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Certain subsets of the coordinate space K
m inherit the features of

the ambient space. In this chapter, we familiarize ourselves with
linear subspaces, examine the minimum number of scalars needed to
specify a vector in such subspace, and analyze the coordinates that
uniquely determine a vector with such a linear subspace.

9.0 Linear Subspaces

What are the natural collections of vectors? For a fixed a
nonnegative integer m, consider the coordinate space K

m.

9.0.0 Definition. A linear subspace in K
m is any nonempty subset V

of K
m that is closed under taking linear combinations: for any finite

collection of vectors ~v1,~v2, . . . ,~vn in V and any scalars c1, c2, . . . , cn in
K, the linear combination c1 ~v1 + c2 ~v2 + · · ·+ cn ~vn also lies in V.

Every linear subspace contains the zero
vector because the empty sum (when
n = 0) is additive identity.

9.0.1 Remarks.

• The largest linear subspace in K
m is the entire space.

• The smallest linear subspace is the zero subspace {~0} consisting of
just the zero vector.

• For any vectors ~a1,~a2, . . . ,~an 2 K
m, the set Span(~a1,~a2, . . . ,~an) is a

linear subspace.
• Lemma 5.1.1 shows that the kernel of a matrix is a linear subspace.

In addition to its kernel, there are two more canonical linear
spaces associated to a matrix.

9.0.2 Definition. The column space of an (m ⇥ n)-matrix A is the
linear subspace of K

m spanned by the columns of A. The row space
of an (m ⇥ n)-matrix A is the linear subspace of K

n spanned by the
columns of A

T.

9.0.3 Proposition. Two matrices have the same reduced row echelon form if
and only if their row spaces are equal.

Proof. It suffices to show that two matrices related by an elementary
row operation have the same row space. Suppose that, for some
matrices A and B, there exists an elementary matrix R such that
R A = B. To demonstrate that the row spaces of A and B are equal,
we prove containment in both directions.
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✓: The properties of the transpose [5.2.7] imply that B
T = A

T
R

T and
the definition of matrix multiplication [7.0.0] implies that each
row of B is a linear combination of the rows in A. Hence, the row
space of B is contained in the row space of A.

◆: Since elementary matrices are invertible and their inverses
are also elementary matrices [8.0.2], we have A = R

�1
B and

A
T = B

T (R�1)T. Again, we see that each row of A is a linear
combination of the rows in B, so the row space of A is contained
in the row space of A.

9.0.4 Warning. Elementary row operations typically change the
column space of a matrix.

Linear subspaces have preferred spanning sets.

9.0.5 Definition. A basis for a linear subspace V is a collection of
vectors that form a linearly independent spanning set.

9.0.6 Remark. For any positive integer n, the columns of an invertible
(n ⇥ n)-matrix form a basis of K

n, because the characterization of
invertible matrices [8.0.3] shows that they are linearly independent
and span K

n. In particular, the columns ~e1,~e2, . . . ,~en of the identity
matrix form a basis.

9.0.7 Proposition. For any matrix in reduced row echelon form, the
columns containing the leading ones form a basis for its column space and
the nonzero rows form a basis for its row space.

Proof. For any matrix in in reduced row echelon form, the columns
of a matrix containing the leading ones are linearly independent
because they are a subset of the standard basis. Since the nonzero
entries in a column only appear in a row containing a leading one,
we see that any column lies in the span of the columns containing the
leading entries. Hence, the columns containing the leading ones are a
basis for the column space

Since a zero row is trivially a linear combination of the nonzero
rows, these rows span the row space. As the leading ones are the
unique nonzero entry in their column, the only linear combination of
these rows that equals zero is the zero combination, so the nonzero
rows are linearly independent. Thus, the nonzero rows in the matrix
form a basis for the row space.

9.0.8 Problem. Find a basis for the kernel of the matrix

"
�3 6 �1 1 �7

1 �2 2 3 �1
2 �4 5 8 �4

#
.
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Solution. The row reduction algorithm [4.2.0] gives
"
�3 6 �1 1 �7

1 �2 2 3 �1
2 �4 5 8 �4

# ~r1 7!~r1+3~r2
~r3 7!~r3�2~r2�������!

⇠

"
0 0 5 10 �10
1 �2 2 3 �1
0 0 1 2 �2

# ~r1 7!~r1�5~r3
~r2 7!~r2�2~r3�������!

⇠

"
0 0 0 0 0
1 �2 0 �1 3
0 0 1 2 �2

#

~r1 7!~r2
~r2 7!~r1����!

⇠

"
1 �2 0 �1 3
0 0 0 0 0
0 0 1 2 �2

# ~r2 7!~r3
~r3 7!~r2����!

⇠

"
1 �2 0 �1 3
0 0 1 2 �2
0 0 0 0 0

#
,

so the solution set to the homogeneous linear system A~x =~0 is

Ker(A) = Span

8
>>>>>>>>>>>>:

2

6664

2
1
0
0
0

3

7775
,

2

6664

1
0

�2
1
0

3

7775
,

2

6664

�3
0
2
0
1

3

7775

9
>>>>>>>>>>>>;

.

In the three vectors spanning this kernel, among entries correspond-
ing to the free variables (namely the second, fourth, and fifth entries)
there is a unique nonzero one. Hence, these three vectors are linearly
independent and form a basis for the kernel.

Exercises

9.0.9 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The empty set ? is a linear subspace of K
m.

ii. Every linear subspace contains the zero vector.
iii. A hyperplane defines a linear subspace if and only if it contains

the origin.
iv. The columns of a matrix form a basis for its columns space if

and only if the matrix is invertible.

9.1 Dimension

How do we measure the size of a linear subspace? To define
this numerical invariant, we need a comparison result.

9.1.0 Lemma (Comparison). In any linear subspace, the number of vectors
in any linearly independent set is less than or equal to the number of vectors
in any spanning set.

Proof. Let V be a linear subspace and fix two nonnegative integers
n and m. Suppose that the vectors ~v1,~v2, . . . ,~vn in V are linearly
independent and the vectors ~w1, ~w2, . . . , ~wm span V. It follows that,
for all 1 6 k 6 n, there exists scalars a1,k, a2,k, . . . , am,k 2 K such that

~vk = a1,k ~w1 + a2,k ~w2 + · · ·+ am,k ~wm =
m

Â
j=1

aj,k ~wj .
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For any vector ~c :=
⇥
c1 c2 · · · cn

⇤
T 2 K

n, we obtain

n

Â
k=1

ck ~vk =
n

Â
k=1

ck

8
>>>>:

m

Â
j=1

aj,k ~wj

9
>>>>; =

m

Â
j=1

8
>>>>:

n

Â
k=1

aj,k ck

9
>>>>;~wj .

Let A be the (m ⇥ n)-matrix whose (j, k)-entry equals aj,k. A nonzero
solution ~c 2 K

n to the homogeneous linear system A~x =~0 produces
a nonzero linear relation among the vectors ~v1,~v2, . . . ,~vn 2 V. If
m < n, then this homogeneous linear system would have infinitely
many solutions [6.0.4] and the vectors ~v1,~v2, . . . ,~vn would be linearly
dependent, contradicting our assumption. Thus, we have m > n.

9.1.1 Theorem (Equicardinality of bases). Any two bases of a linear
subspace have the same number of vectors.

The cardinality of a finite set is a
nonnegative integer: the number of
elements in the set.

Proof. Suppose that ~v1,~v2, . . . ,~vn and ~w1, ~w2, . . . , ~wm are both bases
for a linear subspace V. Since the vectors ~v1,~v2, . . . ,~vn are linearly
independent and the vectors ~w1, ~w2, . . . , ~wm span V, Lemma 9.1.0
shows that n 6 m. Conversely, the vectors ~v1,~v2, . . . ,~vn span V and
the vectors ~w1, ~w2, . . . , ~wm are linearly independent, so Lemma 9.1.0
implies that m > n. It follows that m = n.

9.1.2 Definition. The dimension of a linear subspace V, denoted by
dim(V), is the number of vectors in a basis.

9.1.3 Remarks.

• For any nonnegative integer n, the standard basis ~e1,~e2, . . . ,~en

establishes that dim(Kn) = n.
• The empty set ? is a basis for Span(~0), so dim Span(~0) = 0.
• A linear subspace has dimension 1 if it is spanned by a single

nonzero vector, so every 1-dimensional linear subspace is just a
line through the origin.

Associated to any matrix are three linear subspaces: its row space,
its column space, and its kernel. We want to relate the dimensions
of these linear subspaces to other numerical invariants of the matrix.
Better yet, we describe a preferred basis for each subspace.

9.1.4 Proposition. The dimension of the row space of a matrix is equal to the
rank of the matrix. Moreover, the nonzero rows in the reduced row echelon
form of A form a basis for the row space of A.

Proof. By combining Propositions 9.0.3 and 9.0.7, we see that the
nonzero rows in the reduced row echelon form of A for a basis for
the row space. Since the rank of matrix is equal to the number of
nonzero rows in its reduced row echelon form, the dimension of the
row space equals the rank.
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9.1.5 Theorem (Rank–Nullity). Let m and n be nonnegative integers. For
any (m ⇥ n)-matrix A, we have rank(A) + dim

�
Ker(A)

�
= n. Moreover,

the fundamental circuits associated to its reduced row echelon form are
a basis for the kernel, the columns in A that contain leading ones in its
reduced row echelon form are a basis for the column space of A, and the
dimension of the column space of A equals rank(A).

The nullity of a matrix is the dimension
of its kernel.

Proof. Let B be the reduced row echelon form of A. Proposition 5.1.4
shows that the fundamental circuits associated to B span Ker(A).
Among the fundamental circuits, there is a unique vector with a
nonzero entry corresponding to a column without a leading one.
Hence, the fundamental circuits are linearly independent and form a
basis for the kernel of the matrix A.

The columns of the (m ⇥ n)-matrix B have a natural bipartition:
those columns that contain a leading one and those that do not.
The first paragraph shows that the columns that do not contain a
leading one enumerate a basis for Ker(A). The complementary set
consists of the columns containing a leading one, so this set has
cardinality rank(A). Since there are n columns, we deduce that
rank(A) + dim

�
Ker(A)

�
= n.

The characterizations [6.2.4] of a unique solution to a homoge-
neous linear system establishes that the columns in A that contain
leading ones in B are linearly independent. Since the fundamental
circuit associated to a column without a leading one, expresses this
column as a linear combination of the columns in A that do contain
leading entries in B, we see that these columns in A span the column
space. Therefore, the columns in A that contain leading one in B

form a basis for the column space of A.

9.1.6 Problem. Given that the reduced row echelon form of the matrix
A equals B, where

A :=

2

64
3 1 �2 1 5
1 0 1 0 1

�5 �2 5 �5 �3
�2 �1 3 2 �10

3

75 B =

2

64
1 0 1 0 1
0 1 �5 0 4
0 0 0 1 �2
0 0 0 0 0

3

75 ,

find bases for the canonical linear subspaces associated to A and B.

Solution. Proposition 9.1.4 shows that the row space of both A and B

have the vectors [1 0 1 0 1]T, [0 1 �5 0 4]T, [0 0 0 1 �2]T 2 K
5

as a basis. Theorem 9.1.5 establishes that the kernel of both A and
B have the vectors [�1 5 1 0 0]T, [�1 �4 0 2 1]T 2 K

5 as a
basis, the column space of B has the vectors [1 0 0 0]T, [0 1 0 0]T,
[0 0 1 0]T 2 K

4 as a basis, and the column space of A has the
vectors [3 1 �5 �2]T, [1 0 �2 �1]T, [1 0 �5 2]T 2 K

4 as a
basis.
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Exercises

9.1.7 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Every linear subspace has a unique basis.
ii. No linear subspace has dimension zero.

iii. The column space and a the row space of a matrix must have the
same dimension.

iv. The column space of a matrix is equal to the column space of its
reduced row echelon form.

9.1.8 Problem. Find all of the maximal linearly-independent subsets
among the columns of the matrix

A :=

"
0 1 1 1 0 0
1 0 0 1 1 1
1 1 1 1 0 0

#
.

9.1.9 Problem. Find bases for row space, column space, and kernel of

M :=

2

64
2 6 �2 �10 2 �1
1 3 1 �1 �1 0

�3 �9 2 13 �2 1
�2 �6 �2 2 2 �1

3

75 .

9.2 Coordinates

How do we describe vectors in a linear subspace? The choice
of a basis for a linear subspace imposes a coordinate system: scalars
that uniquely determine any vector in the linear subspace.

9.2.0 Lemma (Unique linear combinations). The columns of a matrix are
basis for its column space if and only if every vector in the column space can
be expressed uniquely as a linear combination of the columns.

~b
2

~b 1

3~b 1
+

2~b 2

Figure 9.0: Visualizing nonstandard
coordinates in the plane

Proof. Let B be an (m ⇥ n)-matrix, let ~b1,~b2, . . . ,~bn 2 K
m denote the

columns in B, and let V := Span(~b1,~b2, . . . ,~bn) be the column space.
): Suppose that the columns of B form a basis for V. Since the

columns span V, every vector ~v in V can be written as a linear
combination of the column vectors ~b1,~b2, . . . ,~bn. If there are
scalars c1, c2, . . . , cn 2 K and d1, d2, . . . , dn 2 K such that

~v = c1~b1 + c2~b2 + · · ·+ cn~bn = d1~b1 + d1~b1 + · · ·+ dn~bn

then we have

~0 = ~v � ~v = (c1 � d1)~b1 + (c2 � d2)~b2 + · · ·+ (cn � dn)~bn .

Since the vectors ~b1,~b2, . . . ,~bn are linearly independent, it follows
that c1 � d1 = c2 � d2 = · · · = cn � dn = 0 and the two linear
combinations are equal.
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(: The columns of B spans V, so every vector ~v in V is a linear
combination of ~b1,~b2, . . . ,~bn. Since the zero vector~0 has a unique
expression as a linear combination of the vectors ~b1,~b2, . . . ,~bn,
these vectors are linearly independent.

9.2.1 Definition. Let B be an (m ⇥ n)-matrix whose columns
~b1,~b2, . . . ,~bn form a basis for a linear subspace V. For any vector
~v in V, the coordinates of ~v relative to the basis B are the unique
scalars c1, c2, . . . , cn 2 K such that ~v = c1~b1 + c2~b2 + · · ·+ cn~bn. We
write (~v)B := [c1 c2 · · · cn]T 2 K

n for the coordinate vector of ~v
relative to B. In particular, we have B (~v)B = ~v.

Since the columns of the identity matrix
I form the standard basis of K

n, it
follows that, for any ~v 2 K

n, we have

~v = v1~e1 + v2~e2 + · · ·+ vn~en

and (~v)I = ~v.

9.2.2 Problem. Given that the columns of the matrix

B :=

2

4
3 �1
6 0
2 1

3

5

form a basis for its columns space, find the coordinates of the vector
~v :=

⇥
3 12 7

⇤
T relative to B.

Solution. To solve the vector equation c1~b1 + c2~b2 = ~v, we find the
reduced row echelon form of the augmented matrix:

"
3 �1 3
6 0 12
2 1 7

#
~r2 7! (1/6)~r2�������!

⇠

"
3 �1 3
1 0 2
2 1 7

# ~r1 7!~r1�3~r2
~r3 7!~r3�2~r2�������!

⇠

"
0 �1 �3
1 0 2
0 1 3

#

~r1 7!~r1+~r3������!
⇠

"
0 0 0
1 0 2
0 1 3

# ~r1 7!~r2
~r2 7!~r1����!

⇠

"
1 0 2
0 0 0
0 1 3

# ~r2 7!~r3
~r3 7!~r2����!

⇠

"
1 0 2
0 1 3
0 0 0

#
.

Thus, we have 2~b1 + 3~b2 = ~v and (~v)B = [2 3]T. Although the linear
subspace Span(~b1,~b2) lies in K

3, the vectors in this linear subspace
are completely determined by just a pair of coordinates.

9.2.3 Proposition. For any matrix B :=
⇥
~b1 ~b2 · · · ~bn

⇤
whose columns

form a basis for a linear subspace V, the coordinate map from V to K
n

defined by ~x 7! (~x)B is a linear transformation: for all ~v, ~w 2 V and all
c, d 2 K, we have (c~v + d ~w)B = c (~v)B + d (~w)B. Moreover, every vector
in V corresponds to exactly one coordinate vector in K

n.

Proof. Suppose that

~v = p1~b1 + p2~b2 + · · ·+ pn~bn , (~v)B = ~p = [p1 p2 · · · pn]
T 2 K

n ,

~w = q1~b1 + q2~b2 + · · ·+ qn~bn , (~w)B = ~q = [q1 q2 · · · qn]
T 2 K

n .

Since the arithmetic of vectors is defined entrywise, we have

c~v + d ~w = (cp1 + dq1)~b1 + (cp2 + dq2)~b2 + · · ·+ (cpn + dqn)~bn



102 linear algebra copyright © 2021 by gregory g. smith

which implies that

(c~v + d ~w)B = [cp1 + dq1 cp2 + dq2 · · · cpn + dqn]
T 2 K

n ,

c (~v)B + d (~w)B = c ~p + d~q = [cp1 + dq1 cp2 + dq2 · · · cpn + dqn]
T 2 K

n .

which proves linearity.
Every vector in K

n lies in the image, because ~p 2 K
n is the image

of ~v = p1~b1 + p2~b2 + · · ·+ pn~bn 2 V. The uniqueness of coordinates
relative to a basis means that ~p = (~v)B = (~w)B = ~q implies that
~v = ~w. Thus, we also deduce that every vector in V corresponds to a
unique coordinate vector in K

n.

This coordinate map allows one to convert any problem about
vectors in an arbitrary linear subspace into a problem about vectors
in the coordinate space K

n.

9.2.4 Corollary. Let B be an (m ⇥ n)-matrix whose columns~b1,~b2, . . . ,~bn

form a basis for a linear subspace V. For any positive integer k, the vec-
tors ~v1,~v2, . . . ,~vk in V are linearly independent if and only if the vectors
(~v1)B, (~v2)B, . . . , (~vk)B in K

n are linearly independent.

Proof. For any scalars c1, c2, . . . , ck 2 K, the linearity of the coordinate
map implies that (~0)B =~0 and

(c1 ~v1 + c2 ~v2 + · · ·+ ck ~vk)B = c1(~v1)B + c2(~v2)B + · · ·+ ck(~vk)B .

Hence, there exists a nonzero linear relation among the vectors
~v1,~v2, . . . ,~vk 2 V if and only if there is nonzero linear relation among
the vectors (~v1)B, (~v2)B, . . . , (~vk)B 2 K

n.

Exercises

9.2.5 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The number of coordinates for a linear subspace equals the
dimension of the subspace.

ii. The number of coordinates for a linear subspace equals the
dimension of its ambient space.

iii. Two distinct vectors may have the same coordinates relative to a
given basis.

iv. Two distinct vectors may have the same coordinates relative to
two different bases.

9.2.6 Problem. Consider the matrix B :=

"
1 �2 1

�1 �2 0
�1 3 �1

#
.

i. Show that the columns of the matrix B form a basis for Q
3.

ii. Calculate the matrix C :=
⇥
(~e1)B (~e2)B (~e3)B

⇤
, where (~ej)B is

the coordinate vector of ~ej 2 Q
3 relative to the columns of B.

iii. What is the relationship between B and C?


