtain

~u · (~v + ~w) = u1(v1 + w1) + u2(v2 + w2) + · · · un(vn + wn)

= (u1v1 + u2v2 + · · ·+ unvn) + (u1w1 + u2w2 + · · ·+ unwn) = ~u · ~v + ~u · ~w .

Since ~v ·~v = v2
1 + v2

2 + · · ·+ v2
n, the dot product is nonnegative because

the square of any real number is nonnegative. A sum of nonnegative
numbers equals zero if and only if each summand is zero, so we
conclude that ~v · ~v if and only if ~v =~0.
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Why do the two definitions of the dot product agree? For
all ~v := v1~e1 + v2~e2 + · · ·+ vn~en and ~w := w1~e1 + w2~e2 + · · ·+ wn~en,
the properties of dot product establish that

~v · ~w = (v1~e1 + v2~e2 + · · ·+ vn~en) · (w1~e1 + w2~e2 + · · ·+ wn~en)

= v1w1(~e1 ·~e1) + v1w2(~e1 ·~e2) + · · ·+ v1wn(~e1 ·~en)

+v2w1(~e1 ·~e2) + v2w2(~e2 ·~e2) + · · ·+ v2wn(~e2 ·~en)
...

...
. . .

...
+vnw1(~e1 ·~en) + vnw2(~e2 ·~en) + · · ·+ vnwn(~en ·~en) .

Hence, it suffices to know that geometric and algebraic definitions
of the dot products agree on ~ej ·~ek where 1 6 j 6 k 6 n; see
Problem 3.0.1.

Exercises

3.0.3 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The dot product of two vectors is another vector.
ii. In R

2, the dot product and complex multiplication are equal.
iii. In R

3, the dot product and the cross product are equal.
iv. The dot product of two nonzero vector equals 0 if and only if the

angle between the two vectors is p/2.
v. The dot product is anti-commutative.

vi. The dot product is associative.

3.0.4 Problem. If ~v = ~e1 and ~w = 2~e1 + 2~e2, then compute ~v · ~w both
geometrically and algebraically.

3.0.5 Problem. A store sells computers, tablets, phones, and watches.
The quantity vector ~q has components equal to the number of sales of
each item. The price vector ~p has components equal to the price per
unit of each item. What does the dot product ~p ·~q represent?

3.0.6 Problem. Let ~v 2 R
n have magnitude 2. If ~u 2 R

n has length 3,
what are the maximum and minimum values of the dot product ~u · ~v?
What configurations lead to these extremal values?

3.0.7 Problem. Given ~u 2 R
n and ~v 2 R

n such that ~u · ~w = ~v · ~w for
all ~w 2 R

n, prove that ~u = ~v.

3.0.8 Problem. For three vectors ~u,~v, ~w 2 R
3, the scalar triple product

is ~u · (~v ⇥ ~w).
i. Prove that |~u · (~v ⇥ ~w)| equals the volume of the parallelepiped

formed by the vectors ~u,~v, ~w 2 R
3.

ii. Show that ~u · (~v ⇥ ~w) = ~v · (~w ⇥ ~u) = ~w · (~u ⇥ ~v).
iii. Demonstrate that the geometric definition of the cross product

satisfies the distributivity property.
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3.0.9 Problem. For any three vectors ~u,~v, ~w 2 R
3, prove the following

identities:
i. ~u ⇥ (~v ⇥ ~w) = (~u · ~w)~v � (~u · ~v) ~w,

ii. ~u ⇥ (~v ⇥ ~w) + ~v ⇥ (~w ⇥ ~u) + ~w ⇥ (~u ⇥ ~v) =~0.

3.1 Essential Inequalities

How does the dot product produce inequalities? The ge-
ometric definition of the dot product implies that nonzero vectors
are perpendicular if and only if the angle between them is p/2. We
typically use another term for this feature.

3.1.0 Definition. Two vectors ~v and ~w are orthogonal if ~v · ~w = 0.

1

2

3

~u

~v

~w
Figure 3.3: Three vectors in R

3

3.1.1 Problem. Which pairs among the three vectors

~u := ~e1 +
p

3~e3 , ~v := ~e1 +
p

3~e2 , ~w :=
p

3~e1 +~e2 �~e3 ,

are orthogonal?

Solution. Since we have

~u · ~v = (1)(1) + (0)(
p

3) + (
p

3)(0) = 1 ,
~u · ~w = (1)(

p
3) + (0)(1) + (

p
3)(�1) = 0 ,

~v · ~w = (1)(
p

3) + (
p

3)(1) + (0)(�1) = 2
p

3 ,

only ~u and ~w are orthogonal.

Adding two orthogonal vectors gives a right angled triangle. From
the properties of the dot product, we easily obtain the celebrated
relation among the three sides of a right angled triangle.

3.1.2 Proposition (Pythagorean theorem). For any pair of orthogonal
vectors ~v and ~w in R

n, we have k~v + ~wk2 = k~vk2 + k~wk2.

~v

~w~v + ~w

Figure 3.4: A right angled triangle

Proof. Since ~v and ~w are orthogonal, we have ~v · ~w = 0 and the
properties of the dot product [3.0.2] give

k~v + ~wk2 = (~v + ~w) · (~v + ~w)

= k~vk2 + ~v · ~w + ~w · ~v + k~wk2 = k~vk2 + k~wk2 .

The inequality for sums was published
in 1821 by A.-L. Cauchy.

3.1.3 Theorem (Cauchy–Schwarz inequality). For all ~v, ~w 2 R
n, we have

|~v · ~w| 6 k~vk k~wk or
8
>>:

n

Â
i=1

viwi

9
>>;

2
6
8
>>:

n

Â
j=1

v2
j

9
>>;
8
>>:

n

Â
k=1

w2
k

9
>>; .

Equality holds if and only if the vectors are parallel.
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Geometric proof. Since �1 6 cos(q) 6 1, we have |cos(q)| 6 1, and the
geometric definition of the dot product [3.0.0] gives

|~v · ~w| = k~vk k~wk |cos(q)| 6 k~vk k~wk .

Equality holds if and only if cos(q) = ±1. Hence, either q = 0, which
implies ~v and ~w point in the same direction, or q = p, which implies
~v and ~w point in the opposite directions.

Algebraic proof. When ~w = ~0, both sides of the inequality equal 0, so
we may assume ~w 6= ~0. Consider ~u := ~v �

� ~v·~w
~w·~w

�
~w 2 R

n, which
means that ~v =

� ~v·~w
~w·~w

�
~w + ~u. Since ~u · ~w = ~v · ~w �

� ~v·~w
~w·~w

�
~w · ~w = 0,

the vectors ~u and ~w are orthogonal. Hence, the Pythagorean theorem
combined with the nonnegative of magnitude imply that

k~vk2 =

����

✓
~v · ~w
~w · ~w

◆
~w + ~u

���� =

����

✓
~v · ~w
~w · ~w

◆
~w
����

2
+ k~uk2 =

(~v · ~w)2

k~wk2 + k~uk2 > (~v · ~w)2

k~wk2 .

Multiplying by k~wk2 and taking square roots gives the inequality. We
have equality if and only if ~u =~0 which equivalent to saying that ~v is
a scalar multiple of ~w.

3.1.4 Theorem (Triangle inequality). For all ~v, ~w 2 R
n, we have

k~v + ~wk 6 k~vk+ k~wk .

Equality holds if and only if one vector is a nonnegative multiple of the
other.

~v

~w~v + ~w

Figure 3.5: Triangle inequality
Geometrically, the triangle inequality asserts that the sum of the
lengths of two sides in a triangle are at least the length of the other
side. Equality occurs when the vertices of the triangle are collinear.

Proof. The properties of the dot product [3.0.0] give

k~v + ~wk2 = (~v + ~w) · (~v + ~w) = k~vk2 + ~v · ~w + ~w · ~v + k~wk2 = k~vk2 + 2~v · ~w + k~wk2 .

For any c 2 R, we have c 6 |c|, so we obtain

k~v + ~wk2 = k~vk2 + 2~v · ~w + k~wk2 6 k~vk2 + 2 |~v · ~w|+ k~wk2 .

Applying the Cauchy-Schwarz inequality yields

k~v + ~wk2 6 k~vk2 + 2 |~v · ~w|+ k~wk2 6 k~vk2 + 2 k~vk k~wk+ k~wk2 =
�
k~vk+ k~wk

�2 .

Taking a square root yields the desired inequality. Equality holds if
and only if ~v · ~w = |~v · ~w| and ~v is parallel ~w, which is equivalent to ~v
being a nonnegative multiple of ~w.
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Exercises

3.1.5 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The zero vector is orthogonal to every vector.
ii. The triangle inequality shows that one side of a triangle must be

longer than the other two.

3.1.6 Problem. For any two vectors ~v, ~w 2 R
n, show that

��k~vk � k~wk
�� 6 k~v � ~wk .

3.1.7 Problem. For ~u,~v, ~w 2 R
n, prove that

 
n

Â
i=1

uiviwi

!2

6
 

n

Â
i=1

u2
i

! 
n

Â
j=1

v2
j

! 
n

Â
k=1

w2
k

!
.

3.1.8 Problem. For any ~v, ~w 2 R
n, consider the function q : R ! R

defined by q(t) := (~v + t~w) · (~v + t~w). Explain why q(t) > 0 for all
t 2 R. By interpreting q(t) as a quadratic polynomial in t, show that
|~v · ~w| 6 k~vk k~wk.

3.2 Orthogonal Projections

How do we find the distance from a point to a line? Let
~v :=

�!
PQ be a nonzero vector and let ` denote the line through the

points P and Q. Fix a point R and consider the vector ~w :=
�!
RP. To

determine the orthogonal distance from the point R to the line `, it
suffices to express the vector ~w as the sum of a vector parallel to ~v
and a vector orthogonal to ~v; ~w =

�!
RP =

�!
RS +

�!
SP. Any vector parallel

to ~v has the form
�!
SP = c~v for some scalar c 2 R. If the difference�!

RS =
�!
RP ��!

SP = ~w � c~v is orthogonal to ~v, then the properties of the
dot product [3.0.0] give

0 =
�!
RS · ~v = (~w � c~v) · ~v = ~w · ~v � c(~v · ~v) ,

so we deduce that c = ~w·~v
~v·~v ,

�!
SP =

⇣
~w·~v
~v·~v

⌘
~v, and

�!
RS = ~w �

⇣
~w·~v
~v·~v

⌘
~v.

Hence, the unique expression of ~w as the sum of a vector parallel to
~v and a vector orthogonal to ~v is

~w =

✓
~w · ~v
~v · ~v

◆
~v +

8
>>:~w �

✓
~w · ~v
~v · ~v

◆
~v
9
>>; .

Thus, the orthogonal distance from R to ` is k
�!
RSk =

��~w �
� ~w·~v
~v·~v
�
~v
��.

`
P~vQ

R

~w

S

Figure 3.5: Projection onto a line

Inspired by this computation, we introduce the following function.
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3.2.0 Definition. The orthogonal projection onto a nonzero vector ~v in
R

n is the function proj~v : R
n ! R

n defined, for all ~w 2 R
n, by

proj~v(~w) :=
✓
~w · ~v
~v · ~v

◆
~v .

`

~v

~w

proj ~v(
~w)

Figure 3.6: Visualizing projections
The image of a projection can be viewed as the shadow cast by the

vector ~w on the line through the head and tail of ~v. The orthogonal
decomposition of a vector ~w 2 R

n with respect to ~v is the expression

~w = proj~v(~w)
| {z }
parallel to ~v

+
�
~w � proj~v(~w)

�
| {z }

orthogonal to ~v

.

3.2.1 Problem. Compute the orthogonal distance from the line through
the points O := (0, 0, 0) and P := (2, 0, 1) to the point R := (4, 2, 1).

1

2

3

P
R

Figure 3.7: Orthogonal distance from a
point to a line

Solution. As ~v :=
�!
OP = 2~e1 +~e3 and ~w :=

�!
RO = �4~e1 � 2~e1 �~e3, we

have proj~v(~w) =
� ~w·~v
~v·~v
�
~v = �9

5 (2~e1 +~e3), and the desired distance is
��(�4~e1 � 2~e1 �~e3) +

9
5 (2~e1 +~e3)

��
= 1

5 k(�20 + 18)~e1 � 10~e2 + (�5 + 9)~e3k

= 1
5

q
22 + (�10)2 + (4)2 = 2

5

p
30 .

3.2.2 Proposition (Properties of orthogonal projections). For all vectors
~u, ~v, and ~w in R

n with ~v 6=~0, we have the following.
i. If ~w is parallel to ~v, then we have proj~v(~w) = ~w.

ii. If ~w is orthogonal to ~v, then we have proj~v(~w) =~0.
iii. The function proj~v is idempotent: proj~v

�
proj~v(~w)

�
= proj~v(~w).

iv. If ~u is parallel to ~v, then we have
��~w � proj~v(~w)

�� 6 k~w � ~uk, and
equality holds if and only if ~u = proj~v(~w).

Proof.
i. If ~w is parallel to ~v, then there exists a scalar c 2 R such that

~w = c~v. It follows that

proj~v(~w) = proj~v(c~v) =
✓
(c~v) · ~v
~v · ~v

◆
~v = c

✓
~v · ~v
~v · ~v

◆
~v = c~v = ~w .

ii. If ~w is orthogonal to ~v, then we have ~w · ~v = 0 which implies that
proj~v(~w) =

� ~w·~v
~v·~v
�
~v = 0~v =~0.

iii. By definition, the vector proj~v(~w) is parallel to the vector ~v and
part i implies that proj~v

�
proj~v(~w)

�
= proj~v(~w).

iv. From the orthogonal decomposition of ~w with respect to ~v, we
see that the vector ~w � proj~v(~w) is orthogonal to ~v. Since ~u is
parallel to ~v, the vectors ~w � proj~v(~w) and proj~v(~w)� ~u are also
orthogonal, and the Pythagorean theorem [3.1.2] shows that
��~w � proj~v(~w)

��2
+
��proj~v(~w)� ~u

��2
=
���~w � proj~v(~w)

�
+
�
proj~v(~w)� ~u

���2
= k~w � ~uk2 .



36 linear algebra copyright © 2021, gregory g. smith

The nonnegativity of magnitudes gives
��proj~v(~w)� ~u

��2 > 0, so

��~w � proj~v(~w)
��2 6

��~w � proj~v(~w)
��2

+
��proj~v(~w)� ~u

��2
= k~w � ~uk2 .

Taking square roots establishes the desired inequality. We have
equality if and only if

��proj~v(~w)� ~u
�� = 0 which is equivalent to

~u = proj~v(~w).

3.2.3 Remark. The fourth property of orthogonal projections can be
geometrically rephrased as the minimum distance from a point to a
line is the orthogonal distance.

`
proj~v(~w)

~w

~w
�

pr
oj
~v
(~w

)

~u � proj~v(~w)

~w
�
~u

Figure 3.8: Minimizing distance from a
point to a line

3.2.4 Definition. An altitude of a triangle is a line passing through a
vertex and orthogonal to the line containing the opposite side.

P Q

R

Figure 3.9: Altitudes in a triangle

3.2.5 Problem. Prove that all the three altitudes of a triangle intersect
at a common point.

Solution. Let P, Q, and R be the vertices of a triangle, and let O be
the origin. A point X lies on the altitude through Q if and only if

�!
QX ·�!PR = (

�!
OX ��!

OQ) · (�!OR ��!
OP) = 0 .

Similarly, the point X lies on the altitude through R if and only if
(
�!
OX � �!

OR) · (�!OP � �!
OQ) = 0, and the point X lies on the altitude

through P if and only if (
�!
OX ��!

OP) · (�!OQ ��!
OR) = 0. The properties

of the dot product [3.0.0] imply that, for any point X, we have

(
�!
OX ��!

OQ) · (�!OR ��!
OP) + (

�!
OX ��!

OR) · (�!OP ��!
OQ) + (

�!
OX ��!

OP) · (�!OQ ��!
OR)

=
��!
OX ·�!OR ��!

OX ·�!OP ��!
OQ ·�!OR +

�!
OP ·�!OQ

�
+
��!
OX ·�!OP ��!

OX ·�!OQ ��!
OP ·�!OR +

�!
OQ ·�!OR

�

+
��!
OX ·�!OQ ��!

OX ·�!OR ��!
OP ·�!OQ +

�!
OP ·�!OR

�

= 0 .

Thus, a point X lying on two altitudes also lies on the third.

Exercises

3.2.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The orthogonal projection is defined for any nonzero vector in
R

n.
ii. The orthogonal projection onto a nonzero vector ~v is parallel to

~v.
iii. For any vector ~w, the vector ~w � proj~v(~w) is orthogonal to ~v.
iv. The orthogonal decomposition expresses any vector as the sum

of two nonzero vectors.
v. The minimum distance from a point to a line is the orthogonal

distance.
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vi. In any triangle, the altitude and median through a given vertex
coincide.

3.2.7 Problem. Write the vector ~w := 3~e1 + 2~e2 � 6~e3 as the sum of
two vectors, one parallel and one orthogonal, to ~v := 2~e1 � 4~e2 +~e3.

3.2.8 Problem. Given P := (1, 2, 3), Q := (3, 5, 7), and R := (2, 5, 3),
find the distance from R to the line through P and Q.

3.2.9 Problem. Consider three distinct points P, Q, and R.
i. Choose R to be the origin and describe the position vectors ~̀ (t)

corresponding to the points on the line through P and Q as a
function of a parameter t.

ii. Show that the critical points of the function
��~̀ (t)

�� and
��~̀ (t)

��2

coincide.
iii. Using techniques from calculus, minimize

��~̀ (t)
��2 and prove

that the minimum distance is the orthogonal distance.

3.3 Hyperplanes

We frequently use the variables (x, y, z)
in K

3 rather than (x1, x2, x3), and use
(x, y) in K

2 rather than (x1, x2).

What links lines in 2-space, planes in 3-space, and their
analogs in n-space? These subsets have a uniform description.

3.3.0 Definition. An affine hyperplane in K
n consists of all points

(x1, x2, . . . , xn) 2 K
n that satisfy the equation

a1x1 + a2x2 + · · ·+ anxn = b ,

for some scalars a1, a2, . . . , an, and b in K.

Geometrically, a hyperplane is determined by a point and a vector.
The normal vector of the hyperplane is

~n := a1~e1 + a2~e2 + · · ·+ an~en 2 K
n .

If the point P := (p1, p2, . . . , pn) 2 K
n lies on this hyperplane

meaning that a1 p1 + a2 p2 + · · ·+ an pn = b, then an arbitrary point
X := (x1, x2, . . . , xn) 2 K

n lies on this hyperplane if and only if vector�!
PX is orthogonal to the normal vector ~n:

0 = ~n ·�!PX = a1(x1 � p1) + a2(x2 � p2) + · · ·+ an(xn � pn)

= a1x1 + a2x2 + · · ·+ anxn + (a1 p1 + a2 p2 + · · ·+ an pn)

, b = a1x1 + a2x2 + · · ·+ anxn.

Observe that the vector �~n is also orthogonal to
�!
PX.

~n

P

Figure 3.9: Normal to a hypersurface
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3.3.1 Remark. In K
2, the slope of a line encodes the normal vector.

Specifically, the equation y = mx + b is equivalent to �mx + y = b
which implies that �m~e1 +~e2 is the normal vector.

x

y

b

� b
m

y = mx + b

~n

Figure 3.10: Normal to a hypersurface

3.3.2 Problem. Find an equation for the hyperplane orthogonal to
8~e1 � 3~e2 � 7~e4 +~e5 passing through the point (1, 0,�7, 1, 3) 2 R

5.

Solution. An equation is

8(x1 � 1)� 3(x2 � 0)� 0(x3 + 7)� 7(x4 � 1) + (x5 � 3) = 0

or 8x1 � 3x2 � 7x4 + x5 = 4.

3.3.3 Problem. Find an equation for the plane passing through the
origin and parallel to the plane z = 4x � 3y + 8.

Solution. Since a normal vector for both planes is ~n := 4~e1 � 3~e2 �~e3,
the equation of the plane through the origin is 4x � 3y � z = 0.

3.3.4 Problem. Find the angle between the following two hyperplanes:

2(x1 � 1)� (x2 � 0) + (x3 � 7) + (x4 + 4)� (x5 � 5) + 2(x6 + 2) = 0
�(x1 + 1) + (x2 + 8) � (x4 � 9) � (x6 � 4) = 0 .

Solution. The angle between the hyperplanes is the angle between
their normal vectors. If q is the angle between these hyperplanes,
then equivalent definitions of the dot product [3.0.0] give

�6 = (2)(�1) + (�1)(1) + (1)(0) + (1)(�1) + (�1)(0) + (2)(�1)
=

p
12
p

4 cos(q) ,

so we have cos(q) = �6
4
p

3
= �

p
3

2 and q = 5p
6 .

A plane in K
3 can also be determined by three points, assuming

that they are not collinear.

3.3.5 Problem. Find an equation for the plane containing the three
points P := (1, 3, 0), Q := (3, 4,�3), and R := (3, 6, 2).

+ + +

~e1 ~e2 ~e3 ~e1 ~e2

2 1 �3 2 1

2 3 2 2 3

� � �
Figure 3.11: Computing the cross
product

Solution. Since the points P, Q, and R lie in a plane, both of the
vectors

�!
PQ = 2~e1 +~e2 � 3~e3 and

�!
PR = 2~e1 + 3~e2 + 2~e3 also lie in the

plane. Thus, a normal vector ~n to the plane is given by

~n =
�!
PQ ⇥�!

PR = (2 + 9)~e1 + (�6 � 4)~e2 + (6 � 2)~e3

= 11~e1 � 10~e2 + 4~e3 .

Since the point P lies on the plane, we conclude that the equation is
11(x � 1)� 10(y � 3) + 4(z � 0) = 0 or 10x � 10y + 4z = �19.

3.3.6 Problem. Find the orthogonal distance from the plane defined by
2x + 4y � z = �1 to the point P := (2,�1, 3).
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Solution. From the given equation, we see that the normal vector to
the plane is ~n := 2~e1 + 4~e2 �~e3. Since 2(0) + 4(0)� (1) = �1, the
point Q := (0, 0, 1) lies in the plane and we have

�!
QP = 2~e1 �~e2 + 2~e3.

Hence, the orthogonal distance from P to the plane is

���proj~n(
�!
QP)

��� =

�����

 �!
QP ·~n
~n ·~n

!
~n

����� =
|
�!
QP ·~n|
k~nk

=
|(2)(2) + (�1)(4) + (2)(�1)|p

(2)2 + (4)2 + (�1)2
=

2p
21

.

3.3.7 Problem. Decide which of the three points P := (�1,�1, 1),
Q := (�1,�1,�1), and R := (1, 1, 1) are on the same side of the
plane 2x � 3y + 4z = 4.

x

z

y

Q

P

R

Figure 3.12: Points separated by a plane

Solution. Since we have

2(�1)� 3(�1) + 4(1)� 4 = 1 > 0 ,
2(�1)� 3(�1) + 4(�1)� 4 = �7 < 0 ,

2(1)� 3(1) + 4(1)� 4 = �1 < 0 ,

we see that Q and R lie on one side and P is on the other.

Exercises

3.3.8 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Each hyperplane has a unique normal vector.
ii. A line in R

3 is a hyperplane.
iii. A hyperplane in K

1 consists of a single point.
iv. Lines in K

2 with normal vector ~e1 have infinity slope.

3.3.9 Problem. Find a vector parallel to the line of intersection of the
two planes 2x � 3y + 5 = 2 and 4x + y � 3z = 7.

3.3.10 Problem. Prove that the orthogonal distance between the hyper-
plane a1x1 + a2x2 + · · ·+ anxn = b and the point P := (p1, p2, . . . , pn)

is given by
|a1 p1 + a2 p2 + · · ·+ an pn � b|q

a2
1 + a2

2 + · · ·+ a2
n

.

3.3.11 Problem. Find the orthogonal distance between the following
skew lines in R

3. The first line passes through the points O := (0, 0, 0)
and P := (�1,�1, 1), and the second line passes through the points
Q := (0,�2, 0) and R := (2, 0, 5).

3.3.12 Problem. Find the orthogonal distance between the following
skew lines in R

3. The first line passes through the points O := (0, 0, 0)
and P := (�1,�1, 1), and the second line passes through the points
Q := (0,�2, 0) and R := (2, 0, 5).


