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ii. For all j 6= ` and all c, d 2 K, show that the row add operations
~rk + d~r` 7!~rk and~rj + c~rk 7!~rj fail to commute

iii. For all i 6= `, j 6= k and all c, d 2 K, show that the row add
operations~ri + c~rj 7!~ri and~rk + d~r` 7!~rk fail to commute.

4.1.7 Problem. Find all solutions to the linear system with augmented
matrix 2

64

4 1 4 8 b1
0 3 1 8 b2
6 7 8 7 b3
9 2 9 8 b4

3

75

where the constant term vector ~b is either

2

6664

17
12
28
28

3

7775
or

2

6664

17.01
12.07
28.07
28.06

3

7775
.

4.2 Reduced Row Echelon Form

How should we find the reduced row echelon form of a
matrix? The next algorithm establishes that every matrix is equivalent
to a matrix in reduced row echelon form.

A description of this algorithm already
appears in a Chinese mathematical text
from 179 CE.

4.2.0 Algorithm (Row reduction).
input: an (m ⇥ n)-matrix A = [aj,k].
output: an (m ⇥ n)-matrix B = [bj,k] in reduced

row echelon form that is equivalent to A.
Set B := A. initialize output matrix
Set r := 0. initialize count of leading entries
For k from 1 to n do loop over the columns

If there exists j with r < j 6 m and bj,k 6= 0, then decide if there is another leading entry
Set r := r + 1. increment count of leading entries
Choose j with r 6 j 6 m such that bj,k 6= 0. select entry that will become leading one
Multiply the j-th row in B by b�1

j,k . make selected leading entry equal to 1
Swap j-th and r-th rows in B. position leading one in r-th row
For ` from 1 to m with ` 6= r do looping over the other rows

Multiply the r-th row by �b`,k and create zero entries in k-th column
add it to the `-th row in B.

Return the matrix B.

Although Algorithm 4.2.0 gives a
uniform procedure for finding the
reduced row echelon form a matrix, it
can be more computational efficient to
use a different sequence of elementary
row operations to calculate the reduced
row echelon form.

Correctness. The conditional "if" statement ensures that the first
r rows are nonzero and the last m � r rows are zero. The index k
increases from 1 to n, so the chosen entry bj,k is the first nonzero
entry in the j-th row. Since the index r counts the leading entries
and j > r, the leading entry in the r-th row occurs to the right of the
leading entry in the (r � 1)-st row. The final loop, over `, ensures that
each leading one is the only nonzero entry its column.
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4.2.1 Corollary. Every matrix is equivalent to a matrix in reduced row
echelon form. Moreover, the reduced row echelon form can be obtained by a
sequence of elementary operations.

By identifying a linear system with its
augmented matrix, we extend the
notion of equivalent linear systems,
namely those with the same solution
set, to all matrices.

Proof. Apply the row reduction algorithm to a given matrix.

4.2.2 Definition. The rank of a matrix A is the number r of nonzero
rows in the reduced row echelon form. It is denoted rank(A) = r.
When A is the coefficient matrix of a linear system, the r variables
corresponding to the columns with leading ones are the leading
variables and the complementary n � r variables are the free variables.

4.2.3 Proposition (Basic bounds on rank). The rank of an (m ⇥ n)-matrix
is at most the minimum of m and n.

Proof. Let A be an (m ⇥ n)-matrix. By definition, the rank of A is the
number of nonzero rows in the reduced row echelon form, so we
have rank(A) = r 6 m. On the other hand, if the leading entry in the
j-th row lies in the kj-th column, then the definition of reduced row
echelon implies that 1 6 k1 < k2 < · · · < kr 6 n. We conclude that
r 6 n because there are at most n integers between 1 and n.

4.2.4 Problem. Solve the linear system
8
<

:

x1 + 2x2 � x3 + 2x4 + x5 = 2
�x1 � 2x2 + x3 + 2x4 + 3x5 = 6
2x1 + 4x2 � 3x3 + 2x4 = 3

�3x1 � 6x2 + 2x3 + 3x5 = 9

9
=

; .

Solution. Applying the row reduction algorithm to the associated
augmented matrix, we obtain
2

64

1 2 �1 2 1 2
�1 �2 1 2 3 6

2 4 �3 2 0 3
�3 �6 2 0 3 9

3

75
~r2+~r1 7!~r2�����!

⇠

2

64

1 2 �1 2 1 2
0 0 0 4 4 8
2 4 �3 2 0 3

�3 �6 2 0 3 9

3

75
~r3�2~r1 7!~r3������!

⇠

2

64

1 2 �1 2 1 2
0 0 0 4 4 8
0 0 �1 �2 �2 �1

�3 �6 2 0 3 9

3

75

~r4+3~r1 7!~r4������!
⇠

2

664

1 2 �1 2 1 2
0 0 0 4 4 8
0 0 �1 �2 �2 �1
0 0 �1 6 6 15

3

775
�~r3 7!~r3����!

⇠

2

64

1 2 �1 2 1 2
0 0 0 4 4 8
0 0 1 2 2 1
0 0 �1 6 6 15

3

75
~r3 7!~r2
~r2 7!~r3����!

⇠

2

64

1 2 �1 2 1 2
0 0 1 2 2 1
0 0 0 4 4 8
0 0 �1 6 6 15

3

75

~r1+~r2 7!~r1�����!
⇠

2

64

1 2 0 4 3 3
0 0 1 2 2 1
0 0 0 4 4 8
0 0 �1 6 6 15

3

75
~r4+~r2 7!~r4�����!

⇠

2

64

1 2 0 4 3 3
0 0 1 2 2 1
0 0 0 4 4 8
0 0 0 8 8 16

3

75
1
4~r3 7!~r3����!

⇠

2

64

1 2 0 4 3 3
0 0 1 2 2 1
0 0 0 1 1 2
0 0 0 8 8 16

3

75

~r1�4~r3 7!~r1������!
⇠

2

64

1 2 0 0 �1 �5
0 0 1 2 2 1
0 0 0 1 1 2
0 0 0 8 8 16

3

75
~r2�2~r3 7!~r2������!

⇠

2

64

1 2 0 0 �1 �5
0 0 1 0 0 �3
0 0 0 1 1 2
0 0 0 8 8 16

3

75
~r4�8~r3 7!~r4������!

⇠

2

64

1 2 0 0 �1 �5
0 0 1 0 0 �3
0 0 0 1 1 2
0 0 0 0 0 0

3

75 .

The reduced row echelon form corresponds to the linear system
(

x1 + 2x2 � x5 =�5
x3 =�3

x4 + x5 = 2

)
=

(
x1 =�5 � 2x2 + x5

x3 =�3
x4 = 2 � x5

)
,
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so the solution set is

8
<

:

2

4
�5�2 t2+t5

t2
�3

2�t5
t5

3

5

������
t2, t5 2 K

9
=

;.

Exercises

4.2.5 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The row reduction algorithm finds the reduced row echelon
form of any matrix.

ii. The rank of a matrix equal the number of nonzero rows in the
matrix.

iii. The rank of a matrix can be determined by applying the Row
Reduction Algorithm.

iv. The rank of the zero matrix is zero.
v. The rank of a matrix is at most the number of rows in the ma-

trix.
vi. The rank of a matrix is at most the number of columns in the

matrix.

4.2.6 Problem. If the reduced row echelon form of the augmented
matrix for some linear system is

2

4
1 �2 0 1 4 5
0 0 1 3 0 �7
0 0 0 0 0 0

3

5 ,

then find the solution set.

4.2.7 Problem. Solve the following system of linear equations:
(

2x2 � 4x3 � 5x4 + 2x5 + 5x6 = 0
x1 � x2 + x3 + 3x4 + x5 � x6 = 0

6x1 � 6x3 + 5x4 + 16x5 + 7x6 = 0

)
.

4.2.8 Problem. For what values of k, ` 2 R, does the linear system
associated to the augmented matrix

2

4
1 �1 �4 �2
1 0 k � 4 `
2 k 2(k + 4) 2k

3

5

have
(i) exactly one solution,

(ii) no solutions, or
(iii) infinitely many solutions?

In case (iii), describe the solution set.

4.2.9 Problem. Determine if the linear systems with the following
augmented matrices are equivalent:

A :=

2

4
6 1 �16 �2 2

�27 5 91 �8 �98
21 �4 �71 6 76

3

5 , B :=

2

4
9 �2 �31 2 32

�3 20 49 �22 �152
3 39 69 �43 �279

3

5 .
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The solution set to a linear system inherits features from the ambient
coordinate space. To understand this structure, we define the span
of a set of vectors, we introduce the fundamental circuits, and we
develop the basic arithmetic of matrices.

5.0 Vector Equations

How can we efficiently describe an infinite solution set?
We merge addition and scalar multiplication into one concept.

5.0.0 Definition. Let m and n be positive integers. For any vectors
~a1,~a2, . . . ,~an in K

m, a linear combination is any vector of the form
~b := c1~a1 + c2~a2 + · · ·+ cn~an where the coefficients c1, c2, . . . , cn are
scalars in K.

The vector equation
x1~a1 + x2~a2 + · · ·+ xn~an = ~b

is an alternative notation for the linear
system whose augmented matrix is⇥
~a1 ~a2 · · · ~an ~b

⇤
.

5.0.1 Problem. Determine if the vector ~b =
h 7

4
�3

i
a linear combination

of the vectors ~a1 :=


1
�2
�5

�
and ~a2 :=


2
5
6

�
.

Solution. We are asked to decide if there exists scalars x1, x2 2 K such
that x1~a1 + x2~a2 = ~b. In other words, we must solve
2

4
7
4

�3

3

5 = x1

2

4
1

�2
�5

3

5+ x2

2

4
2
5
6

3

5 =

2

4
x1 + 2x2

�2x1 + 5x2
�5x1 + 5x2

3

5 or

(
x1 + 2x2 = 7

�2x1 + 5x2 = 4
�5x1 + 6x2 = 3

)
.

The row reduction algorithm [4.2.0] gives

2

4
1 2 7

�2 5 4
�5 6 �3

3

5
~r2+2~r1 7! ~r2
~r3+5~r1 7! ~r3�������!

⇠

2

4
1 2 7
0 9 18
0 16 32

3

5
9�1~r2 7! ~r2

16�1~r3 7! ~r3�������!
⇠

2

4
1 2 7
0 1 2
0 1 2

3

5
~r1�2~r2 7! ~r1
~r3�~r2 7! ~r3�������!

⇠

2

4
1 0 3
0 1 2
0 0 0

3

5 .

Hence, we have ~b = 3~a1 + 2~a2.

Linear combinations create the most important subsets of the
ambient coordinate space.

5.0.2 Definition. The span of the vectors ~a1,~a2, . . . ,~an 2 K
m is the set

of all their linear combinations. We write

Span(~a1,~a2, . . . ,~an) := {c1~a1 + c2~a2 + · · ·+ cn~an 2 K
m | c1, c2, . . . , cn 2 K} .
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The membership ~b 2 Span(~a1,~a2, . . . ,~an) is equivalent to the
linear system with the augmented matrix

⇥
~a1 ~a2 · · · ~an ~b

⇤
being

consistent or to the vector equation x1~a1 + x2~a2 + · · ·+ xn~an = ~b
having at least one solution.

The span of one or two vectors is simply a line or plane respec-
tively. When~0 6= ~a 2 K

m, the set Span(~a) consists of all scalar
multiples of ~a. Geometrically, this is the line in K

m passing through
the origin and the point with position vector ~a relative to the origin.
Similarly, if ~a1 and ~a2 are nonzero nonparallel vectors in K

3, then
Span(~a1,~a2) is the plane in K

3 that contains the origin and the points
with position vectors ~a1,~a2 relative to the origin.

Since we have

x1~e1 + x2~e2 + · · ·+ xm~em =

2

4
x1
x2...
xn

3

5 ,

the standard basis vectors ~e1,~e2, . . . ,~em
span K

m or equivalently we have
Span(~e1,~e2, . . . ,~em) = K

m.

5.0.3 Problem. Show that ~a1 :=
⇥ 2

3
⇤

and ~a2 :=
⇥ 1

2
⇤

span K
2.

Solution. We need to show that an arbitrary vector ~b =
⇥ x

y
⇤
2 K

2 is a
linear combination of ~a1 and ~a2. Since we have


2 1 x
3 2 y

�
~r2�~r1 7!~r2�����!

⇠


2 1 x
1 1 y � x

�
~r1�2~r2 7!~r1������!

⇠


0 �1 3x � 2y
1 1 y � x

� ~r1 7! ~r2
~r2 7! ~r1����!

⇠


1 1 y � x
0 �1 3x � 2y

�

~r1+~r2 7!~r1�����!
⇠


1 0 2x � y
0 �1 3x � 2y

�
�~r2 7!~r2����!

⇠


1 0 2x � y
0 1 2y � 3x

�
,

it follows that (2x � y)~a1 + (�3x + 2y)~a2 = ~b and we deduce that
Span(~a1,~a2) = K

2.

Linear combinations also lead to a new matrix operation.

5.0.4 Definition. Let A be an (m ⇥ n)-matrix whose columns are the
vectors ~a1,~a2, . . . ,~an 2 K

m. For any vector ~x 2 K
n, the product of the

matrix A and the vector ~x, denoted A~x, is the linear combination of
the columns of A with the corresponding entries of x as coefficients:

A~x = [~a1 ~a2 · · · ~an]

2

664

x1
x2...
xn

3

775 := x1~a1 + x2~a2 + · · ·+ xn~an .

This definition requires that the number
of columns in the matrix to equal the
number of entries in the vector.

For instance, we have


1 2 �1
0 �5 3

� 2

4
4
3
7

3

5 = 4


1
0

�
+ 3


2

�5

�
+ 7


�1

3

�
=


4
0

�
+


6

�15

�
+


�7
21

�
=


3
6

�
.

An operation that is compatible with both addition and scalar
multiplication is called a linear operation.

5.0.5 Proposition (Linearity of matrix multiplication). Let m and n be
positive integers, let c and d be scalars in K, and let ~v and ~w be vectors in
K

n. For any (m ⇥ n)-matrix A, we have A(c~v + d ~w) = c(A~v) + d(A~w).
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Proof. Let ~a1,~a2, . . . ,~an 2 K
m denote the columns of the matrix A.

The definition of matrix multiplication, the entrywise arithmetic of
vectors, and the properties of a scalar multiplication give

A(c~u + d~v) = [~a1 ~a2 · · · ~an]

2

64

cv1 + dw1
cv2 + dw2...
cvn + dwn

3

75

= (cv1 + dw1)~a1 + (cv2 + dw2)~a2 + · · ·+ (cvn + dwn)~an

= c(v1~a1 + v2~a2 + · · ·+ vn~an) + d(w1~a1 + w2~a2 + · · ·+ wn~an)

= c(A~v) + d(A~w) .

Exercises

5.0.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. A linear combination of vectors is a scalar.
ii. A linear combination of a single vector is a scalar multiple of the

vector.
iii. The zero vector is a linear combination of any subset of vectors.
iv. Every linear system can be expressed as a vector equation.
v. The span of a collection of vectors is a vector.

vi. The product of a matrix and a vector is a matrix.
vii. The product of a matrix and a vector is a vector.

viii. For the product of a matrix and a vector to be well-defined, the
number of entries in the vector must equal the number of rows
in the matrix.

ix. For an (m ⇥ n)-matrix A, a vector ~v 2 K
n, and a scalar c 2 K, we

always have A(c~v) = c(A~v).
x. For an (m ⇥ n)-matrix A and vectors ~v, ~w 2 K

n, we always have
A(~v + ~w) = (A~v) + (A~w).

5.0.7 Problem. Solve the linear system

(
y + 4z = �5

x + 3y + 5z = �2
3x + 7y + 7z = 6

)
.

5.0.8 Problem. Consider an arbitrary system of linear equations
A~x = ~b where the coefficient matrix A and constant term vector ~b
have all real entries.

(i) If A~x = ~b has more than one solution, then prove that it has
infinitely many solutions.

(ii) If there is a solution with entries in the complex numbers,
then show that there is also a solution with entries in the real
numbers.

5.0.9 Problem. Solve the linear system
(

i z1 + (1 + i) z2 = i
(1 � i) z1 + z2 � i z3 = 1

i z2 + z3 = 1

)
.
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5.0.10 Problem. Does ~v :=


1 � i
1 + i
1 � 2 i

�
belong to Span(~w1, ~w2, ~w3) where

~w1 :=

2

4
0

�i
�1

3

5 , ~w2 :=

2

4
�i

1+i
�i

3

5 , ~w3 :=

2

4
2

�2+2 i
3

3

5 .

5.1 Kernel of a Matrix

What does matrix multiplication map to the zero vector?
Understanding the collection of all vectors that become to the zero
vector when multiplied by a matrix is surprisingly useful.

5.1.0 Definition. The kernel of an (m ⇥ n)-matrix A is set of all vectors
K

n such that their product with A equals the zero vector;

Ker(A) :=
�
~x 2 K

n �� A~x =~0
 

.

Some introductory textbooks refer to this set as the ‘null space’.

The word "kernel" comes from a
diminutive of "corn seed", but the
mathematical usage follows the more
general meaning of the nucleus of a
structure or a core.

5.1.1 Lemma. Any linear combination of vectors lying in the kernel of a
matrix also belongs to the kernel.

Proof. Let A be an (m ⇥ n)-matrix. For any vectors ~v1,~v2, . . . ,~vk 2 K
n

lying in the kernel of the matrix A and any scalars c1, c2, . . . , ck 2 K,
the linearity of matrix multiplication [5.0.5] gives

A(c1 ~v1 + c2 ~v2 + · · ·+ ck ~vk) = c1(A~v1) + c2(A~v2) + · · ·+ ck(A~vk)

= c1~0 + c2~0 + · · ·+ ck~0 =~0 .

so we conclude that c1 ~v1 + c2 ~v2 + · · ·+ ck ~vk 2 Ker(A).

5.1.2 Problem. Solve the linear system A~x =~0 where

A :=

2

4
0 1 �2 0 1 5 0
0 0 0 1 3 �7 0
0 0 0 0 0 0 1

3

5 .

Solution. Since the matrix A is in reduced row echelon form, we
obtain the general solution by isolating the leading variables:
8
<

:

x2 � 2x3 + x5 + 5x6 = 0
x4 + 3x5 � 7x6 = 0

x7 = 0

9
=

; =

8
<

:

x2 = 2x3 � x5 � 5x6
x4 = � 3x5 + 7x6

x7 = 0

9
=

; .

It follows that Ker(A) is the set
8
>>>>>>><

>>>>>>>:

2

66666664

x1
2x3 � x5 � 5x6

x3
�3x5 + 7x6

x5
x6
0

3

77777775

�������������

x1, x3, x5, x6 2 K

9
>>>>>>>=

>>>>>>>;

=

8
>>>>>>><

>>>>>>>:

x1

2

66666664

1
0
0
0
0
0
0

3

77777775

+ x3

2

66666664

0
2
1
0
0
0
0

3

77777775

+ x5

2

66666664

0
�1

0
�3

1
0
0

3

77777775

+ x6

2

66666664

0
�5

0
7
0
1
0

3

77777775

�������������

x1, x2, x5, x6 2 K

9
>>>>>>>=

>>>>>>>;

,
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or equivalently

Ker(A) = Span

0

BB@

2

664

1
0
0
0
0
0
0

3

775 ,

2

664

0
2
1
0
0
0
0

3

775 ,

2

664

0
�1

0
�3

1
0
0

3

775 ,

2

664

0
�5

0
7
0
1
0

3

775

1

CCA .

To go directly from the matrix in reduced row echelon form to the
vectors that span the kernel, we need some notation and terminology.

5.1.3 Definition. For all 1 6 j 6 m and all 1 6 k 6 n, let aj,k 2 K

denote the (j, k)-entry of an (m ⇥ n)-matrix A. Assume that the matrix
A is in reduced row echelon form and set r := rank(A). For all
1 6 j 6 r, the leading entry in the j-th row lies in the kj-th column
and 1 6 k1 < k2 < · · · < kr 6 n. When the `-th column of A does not
contain a leading one, the associated fundamental circuit is the vector

~e` � a1,`~ek1 � a2,`~ek2 � · · ·� ar,`~ekr 2 K
n .

The number of nonzero entries is at most r + 1. When the number of
columns containing leading ones to the left of `-th column is i, the
fundamental circuit equals ~e` � a1,`~ek1 � a2,`~ek2 � · · ·� ai,`~eki because
ai+1,` = ai+2,` = · · · = am,` = 0. Since each column not containing a
leading one produces a fundamental circuit, the matrix A has n � r
distinct fundamental circuits.

We may visualize the reduced row
echelon form as

2

6666666664

k1 ki ` ki+1
1 · · · 1 · · · 0 · · · a1,` · · · 0 · · ·
2 · · · 0 · · · 0 · · · a2,` · · · 0 · · ·

...
...

...
...

i · · · 0 · · · 1 · · · ai,` · · · 0 · · ·
i+1 · · · 0 · · · 0 · · · 0 · · · 1 · · ·
i+2 · · · 0 · · · 0 · · · 0 · · · 0 · · ·...

...
...

...
m · · · 0 · · · 0 · · · 0 · · · 0 · · ·

3

7777777775

5.1.4 Proposition. The kernel of a matrix is spanned by the fundamental
circuits associated to its reduced row echelon form.

For any two set A and B, the following
conditions are equivalent:
a. for all a 2 A , we have a 2 B,
b. A is a subset of B,
c. B is a superset of A ,
d. A \B = A , and
e. A [B = B.
When A is a subset of B, we write
A ✓ B. Similarly, when B is a superset
of A, we write B ◆ A. By design, the
‘subset’ and ‘superset’ symbols remind
us of ‘6’ and ‘>’ respectively.

Proof. Let A be an (m ⇥ n)-matrix. Since elementary row operations
produce equivalent linear systems, we may assume without loss of
generality that A is in reduced row echelon form. To demonstrate the
equality between the kernel of A and the span of the fundamental
circuits, we prove containment in both directions.
◆: Applying Lemma 5.1.1, it suffices to show that every fundamental

circuit belongs to Ker(A). Assuming that it does not contain a
leading one, focus on the `-th column. If the number of leading
ones to left of the `-th column is i, then we have 0 6 i 6 r and the
definition of reduced row echelon form implies that aj,` = 0 for all
j > i. The fundamental circuit associated to the `-th column is the
vector ~v := ~e` � a1,`~ek1 � a2,`~ek2 � · · ·� ai,`~eki , so the definition of
matrix multiplication gives

A~v = 1

2

66666664

a1,`
a2,`...
ai,`
0...
0

3

77777775

� a1,`

2

66666664

1
0...
0
0...
0

3

77777775

� a2,`

2

66666664

0
1...
0
0...
0

3

77777775

� · · ·� ai,`

2

66666664

0
0...
1
0...
0

3

77777775

=

2

66666664

a1,` � a1,`
a2,` � a2,`...
ai,` � ai,`

0...
0

3

77777775

=~0 .
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✓: It remains to show that any vector in the kernel of A is a linear
combination of the fundamental circuits. To accomplish this, let
`1, `2, . . . , `n�r denote the columns of A that do not contain a
leading one and let ~v1,~v2, . . . ,~vn�r be the associated fundamental
circuits. Consider an arbitrary vector ~w in Ker(A) and the linear
combination ~u := ~w � w`1 ~v1 � w`2 ~v2 � · · ·� w`n�r ~vn�r. Since the
first inclusion already establishes that any fundamental circuit lies
in the kernel, Lemma 5.1.1 implies that ~u 2 Ker(A). By definition,
we have ~vi = ~e`i � a1,`i ~ek1 � a2,`i ~ek2 � · · ·� ar,`i ~ekr , so we obtain

~u = ~w � w`1~v1 � w`2~v2 � · · ·� w`n�r~vn�r

= (w1~e1 + w2~e2 + · · ·+ wm~em)�
n�r

Â
i=1

w`i

8
>>:~e`i �

r

Â
j=1

aj,`i ~ekj

9
>>;

=
n�r

Â
i=1

(w`i � w`i )~e`i +
r

Â
j=1

8
>>:wkj +

n�r

Â
i=1

(w`i aj,`i )

9
>>;~ekj

= c1~ek1 + c2~ek2 + · · ·+ cr~ekr

where cj := wkj + Ân�r
i=1 w`i aj,`i 2 K for all 1 6 j 6 r. Thus, we have

~0 = A~u = c1

2

66666664

1
0...
0
0...
0

3

77777775

+ c2

2

66666664

0
1...
0
0...
0

3

77777775

+ · · ·+ cr

2

66666664

0
0...
1
0...
0

3

77777775

=

2

66666664

c1
c2...
cr
0...
0

3

77777775

.

from which we deduce that c1 = c2 = · · · = cr = 0, ~u = ~0, and
~w = w`1~v1 + w`2~v2 + · · ·+ w`n�r~vn�r.

Exercises

5.1.5 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The zero vector always belongs to the kernel of a matrix.
ii. Every vector belongs to the kernel of the zero matrix.

iii. If a vector belongs to the kernel of a matrix, then all its scalar
multiples also belong to the kernel.

iv. There is a circuit vector associated to every column of a matrix
in reduced row echelon form.

v. A circuit vector also has at least two nonzero entries.


