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8.0.10 Problem. Express the matrix U :=

"
�1 1 �3
�3 �2 �1
�3 0 3

#
as a product

of elementary matrices.

8.1 LU-Factorizations

How do we interpret the row reduction algorithm as
matrix multiplication? Any expression of a matrix as a product
of two or more matrices is called a matrix factorization.

We first demonstrate some advantages of having an auspicious
matrix factorization.

8.1.0 Problem. Consider the matrix factorization

A :=

2

64
3 �7 �2 2

�3 5 1 0
6 �4 0 �5

�9 5 �5 12

3

75 =

2

64
1 0 0 0

�1 1 0 0
2 �5 1 0

�3 8 3 1

3

75

2

64
3 �7 �2 2
0 �2 �1 2
0 0 �1 1
0 0 0 �1

3

75 = L U .

Use this factorization of A to solve A~x = ~b where ~b = [�9 5 7 11]T.

Proof. To solve the non-homogeneous linear system L~y = ~b, we need
only 6 multiplications and 6 additions:

[L ~b] =

2

64
1 0 0 0 �9

�1 1 0 0 5
2 �5 1 0 7

�3 8 3 1 11

3

75

~r2 7!~r2�(�1)~r1
~r3 7!~r3�2~r1
~r4 7!~r4�(�3)~r1���������!

⇠

2

64
1 0 0 0 �9
0 1 0 0 �4
0 �5 1 0 25
0 8 3 1 �16

3

75

~r3 7!~r3�(�5)~r2
~r4 7!~r4�8~r2���������!

⇠

2

64
1 0 0 0 �9
0 1 0 0 �4
0 0 1 0 5
0 0 3 1 16

3

75
~r4 7!~r4�3~r3�������!

⇠

2

64
1 0 0 0 �9
0 1 0 0 �4
0 0 1 0 5
0 0 0 1 1

3

75 .

Solving U~x = ~y requires 9 multiplications and 6 additions:

[U ~y] =

2

64
3 �7 �2 2 �9
0 �2 �1 2 �4
0 0 �1 1 5
0 0 0 �1 1

3

75

~r1 7!~r1�(�2)~r4
~r2 7!~r2�(�2)~r4
~r3 7!~r3�(�1)~r4���������!

⇠

2

64
3 �7 �2 0 �7
0 �2 �1 0 �2
0 0 �1 0 6
0 0 0 1 �1

3

75
~r1 7!~r1�2~r3
~r2 7!~r2�~r3�������!

⇠

2

64
3 �7 0 0 �19
0 �2 0 0 �8
0 0 �1 0 6
0 0 0 1 �1

3

75

~r1 7!~r1�(7/2)~r2���������!
⇠

2

64
3 0 0 0 9
0 �2 0 0 �8
0 0 �1 0 6
0 0 0 1 �1

3

75

~r1 7! (1/3)~r1
~r2 7! �(1/2)~r2
~r3 7! �~r3��������!

⇠

2

64
1 0 0 0 3
0 1 0 0 4
0 0 1 0 �6
0 0 0 1 �1

3

75 .

Finding the solution ~x = [3 4 �6 �1]T requires 27 arithmetic
operations, excluding the cost of finding L and U. In contrast, finding
the reduced row echelon form of the augmented matrix [A ~b] takes
at least 62 arithmetic operations.
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8.1.1 Definition. A matrix U := [uj,k] is upper triangular if uj,k = 0 for
all j > k and a matrix L := [`j,k] is unit lower triangular if `j,k = 0 for
all j < k and `j,j = 1 for all j.

U =

2

4
⇤ ⇤ · · · ⇤
0 ⇤ · · · ⇤...

...
. . .

...
0 0 · · · ⇤

3

5

L =

2

4
1 0 . . . 0
⇤ 1 . . . 0...

...
. . .

...
⇤ ⇤ . . . 1

3

5 .
8.1.2 Remark. From the definition of matrix multiplication [7.0.1],
we see that the product of two upper triangular matrices is upper
triangular and the product of two unit lower triangular matrices is
also a unit lower triangular matrix.

8.1.3 Definition. An LU-factorization of a matrix A is an expression
A = L U where L is unit lower triangular matrix and U is upper
triangular matrix.

8.1.4 Proposition. When a square matrix can be transformed using only
elementary row add operations into a upper triangular matrix, the square
matrix has an LU-factorization.

Proof. By hypothesis, there is a sequence of elementary matrices Ri,
for all 1 6 i 6 `, such that R` R`�1 · · ·R1 A = U is an upper triangular
matrix. Each Ri corresponds to an elementary row add operation of
the form~rk 7! ~rk + c~rj for some scalar c 2 K and indices satisfying
j < k. Since each Ri is a unit lower triangular matrix, we obtain
A = (R` R`�1 · · ·R1)�1

U = L U where L := R
�1
1 R

�1
2 · · ·R

�1
` .

8.1.5 Problem. Find an LU-factorization of the matrix

"
1 �1 2
3 �1 7
2 �4 5

#
.

Solution. Elementary row operations give

"
1 �1 2
3 �1 7
2 �4 5

# ~r2 7!~r2�3~r1
~r3 7!~r3�2~r1�������!

⇠

"
1 �1 2
0 2 1
0 �2 1

#
~r3 7!~r3�(�1)~r2���������!

⇠

"
1 �1 2
0 2 1
0 0 2

#
,

so we deduce that L =

"
1 0 0
3 1 0
2 �1 1

#
and U =

"
1 �1 2
0 2 1
0 0 2

#
.

For any scalar c 2 K and indices
satisfying j > k, the elementary row
operation~rj 7!~rj � c~rk means that the
(j, k)-entry of the unit lower triangular
matrix L is c.

Verification. We have

L U =

"
1 0 0
3 1 0
2 �1 1

# "
1 �1 2
0 2 1
0 0 2

#

=

"
(1)(1) + (0)(0) + (0)(0) (1)(�1) + (0)(2) + (0)(0) (1)(2) + (0)(1) + (0)(2)
(3)(1) + (0)(0) + (1)(0) (3)(�1) + (1)(2) + (0)(0) (3)(2) + (1)(1) + (0)(2)

(2)(1) + (�1)(0) + (1)(0) (2)(�1) + (�1)(2) + (1)(0) (2)(2) + (�1)(1) + (1)(2)

#

=

"
1 �1 2
3 �1 7
2 �4 5

#
= A .

8.1.6 Problem. Find an LU-factorization of A :=

2

64
2 4 5 �2

�4 �8 �10 1
2 4 7 8

�6 �12 �11 1

3

75.
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Solution. Elementary row operations yield

2

64
2 4 5 �2

�4 �8 �10 1
2 4 7 8

�6 �12 �11 1

3

75

~r2 7!~r2 � (�2)~r1
~r3 7!~r3 � ~r1
~r4 7!~r4 � (�3)~r1����������!

⇠

2

64
2 4 5 �2
0 0 0 �3
0 0 2 10
0 0 4 �5

3

75
~r4 7!~r4 � 2~r3�������!

⇠

2

64
2 4 5 �2
0 0 0 �3
0 0 2 10
0 0 0 �25

3

75 .

Thus, we have L =

2

64
1 0 0 0

�2 1 0 0
1 0 1 0

�3 0 2 1

3

75 and U =

2

64
2 4 5 �2
0 0 0 �3
0 0 2 10
0 0 0 �25

3

75.

Verification. We have

L U =

2

64
1 0 0 0

�2 1 0 0
1 0 1 0

�3 0 2 1

3

75

2

64
2 4 5 �2
0 0 0 �3
0 0 2 10
0 0 0 �25

3

75

=

2

4
1(2)+0(0)+0(0)+0(0) 1(4)+0(0)+0(0)+0(0) 1(5)+0(0)+0(�2)+0(0) 1(�2)+0(�3)+0(10)+0(�25)

�2(2)+1(0)+0(0)+(0)(0) �2(4)+1(0)+0(0)+0(0) �2(5)+1(0)+0(�2)+0(0) �2(�2)+1(�3)+0(10)+0(�25)
1(2)+0(0)+1(0)+0(0) 1(4)+0(0)+1(0)+0(0) 1(5)+0(0)+1(�2)+0(0) 1(�2)+0(�3)+1(10)+0(�25)

�3(2)+0(0)+2(0)+1(0) �3(4)+0(0)+2(0)+1(0) �3(5)+0(0)+2(�2)+1(0) �3(�2)+0(�3)+2(10)+1(�25)

3

5

=

2

64
2 4 5 �2

�4 �8 �10 1
2 4 7 8

�6 �12 �11 1

3

75 = A .

8.1.7 Remark. There may be more than one possible LU-factorization
of a matrix. For example, we have

L U =

2

64
1 0 0 0

�2 1 0 0
1 �3 1 0

�3 4 2 1

3

75

2

64
2 4 5 �2
0 0 0 �3
0 0 2 1
0 0 0 5

3

75

=

2

4
1(2)+0(0)+0(0)+0(0) 1(4)+0(0)+0(0)+0(0) 1(5)+0(0)+0(�2)+0(0) 1(�2)+0(�3)+0(1)+0(5)

�2(2)+1(0)+0(0)+0(0) �2(4)+1(0)+0(0)+0(0) �2(5)+1(0)+0(�2)+0(0) �2(�2)+1(�3)+0(1)+0(5)
1(2)�3(0)+1(0)+0(0) 1(4)�3(0)+1(0)+0(0) 1(5)�3(0)+1(�2)+0(0) 1(�2)�3(�3)+1(1)+0(5)

�3(2)+4(0)+2(0)+1(0) �3(4)+4(0)+2(0)+1(0) �3(5)+4(0)+2(�2)+1(0) �3(�2)+4(�3)+2(1)+1(5)

3

5

=

2

64
2 4 5 �2

�4 �8 �10 1
2 4 7 8

�6 �12 �11 1

3

75 = A .

8.1.8 Problem. Show that


0 1
1 0

�
does not have an LU-factorization.

Solution. If there were an LU-factorization


0 1
1 0

�
=


1 0
`2,1 1

� 
u1,1 u1,2

0 u2,2

�
=


u1,1 u1,2

`2,1u1,1 `2,1u1,2 + u2,2

�
,

then we would have u1,1 = 0 and `2,1u1,1 = 1 which is impossible.

Exercises

8.1.9 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
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i. A unit lower triangular (n ⇥ n)-matrix has at least n(n�1)
2 entries

that are zero.
ii. Every unit lower triangular matrix is invertible.

iii. Every upper triangular matrix is invertible.

8.1.10 Problem. Prove that the inverse of a unit lower triangular matrix
is also a unit lower triangular matrix.

8.1.11 Problem. Prove that an upper triangular matrix is invertible
if and only if all of its diagonal entries are nonzero. Moreover, prove
that the inverse of an invertible upper triangular matrix is also an
upper triangular matrix.

8.1.12 Problem. Consider the matrix A :=

2

64
�1 �3 1 �2
�3 �7 0 �5

2 4 �2 0
�3 �9 12 4

3

75.

i. Find an LU-factorization of A.

ii. Using the LU-factorization, solve A~x = ~b where ~b :=

2

64
0

�1
�2
10

3

75.

8.1.13 Problem. If A is invertible and has an LU-factorization, then
prove that the unit lower triangular matrix L and the upper triangu-
lar matrix U are uniquely determined.

8.2 Permutations

What is a permutation? For any nonnegative integer n, there are
three equivalent perspectives on the permutations of {1, 2, . . . , n}.

8.2.0 Definition.

• A permutation is an arrangement (also known as a linear ordering)
of the elements in the set {1, 2, . . . , n}. Expressed in one-line nota-
tion, both s := 2 5 4 3 1 and t := 5 2 4 1 3 are permutations of
the set {1, 2, 3, 4, 5}.

1

2

3 4

5

Figure 8.1: Direct graph of s

1

2

3 4

5

Figure 8.2: Direct graph of t

• A permutation is map from the set {1, 2, . . . , n} to itself such that
every element occurs exact once as an image value. From this
viewpoint, the permutations s and t are given by

s(1) = 2 , s(2) = 5 , s(3) = 4 , s(4) = 3 , s(5) = 1 ;

t(1) = 5 , t(2) = 2 , t(3) = 4 , t(4) = 1 , t(5) = 3 .

Regarding permutations as a functions allows one to compose two
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permutation to obtain a new permutation. For example, we have

(s � t)(1) = s
�
t(1)

�
= s(5) = 1 (t � s)(1) = t

�
s(1)

�
= t(2) = 2

(s � t)(2) = s
�
t(2)

�
= s(2) = 5 (t � s)(2) = t

�
s(2)

�
= t(5) = 3

(s � t)(3) = s
�
t(3)

�
= s(4) = 3 (t � s)(3) = t

�
s(3)

�
= t(4) = 1

(s � t)(4) = s
�
t(4)

�
= s(1) = 2 (t � s)(4) = t

�
s(4)

�
= t(3) = 4

(s � t)(5) = s
�
t(5)

�
= s(3) = 4 (t � s)(5) = t

�
s(5)

�
= t(1) = 5

so s � t = 1 5 3 2 4 and t � s = 2 3 1 4 5.
• A permutation is a directed graph with vertex set {1, 2, . . . , n} such

that every vertex is the head of one edge and the tail of one edge.
A permutation matrix is the adjacency matrix of some permutation.

1

2

3 4

5

Figure 8.3: Direct graph of s � t

1

2

3 4

5

Figure 8.4: Direct graph of t � sTo count the number of permutations of the set {1, 2, . . . , n}, we
introduce a function

8.2.1 Definition. For any nonnegative integer n, the factorial function
n 7! n! is defined by

n! := n(n � 1)(n � 2) · · · (3)(2)(1) =
n

’
j=1

j .

Since the empty product is the multiplicative identity, we have 0! = 1.
The first few values of the factorial function are 0! = 1, 1! = 1, 2! = 2,
3! = 6, 4! = 24, 5! = 120, and 6! = 720.

The next lemma gives the most important interpretation of the
factorial function.

8.2.2 Lemma. For any nonnegative integer n, there are n! permutations of
the set {1, 2, . . . , n}.

The empty set, denoted by ?, is the
unique set having no elements.

Inductive proof. There is a unique permutation of the empty set ?, so
the base case holds. As the induction hypothesis, suppose that claim
holds for some nonnegative integer n. To construct a permutation of
the set {1, 2, . . . , n + 1}, any element can appear in the first position, so
there are n + 1 choices. By the induction hypothesis, there are n! ways
to arrange the remaining n elements. Hence, the total number of
permutations of the set {1, 2, . . . , n + 1} is (n + 1)(n!) = (n + 1)!.

8.2.3 Proposition (Characterization of permutation matrices). A matrix
corresponds to a permutation if and only if it is square and has unique
nonzero entry in each row and each column equal to 1.

The 6 permutations of the set {1, 2, 3}
correspond to the matrices:

1 2 3 $
"

1 0 0
0 1 0
0 0 1

#
1 3 2 $

"
1 0 0
0 0 1
0 1 0

#

2 1 3 $
"

0 1 0
1 0 0
0 0 1

#
2 3 1 $

"
0 0 1
1 0 0
0 1 0

#

3 1 3 $
"

0 1 0
0 0 1
1 0 0

#
3 2 1 $

"
0 0 1
0 1 0
1 0 0

#
.

Proof. Every adjacency matrix is square and its entries are either 0
or 1 when there is at most one arrow between each pair of vertices.
Conversely, every square matrix with entries 0 or 1 is the adjacency
matrix for some directed graph. In an adjacency matrix, the 1s in the
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j-th row corresponds to the edges with head at the j-th vertex, and
the 1s in the k-th column correspond to the edges with tail at the k-th
vertex. Therefore, every vertex is the head of one edge and the tail of
one edge if and only if there is exactly one entry of 1 in each row and
each column and 0s elsewhere.

8.2.4 Proposition (Properties of permutation matrices). Let n be a
positive integer and let P be the matrix corresponding to a permutation s of
the set {1, 2, . . . , n}.

i. The k-th column of the matrix P is the vector ~es(k) 2 K
n, so

P = Es(1),1 + Es(2),2 + · · ·+ Es(n),n =
n

Â
k=1

Es(k),k .

ii. The permutation matrix P is invertible and P
�1 = P

T.
iii. The product of two permutation matrices is the matrix corresponding

to the composition of the permutations.

Proof.
i. In the direct graph representing the permutation s, the edge

with tail k has head s(k), so the k-th column is ~es(k).
ii. Since ~ej ·~ek = dj,k, we have

P
T

P = [~es(1) ~es(2) · · · ~es(n)]
T [~es(1) ~es(2) · · · ~es(n)] = I

which shows P
�1 = P

T.
iii. Suppose that the matrix Q corresponds to the permutation t.

From part i, we see that the j-th row of the matrix Q is ~e T
t�1(j).

As ~ej ·~ek = dj,k, we deduce that ~et�1(j) ·~es(k) = 1 if and only
(t � s)(k) = j. Hence, the k-th column in the product Q P is the
vector ~e(t�s)(k).

8.2.5 Warning. Left multiplication by a permutation matrix permutes
the entries of the vector, but the indices (or subscripts) are permuted
in the opposite way. For the matrix corresponding to the permutation
3 1 2, we have 2

4
0 1 0
0 0 1
1 0 0

3

5

2

4
v1
v2
v3

3

5 =

2

4
v2
v3
v1

3

5 .

The first entry is sent to the third entry, the second entry is sent to
the first entry, and the third entry is sent to the second entry, so the
permutation of the entries is 3 1 2. On the other hand, by reading
the subscripts in order, we see that the permutation of the indices
corresponds to 2 3 1 (which is the inverse permutation).

�

Exercises

8.2.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.
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i. The identity matrix is a permutation matrix.
ii. The columns of a permutation matrix are simply a permutation

of the standard basis vectors ~e1,~e2, . . . ,~en.
iii. There is a unique permutation of the empty set.

8.2.7 Problem. An elementary matrix that differs from the identity ma-
trix by interchanging a successive pair of rows is called an adjacent
transposition. Equivalently, an adjacent transposition is a matrix of
the form I + Ej,j+1 + Ej+1,j � Ej,j � Ej+1,j+1 for some row index j.

i. Express the permutation matrix

P :=

2

64
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

3

75

as a product of adjacent transpositions.
ii. Prove that every permutation matrix is a product of adjacent

transpositions.

8.3 More Matrix Factorizations

How can we extend LU-factorizations to all square ma-
trices? An LU-factorization of a matrix is asymmetric—the upper
triangular matrix U has arbitrary scalars along its diagonal whereas
the unit lower triangular matrix L always has 1s on its diagonal.
When the diagonal entries in U are all nonzero, this matrix factors as
the product of a diagonal matrix and a unit upper triangular matrix;

U =

2

66666664

u1,1 u1,2 u1,3 · · · u1,n

0 u2,2 u2,3 · · · u2,n

0 0 u3,3 · · · u3,n
...

...
...

. . .
...

0 0 0 0 un,n

3

77777775

=

2

66666664

u1,1 0 0 · · · 0

0 u2,2 0 · · · 0

0 0 u3,3 · · · 0
...

...
...

. . .
...

0 0 0 · · · un,n

3

77777775

2

66666664

1 u1,2
u1,1

u1,3
u1,1

· · · u1,n
u1,1

0 1 u2,3
u2,2

· · · u2,n
u2,2

0 0 1 · · · u3,n
u3,3...

...
...

. . .
...

0 0 0 0 1

3

77777775

.

In this situation, we obtain A = L D U where L is a unit lower
triangular matrix, D is a diagonal matrix, and U is a unit upper
triangular matrix. For example, we have
"

2 1 1
4 1 0

�2 2 1

#
=

"
1 0 0
2 1 0

�1 �3 1

# "
2 1 1
0 �1 �2
0 0 �4

#
=

"
1 0 0
2 1 0

�1 �3 1

# "
2 0 0
0 �1 0
0 0 �4

# "
1 0.5 0.5
0 1.0 2.0
0 0.0 1.0

#
.

8.3.0 Problem. For any four scalars a, b, c, d 2 K with a 6= 0, determine
the L D U factorization of the (2 ⇥ 2)-matrix

h
a c
b d

i
.
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Solution. If


a c
b d

�
=


1 0
` 1

� 
x 0
0 y

� 
1 u
0 1

�
=


x 0
`x y

� 
1 u
0 1

�
=


x xu
`x `xu + y

�

then we have x = a, ` = b/a, u = c/a, and y = (1/a)(ad � bc).

8.3.1 Definition. A P
T
LU-factorization of a square matrix A is a

product A = P
T

L U where P is a permutation matrix, L is unit lower
triangular, and U is upper triangular.

8.3.2 Problem. Find a P
T
LU-factorization of A =

2

64
0 2 2 4
0 2 2 2
1 2 2 1
2 6 7 5

3

75.

Solution. Elementary operations give

2

64
0 2 2 4
0 2 2 2
1 2 2 1
2 6 7 5

3

75

~r1 7!~r4
~r3 7!~r1
~r4 7!~r3����!

⇠

2

64
1 2 2 1
0 2 2 2
2 6 7 5
0 2 2 4

3

75
~r3 7!~r3�2~r1�������!

⇠

2

64
1 2 2 1
0 2 2 2
0 2 3 3
0 2 2 4

3

75
~r3 7!~r3�~r2
~r4 7!~r4�~r2������!

⇠

2

64
1 2 2 1
0 2 2 2
0 0 1 1
0 0 0 2

3

75 .

Hence, we have
2

64
0 2 2 4
0 2 2 2
1 2 2 1
2 6 7 5

3

75 =

2

64
0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

3

75

T 2

64
1 0 0 0
0 1 0 0
2 1 1 0
0 1 0 1

3

75

2

64
1 2 2 1
0 2 2 2
0 0 1 1
0 0 0 2

3

75 .

The theory of row-reduction is encapsulated by the next result.

8.3.3 Proposition. Every square matrix has a P
T
LU-factorization. When A

is invertible, the matrix A has a P
T
LDU-factorization.

8.3.4 Problem. Find a P
T
LDU-factorization of A =

2

64
0 3 �6 1

�2 �2 2 6
1 1 �1 �1
2 �1 2 �2

3

75.

Solution. Elementary operations yield

2

64
0 3 �6 1

�2 �2 2 6
1 1 �1 �1
2 �1 2 �2

3

75

~r1 7!~r3
~r2 7!~r4
~r3 7!~r1
~r4 7!~r2����!

⇠

2

64
1 1 �1 �1
2 �1 2 �2
0 3 �6 1

�2 �2 2 6

3

75
~r2 7!~r2�2~r1
~r4 7!~r4+2~r1�������!

⇠

2

64
1 1 �1 �1
0 �3 4 0
0 3 �6 1
0 0 0 4

3

75
~r3 7!~r3+~r2������!

⇠

2

64
1 1 �1 �1
0 �3 4 0
0 0 �2 1
0 0 0 4

3

75 .

Hence, we obtain
2

64
0 3 �6 1

�2 �2 2 6
1 1 �1 �1
2 �1 2 �2

3

75 =

2

64
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

3

75

T 2

64
1 0 0 0
2 1 0 0
0 �1 1 0

�2 0 0 1

3

75

2

64
1 0 0 0
0 �3 0 0
0 0 �2 0
0 0 0 4

3

75

2

64
1 1 �1 �1
0 1 �4/3 0
0 0 1 �1/2
0 0 0 1

3

75

as the desired factorization.
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Exercises

8.3.5 Problem. For all t 2 C, find a P
T
LDU-factorization of the matrix

B :=

2

64
2t 2t � 1 2t2 + 2 �t � 9
2 2 2t 0
�6 �7 �6t � 2 �t
�2 �t � 2 �4t + 2 �t2 � 6

3

75 .


