Copyright © 2021 by Gregory G. Smith Last updated: 26 September 2021

4 Linear Systems

The problem of finding the solutions to a system of linear equations provides the theoretical and computational foundation for linear algebra. In this chapter, we introduce linear systems and elementary row operations, we repackage the features of a linear system in a matrix, and we present an algorithm for solving linear systems.

4.0 Systems of Linear Equations

How CAN WE FIND THE INTERSECTION OF A COLLECTION OF HYPERPLANES? A *linear equation* in the variables $x_1, x_2, ..., x_n$ is an equation of the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$ where *constant term* is $b \in \mathbb{K}$ and the *coefficients* are the scalars $a_1, a_2, ..., a_n \in \mathbb{K}$. A *linear system*, short for a *system of linear equations*, is a finite collection of linear equations. A *solution* to a linear system is a vector $\vec{v} := v_1 \vec{e}_1 + v_2 \vec{e}_2 + \cdots + v_n \vec{e}_n \in \mathbb{K}^n$ such that the corresponding point, relative to the origin, lies on each hyperplane in the collection. The *solution set* of a linear system is the set of all solutions. The phrase "to solve the system" means to explicitly describe the solution set.

4.0.0 Problem. Solve the linear system $\begin{cases} x - 2y = -1 \\ -x + 3y = -3 \end{cases}$.

Geometric solution. These lines intersect only at the point (3, 2).

4.0.1 Problem. Solve the linear system $\begin{cases} x - 2y = -1 \\ -x + 2y = -3 \end{cases}$.

Geometric solution. The lines are parallel, so there is no solution. \Box

4.0.2 Problem. Solve the linear system
$$\begin{cases} x - 2y = -1 \\ -x + 2y = 1 \end{cases}$$

Geometric solution. The lines coincide, so every point on one line belongs to the solution set. Since the points (-1,0) and (1,1) lie on both lines, the solution set can be described as

$$\{(1-t)(-\vec{e}_1)+t(\vec{e}_1+\vec{e}_2) \mid t \in \mathbb{K}\} = \{(2t-1,t) \mid t \in \mathbb{K}\}.$$

Alternatively, we also have

$$\left\{ (1-s) \left(\frac{1}{2} \, \vec{e}_2\right) + s(\vec{e}_1 + \vec{e}_2) \mid s \in \mathbb{K} \right\} = \left\{ \left(s, \frac{1}{2}(s+1)\right) \mid s \in \mathbb{K} \right\},\$$

because the points (0, 1/2) and (1, 1) also lie on both lines.

Figure 4.0: Intersection of two lines

Figure 4.1: Two parallel lines

4.0.3 Definition. A linear system is *consistent* when it has at least one solution; it is *inconsistent* when it has no solutions. Geometrically, a linear system is consistent if its hyperplanes have a nonempty intersection.

How CAN WE FIND THE SOLUTION SET OF A LINEAR SYSTEM? Two linear systems are *equivalent* if they have the same solution set. The basic strategy to solve a linear system is to recursively replace a given linear system with another equivalent one that is easier to solve. The following three operations, called *elementary row operations*, produce equivalent linear systems. As an abbreviation, we use the vector \vec{r}_j to denote the *j*-th equation in a linear system.

(row add) Replace one equation by the sum of that equation and a scalar multiple of another. Symbolically, we have $\vec{r}_j + c \vec{r}_k \mapsto \vec{r}_j$ for some $j \neq k$ and $c \in \mathbb{K}$.

(row swap) Interchange two equations or $\begin{cases} \vec{r}_j \mapsto \vec{r}_k \\ \vec{r}_k \mapsto \vec{r}_j \end{cases}$ for some $j \neq k$. (row multiple) Multiply all the terms in an equation by a nonzero constant or $c \vec{r}_j \mapsto \vec{r}_j$ for some $0 \neq c \in \mathbb{K}$.

As we will see, the elementary row operations produce equivalent linear systems because they are "invertible"; they can be undone by another elementary operation.

4.0.4 Problem. Solve the linear system
$$\begin{cases} x - 2y + z = 0\\ 2y - 8z = 8\\ -4x + 5y + 9z = -9 \end{cases}$$
.

Solution. Elementary row operations give

$$\begin{cases} x - 2y + z = 0\\ 2y - 8z = 8\\ -4x + 5y + 9z = -9 \end{cases} \xrightarrow{\frac{1}{2}\vec{r}_{2} \mapsto \vec{r}_{2}} \begin{cases} x - 2y + z = 0\\ y - 4z = 4\\ -4x + 5y + 9z = -9 \end{cases} \xrightarrow{\vec{r}_{3} + 4\vec{r}_{1} \mapsto \vec{r}_{3}} \begin{cases} x - 2y + z = 0\\ y - 4z = 4\\ -3y + 13z = -9 \end{cases}$$

$$\xrightarrow{\vec{r}_{3} + 3\vec{r}_{2} \mapsto \vec{r}_{3}} \begin{cases} x - 2y + z = 0\\ y - 4z = 4\\ z = 3 \end{cases} \xrightarrow{\vec{r}_{2} + 4\vec{r}_{3} \mapsto \vec{r}_{2}} \begin{cases} x - 2y + z = 0\\ y - 4z = 4\\ z = 3 \end{cases}$$

$$\xrightarrow{\vec{r}_{1} - \vec{r}_{3} \mapsto \vec{r}_{1}} \begin{cases} x - 2y = -3\\ y = 16\\ z = 3 \end{cases} \xrightarrow{\vec{r}_{1} + 2\vec{r}_{2} \mapsto \vec{r}_{1}} \begin{cases} x = 29\\ y = 16\\ z = 3 \end{cases}$$

 \square

Thus, the unique solution is the point $(29, 16, 3) \in \mathbb{R}^3$.

Verification. We have
$$\begin{cases} (29) - 2(16) + (3) = 0\\ 2(16) - 8(3) = 8\\ -4(29) + 5(16) + 9(3) = -9 \end{cases}$$

4.0.5 Problem. Solve the linear system $\begin{cases} y - 4z = 8\\ 2x - 3y + 2z = 1\\ 5x - 8y + 7z = 1 \end{cases}$.

Solution. Elementary row operations give

$$\begin{cases} y - 4z = 8\\ 2x - 3y + 2z = 1\\ 5x - 8y + 7z = 1 \end{cases} \xrightarrow{\vec{r}_3 - \frac{5}{2}\vec{r}_2 \mapsto \vec{r}_3} \begin{cases} y - 4z = 8\\ 2x - 3y + 2z = 1\\ -\frac{1}{2}y + 2z = -\frac{3}{2} \end{cases} \xrightarrow{\vec{r}_3 + \frac{1}{2}\vec{r}_1 \mapsto \vec{r}_3} \begin{cases} y - 4z = 8\\ 2x - 3y + 2z = 1\\ 0 = \frac{5}{2} \end{cases},$$

A linear system is most often given by writing each linear equation on a separate row.

so these equivalent systems have no solutions and the original system is inconsistent. $\hfill \Box$

4.0.6 Problem. Solve the linear system
$$\begin{cases} \sqrt{2} \, \mathrm{i} \, x + y = 0\\ -x + \sqrt{2} \, \mathrm{i} \, y + z = 0\\ -y + \sqrt{2} \, \mathrm{i} \, z = 0 \end{cases}.$$

Solution. Elementary row operations give

$$\begin{cases} \sqrt{2}\,\mathrm{i}\,x + y = 0\\ -x + \sqrt{2}\,\mathrm{i}\,y + z = 0\\ -y + \sqrt{2}\,\mathrm{i}\,z = 0 \end{cases} \xrightarrow{\vec{r}_1 + \sqrt{2}\,\mathrm{i}\,\vec{r}_2 \mapsto \vec{r}_1} \begin{cases} -y + \sqrt{2}\,\mathrm{i}\,z = 0\\ -x + \sqrt{2}\,\mathrm{i}\,y + z = 0\\ -y + \sqrt{2}\,\mathrm{i}\,z = 0 \end{cases} \\ \xrightarrow{\vec{r}_3 - \vec{r}_1 \mapsto \vec{r}_3} \begin{cases} -y + \sqrt{2}\,\mathrm{i}\,z = 0\\ -x + \sqrt{2}\,\mathrm{i}\,y + z = 0\\ 0 = 0 \end{cases} \xrightarrow{\vec{r}_2 + \sqrt{2}\,\mathrm{i}\,\vec{r}_1 \mapsto \vec{r}_2} \begin{cases} -y + \sqrt{2}\,\mathrm{i}\,z = 0\\ -x - z = 0\\ 0 = 0 \end{cases} \\ \xrightarrow{\vec{r}_1 \mapsto \vec{r}_1} \begin{cases} -y - \sqrt{2}\,\mathrm{i}\,z = 0\\ 0 = 0 \end{cases} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_2} \begin{cases} y - \sqrt{2}\,\mathrm{i}\,z = 0\\ 0 = 0 \end{cases} \xrightarrow{\vec{r}_2 \to \vec{r}_2} \begin{cases} y - \sqrt{2}\,\mathrm{i}\,z = 0\\ 0 = 0 \end{cases} \xrightarrow{\vec{r}_2 \to \vec{r}_2} \begin{cases} y - \sqrt{2}\,\mathrm{i}\,z = 0\\ 0 = 0 \end{cases} \xrightarrow{\vec{r}_2 \to \vec{r}_2} \end{cases} \\ \xrightarrow{\vec{r}_2 \to \vec{r}_2} \begin{cases} y - \sqrt{2}\,\mathrm{i}\,z = 0\\ 0 = 0 \end{cases} \xrightarrow{\vec{r}_2 \to \vec{r}_2} \end{cases} \xrightarrow{\vec{r}_2 \to \vec{r}_2} \begin{cases} y - \sqrt{2}\,\mathrm{i}\,z = 0\\ 0 = 0 \end{cases} \xrightarrow{\vec{r}_2 \to \vec{r}_2} \end{cases}$$

so the solutions set is

$$\left\{-t\,\vec{e}_1+\sqrt{2}\,\mathrm{i}\,t\,\vec{e}_2+t\,\vec{e}_3\mid t\in\mathbb{C}\right\}=\left\{t\,\left[\begin{matrix}-1\\\sqrt{2}\,\mathrm{i}\\1\end{matrix}\right]\mid t\in\mathbb{C}\right\}.\qquad\Box$$

Verification. We have
$$\begin{cases} \sqrt{2}i(-t) + (\sqrt{2}it) = 0\\ -(-t) + \sqrt{2}i(\sqrt{2}it) + (t) = 0\\ -(\sqrt{2}it) + \sqrt{2}i(t) = 0 \end{cases}.$$

Exercises

4.0.7 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample.

- *i*. In a linear system, the same equation can appear more than once.
- *ii.* A linear system must have more than one linear equation.
- *iii.* In a linear system, the number of equations must equal the number of variables.
- iv. All linear systems have a nonempty solution set.
- *v*. A consistent linear system must have exactly one solution.
- vi. A linear system is inconsistent if it has infinitely many solutions.
- vii. There are four types of elementary row operations.
- *viii.* Multiplying an equation by 0 produces an equivalent linear system.

4.0.8 Problem. Solve the linear system
$$\begin{cases} y + 4z = -5\\ x + 3y + 5z = -2\\ 3x + 7y + 7z = 6 \end{cases}$$
.

4.0.9 Problem. Solve the linear system

$$\left\{ \begin{array}{ccc} \mathrm{i}\,z_1\,+\,(1\,+\,\mathrm{i})\,z_2 &=\,\mathrm{i}\\ (1\,-\,\mathrm{i})\,z_1\,+\,&z_2\,-\,\mathrm{i}\,z_3\,=\,1\\ \mathrm{i}\,z_2\,+\,&z_3\,=\,1 \end{array} \right\}$$

4.0.10 Problem. Establish that the elementary row operations are invertible by proving the following identities.

- *i*. For all $j \neq k$ and all $c \in \mathbb{K}$, show that the row add operations $\vec{r}_j + c \vec{r}_k \mapsto \vec{r}_j$ an $\vec{r}_j c \vec{r}_k \mapsto \vec{r}_j$ compose to the identity in either order.
- *ii.* For all $j \neq k$, show that the row swap operation is involutive; it is its own inverse.
- *iii.* For all $0 \neq c \in \mathbb{K}$, show that the row multiple operations $c \vec{r}_i \mapsto \vec{r}_j$ and $\frac{1}{c} \vec{r}_i \mapsto \vec{r}_j$ compose to the identity in either order.

4.1 Matrices

How CAN WE WORK EFFICIENTLY WITH LINEAR SYSTEMS? For any two nonnegative integers m and n, an $(m \times n)$ -matrix is an array of scalars consisting with m rows and n columns:

$$\mathbf{A} := [a_{j,k}] = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\ a_{3,1} & a_{3,2} & a_{3,3} & \cdots & a_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & a_{m,3} & \cdots & a_{m,n} \end{bmatrix}.$$

Two matrices are *equal* if they have the same number of rows, the same number of columns, and their corresponding entries are all equal. The two important matrices associated to the linear system

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2 \\ \vdots & \vdots & \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n = b_m \end{cases}$$

are the *coefficient matrix* and the *augmented matrix*

$$\mathbf{A} = [a_{j,k}] = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix} \text{ and } \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_1 \\ a_{1,1} & a_{1,2} & \cdots & a_{1,n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} & b_m \end{bmatrix}.$$

The elementary row operation introduced for linear systems naturally extend to matrices.

4.1.0 Problem. Solve the linear system $\begin{cases} 2x + 2y &= 0 \\ x - 2y - iz = 0 \\ ix + y + z = 0 \end{cases}$.

The mathematical term "matrix" was coined in 1850 by J.J. Sylvester

Solution. Elementary row operations applied to the augmented matrix associated to this linear system give

$$\begin{array}{c} 2 & 2 & 0 & 0 \\ 1 & -2 & -i & 0 \\ i & 1 & 1 & 0 \end{array} \right] \xrightarrow{\frac{1}{2}\vec{r}_{1} \mapsto \vec{r}_{1}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & -2 & -i & 0 \\ i & 1 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_{2} - \vec{r}_{1} \mapsto \vec{r}_{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -i & 0 \\ 0 & 1 - i & 1 & 0 \end{bmatrix} \xrightarrow{(1+i)\vec{r}_{3} \mapsto \vec{r}_{3}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -i & 0 \\ 0 & 2 & 1 + i & 0 \end{bmatrix} \\ \xrightarrow{\vec{r}_{3} + \vec{r}_{2} \mapsto \vec{r}_{3}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -i & 0 \\ 0 & 1 - i & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_{2} - 3\vec{r}_{3} \mapsto \vec{r}_{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & -3 & -i & 0 \\ 0 & 2 & 1 + i & 0 \end{bmatrix} \\ \xrightarrow{\vec{r}_{3} + \vec{r}_{2} \mapsto \vec{r}_{3}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & -3 & -i & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_{2} - 3\vec{r}_{3} \mapsto \vec{r}_{2}} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & -3 & -i & 0 \\ 0 & 0 & -3 & -i & 0 \\ 0 & 0 & -3 & -i & 0 \\ 0 & 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_{1} + \vec{r}_{3} \mapsto \vec{r}_{1}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \\ \xrightarrow{\vec{r}_{1} - \vec{r}_{2} \mapsto \vec{r}_{1}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_{3} \to \vec{r}_{2} \mapsto \vec{r}_{3}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \\ \xrightarrow{\vec{r}_{3} \mapsto \vec{r}_{3}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{\vec{r}_{3} \to \vec{r}_{2}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} .$$

Hence, the given linear system is equivalent to $\begin{cases} x_1 = 0 \\ x_2 = 0 \\ x_3 = 0 \end{cases}$, so the unique solution is $\vec{\mathbf{0}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.

The next definition describes the "simplest" matrices obtained via elementary row operations.

4.1.1 Definition. The *leading entry* of a row refers to the leftmost nonzero entry. An $(m \times n)$ -matrix is in *reduced row echelon form* if it satisfies the following properties:

- the first *r* rows are nonzero and the last m r rows are zero;
- the leading entry in any row is always to the right of the leading entry of the row above it or, equivalently, when the leading entry in the *j*-th row lies in the *k_j*-th column, we have *k*₁ < *k*₂ < ··· < *k_r* for all 1 ≤ *j* ≤ *r*;
- the leading entry in each nonzero row is 1;
- each leading 1 is the only nonzero entry in its column.

The reduced row echelon can be visualized as

Γ0	0		1	*	*	• • •	*	0	*	*	• • •	*	0	*	*		*]	
0	0		0	0	0		0	1	*	*	• • •	*	0	*	*		*	
:	÷	·	÷	÷	÷	·	÷	÷	÷	÷	·	÷	÷	÷	÷	·	÷	
0	0	• • •	0	0	0	• • •	0	0	0	0	• • •	0	1	*	*	• • •	*	,
0	0	• • •	0	0	0	• • •	0	0	0	0	• • •	0	0	0	0	• • •	0	
:	÷	۰.	÷	÷	÷	٠.	÷	÷	÷	÷	۰.	÷	÷	÷	÷	۰.	÷	
0	0		0	0	0		0	0	0	0		0	0	0	0		0	

where * denotes an arbitrary scalar.

$\left[\begin{smallmatrix}0&0&0&0\\0&0&0&0\\0&0&0&0\end{smallmatrix}\right],$	$\left[\begin{smallmatrix}1&*&*&*\\0&0&0&0\\0&0&0&0\end{smallmatrix}\right],$	$\left[\begin{smallmatrix}0&1&*&*\\0&0&0&0\\0&0&0&0\end{smallmatrix}\right],$
$\left[\begin{smallmatrix} 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right],$	$\left[\begin{smallmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right],$	$\left[\begin{smallmatrix}1&0&*&*\\0&1&*&*\\0&0&0&0\end{smallmatrix}\right],$
$\left[\begin{smallmatrix}1&*&0&*\\0&0&1&*\\0&0&0&0\end{smallmatrix}\right],$	$\left[\begin{smallmatrix}1&*&*&0\\0&0&0&1\\0&0&0&0\end{smallmatrix}\right],$	$\left[\begin{smallmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right],$
$\left[\begin{smallmatrix}0&1&*&0\\0&0&0&1\\0&0&0&0\end{smallmatrix}\right],$	$\left[\begin{smallmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{smallmatrix}\right],$	$\left[\begin{smallmatrix}1&0&0&*\\0&1&0&*\\0&0&1&*\end{smallmatrix}\right],$
$\left[\begin{smallmatrix}1&0&*&0\\0&1&*&0\\0&0&0&1\end{smallmatrix}\right],$	$\left[\begin{smallmatrix} 1 & * & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{smallmatrix}\right],$	$\left[\begin{smallmatrix} 0&1&0&0\\ 0&0&1&0\\ 0&0&0&1 \end{smallmatrix}\right].$

Table 4.1: The distinct reduced row echelon forms for a (3×4) -matrix

The next subsection shows that each matrix is equivalent to a unique matrix in reduced row echelon form and that the reduced row echelon form can be obtained by a (non-unique) sequence of elementary row operations.

4.1.2 Problem. Find the reduced row echelon form of the matrix

0	3	-6			-5	
3	-7	8	-5	8	9	
3	3 -7 -9	12	-9	6	15	

Solution. Elementary row operations give

$$\begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ \underline{3} & -9 & 12 & -9 & 6 & 15 \end{bmatrix} \xrightarrow{\frac{1}{3}\vec{r}_{3} \mapsto \vec{r}_{3}} \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ \underline{1} & -3 & 4 & -3 & 2 & 5 \end{bmatrix} \xrightarrow{\vec{r}_{3} \mapsto \vec{r}_{1}} \begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

$$\xrightarrow{\vec{r}_{2} - 3\vec{r}_{1} \mapsto \vec{r}_{2}} \begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 2 & -4 & 4 & 2 & -6 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix} \xrightarrow{\frac{1}{2}\vec{r}_{2} \mapsto \vec{r}_{2}} \begin{bmatrix} 1 & -3 & 4 & -3 & 2 & 5 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix} \xrightarrow{\vec{r}_{1} + 3\vec{r}_{2} \mapsto \vec{r}_{1}} \begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 3 & -6 & 6 & 4 & -5 \end{bmatrix}$$

$$\xrightarrow{\vec{r}_{3} - 3\vec{r}_{2} \mapsto \vec{r}_{3}} \begin{bmatrix} 1 & 0 & -2 & 3 & 5 & -4 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \xrightarrow{\vec{r}_{1} - 5\vec{r}_{3} \mapsto \vec{r}_{1}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 1 & -3 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} \xrightarrow{\vec{r}_{2} - \vec{r}_{3} \mapsto \vec{r}_{2}} \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix} .$$

Exercises

4.1.3 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample.

- *i*. A matrix must have the same number of row and columns.
- *ii.* The matrix entry $a_{i,k}$ lies in the *j*th row and the *k*th column.
- *iii.* For a given linear system, the associated augmented matrix has one more row than the associated coefficient matrix.
- *iv.* If a linear system has m equations and n variables, then the associated augmented matrix has m rows and n + 1 columns.
- v. The zero matrix is in reduced row echelon form.

4.1.4 Problem. Find the reduced row echelon form of the matrix

$$\begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 5 \\ 1 & -1 & -3 \\ 1 & 0 & -1 \end{bmatrix}.$$

4.1.5 Problem. List all of the distinct reduced row echelon forms for a (4×6) -matrix.

4.1.6 Problem. Examine compositions of the row add operations.

i. For all $j \neq k$ and all $c, d \in \mathbb{K}$, show that the composition, in either order, of row add operations $\vec{r}_j + c \vec{r}_k \mapsto \vec{r}_j$ and $\vec{r}_j + d \vec{r}_k \mapsto \vec{r}_j$ equals the row add operation $\vec{r}_j + (c+d) \vec{r}_k \mapsto \vec{r}_j$.