Exercises

3.1.7 Problem. Determine which of the following statements are true.

If a statement is false, then provide a counterexample.

- *i.* The kernel of a linear map always contains the additive identity from is domain.
- *ii.* The image of a linear map may be the empty set.
- *iii.* The zero homomorphism is never injective.
- *iv.* The zero homomorphism is surjective if and only if the target vector space is the zero space.
- *v*. The identity map is always bijective.

3.1.8 Problem. The set of all traceless $(n \times n)$ -matrices,

$$\mathfrak{sl}(n,\mathbb{C}) \coloneqq {\mathbf{A} \in \mathbb{C}^{n \times n} \mid \mathrm{tr}(\mathbf{A}) = 0}$$

is a linear subspace. Find a basis for $\mathfrak{sl}(n, \mathbb{C})$. What is the dimension of $\mathfrak{sl}(n, \mathbb{C})$?

3.2 Invertible Linear maps

How CAN A LINEAR MAP HAVE AN INVERSE? We first record some properties for the composition of linear maps.

3.2.0 Remark. For any two linear maps $S: U \to V$ and $T: V \to W$, the *product* $TS: U \to W$ is the linear map defined, for all $u \in U$, by (TS)[u] = T[S[u]]). The product TS is defined only when the target of *S* lies in the source of *T*. One verifies that this binary operation has most of the properties expected of a product.

(associativity)	$(T_1 T_2) T_3 = T_1 (T_2 T_3)$	whenever the products are all defined.
(identity)	$T \operatorname{id}_V = T = \operatorname{id}_W T$	when $T: V \to W$.
(linearity)	$T(c_1 S_1 + c_2 S_2) = c_1(T S_1) + c_2(T S_2)$	when $S_1, S_2: U \to V, T: V \to W$, and $c_1, c_2 \in \mathbb{K}$.
	$(c_1 T_1 + c_2 T_2)S = c_1 (T_1 S) + c_2 (T_2 S)$	when $S: U \to V, T_1, T_2: V \to W$, and $c_1, c_2 \in \mathbb{K}$.

The product to two linear maps is not typically commutative.

3.2.1 Problem. Let $D: \mathbb{K}[t] \to \mathbb{K}[t]$ denote differentiation and let $M: \mathbb{K}[t] \to \mathbb{K}[t]$ denote multiplication by t^2 . Show that $DM \neq MD$.

Solution. For all nonzero polynomials f in $\mathbb{K}[t]$, it follows that $(MD)[f] = t^2 f'$ whereas $(DM)[f] = D[t^2 f] = t^2 f' + 2t f \neq t^2 f'$. \Box

The definition of an invertible linear map generalizes the definition of an invertible matrix.

3.2.2 Definition. A linear map $T: V \to W$ is *invertible* if there exists a linear map $S: W \to V$ such that $ST = id_V$ and $TS = id_W$. In this case, the map *S* is an *inverse* of *T*.

The identity map $id_V : V \rightarrow V$ is the map whose output is equal to its input.

3.2.3 Problem. Let $V := \mathbb{R}^{\mathbb{R}}$ be the \mathbb{R} -vector space of real-valued functions on the real line. Fix $a \in \mathbb{R}$ and consider the two linear maps $T, S \colon V \to V$ defined by T[f(x)] = f(x+a) and S[f(x)] = f(x-a) respectively. Show that *S* is an inverse of *T*.

Solution. Since (ST)[f(x)] = S[f(x+a)] = f((x+a)-a) = f(x)and (TS)[f(x)] = T[f(x-a)] = f((x-a)+a) = f(x), we see that $ST = id_V = TS$ and these translations maps are mutual inverses. \Box

3.2.4 Proposition (Uniqueness of the inverse). *For any invertible linear* map $T: V \to W$, the inverse map is unique and denoted by $T^{-1}: W \to V$.

Proof. Suppose that the linear maps $S_1: W \to V$ and $S_2: W \to V$ are both inverses of the linear map $T: V \to W$. It follows that

$$S_1 = S_1 \operatorname{id}_W = S_1(TS_2) = (S_1T)S_2 = \operatorname{id}_V S_2 = S_2.$$

3.2.5 Proposition (Characterization of invertibility). *A linear map is invertible if and only if it is bijective.*

Proof. Consider a linear map $T: V \to W$.

- ⇒: Suppose that *T* is invertible. For any two vectors *v* and *v'* in *V* satisfying T[v] = T[v'], we have $v = T^{-1}[T[v]] = T^{-1}[T[v']] = v'$, so the map *T* is injective. For any vector *w* in *W*, we also have $w = T[T^{-1}[w]]$, so the map *T* is surjective.
- \Leftarrow : Suppose that *T* is bijective. The surjectivity and injectivity of *T* imply that, for each vector *w* in *W*, there exists a unique vector S[w] in *V* such that T[S[w]] = w. In other words, there exists a unique set map $S: W \to V$ for which $TS = id_W$. For any vector *v* in *V*, it follows that

$$T[(ST)[\boldsymbol{v}]] = T[S[T[\boldsymbol{v}]]] = (TS)[T[\boldsymbol{v}]] = \mathrm{id}_{W}[T[\boldsymbol{v}]] = T[\boldsymbol{v}].$$

Since the map *T* is injective, we deduce that (ST)[v] = v for all v in *V* and $ST = id_V$. It remains to show that *S* is linear. For all vectors w and w' in *W* and all scalars b and c in \mathbb{K} , the linearity of the map *T* gives

$$T[b(S[\boldsymbol{w}]) + c(S[\boldsymbol{w}'])] = b(T[S[\boldsymbol{w}]]) + c(T[S[\boldsymbol{w}']]) = b \boldsymbol{w} + c \boldsymbol{w}'.$$

Hence, b(S[w]) + c(S[w']) is the unique vector in *V* that the map *T* sends to bw + cw'. Therefore, the definition of the map *S* implies that S[bw + cw'] = b(S[w]) + c(S[w']).

3.2.6 Definition. Two K-vector spaces *V* and *W* are *isomorphic*, denoted $V \cong W$, if there is an invertible linear map from *V* to *W*.

3.2.7 Theorem. Let V and W be finite-dimensional \mathbb{K} -vector spaces. We have dim(V) = dim(W) if and only if V is isomorphic to W.

The operators T and S translate the graph of a function horizontally by a in opposite directions.

Since $T^{-1}T = id_V$ and $TT^{-1} = id_W$, the uniqueness of the inverse implies that $(T^{-1})^{-1} = T$.

The inverse of a linear map is automatically a linear map.

One may regard an invertible linear map as a relabeling/renaming of the elements in a vector space. Thus, two isomorphic vectors spaces have the same properties (from the perspective of linear algebra). Proof.

⇒: Set $n := \dim(V) = \dim(W)$. Let $v_1, v_2, ..., v_n$ and $w_1, w_2, ..., w_n$ be bases for *V* and *W* respectively. A linear map is determined by its values on a basis [3.0.7], so consider $T: V \to W$ defined, for all $1 \le j \le n$, by $T[v_j] = w_j$. For any vector *w* in *W*, there exists scalars $a_1, a_2, ..., a_n$ in \mathbb{K} such that $w = a_1 w_1 + a_2 w_2 + \cdots + a_n w_n$, because the vectors $w_1, w_2, ..., w_n$ span *W*. It follows that

$$T[a_1 v_1 + a_2 v_2 + \dots + a_n v_n] = a_1 T[v_1] + a_2 T[v_2] + \dots + a_n T[v_n]$$

= $a_1 w_1 + a_2 w_2 + \dots + a_n w_n = w$,

which shows that the linear map *T* is surjective. Similarly, for any vector *v* in Ker(*T*), there exists scalars $b_1, b_2, ..., b_n$ in \mathbb{K} such that $v = b_1 v_1 + b_2 v_2 + \cdots + b_n v_n$ because the vectors $v_1, v_2, ..., v_n$ span *V*. It follows that

$$0 = T[v] = T[b_1 v_1 + b_2 v_2 + \dots + b_n v_n]$$

= $b_1 T[v_1] + b_2 T[v_2] + \dots + b_n T[v_n]$
= $b_1 w_1 + b_2 w_2 + \dots + b_n w_n$.

Since the vectors $w_1, w_2, ..., w_n$ are linearly independent, we deduce that $b_1 = b_2 = \cdots = b_n = 0$, v = 0, and Ker $(T) = \{0\}$. The linear characterization of injectivity [3.1.4] implies that the map *T* is injective and the characterization of invertibility [3.2.5] establishes that *T* is invertible. It follows that $V \cong W$.

⇐: Suppose that there is an invertible linear map $T: V \to W$. The characterization of invertibility [3.2.5] implies that *T* is bijective and the characterizations of injectivity and surjectivity [3.1.4] imply that Ker(*T*) = {**0**} and Im(*T*) = *W*. Thus, the dimension formula [3.1.4] gives

 $\dim(V) = \dim(\operatorname{Ker}(T)) + \dim(\operatorname{Im}(T)) = 0 + \dim(W) = \dim(W). \quad \Box$

3.2.8 Remark. Theorem3.2.7 establishes that, for any finite-dimensional \mathbb{K} -vector space *V* where $n \coloneqq \dim V$, we have $V \cong \mathbb{K}^n$.

Exercises

3.2.9 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample.

- *i*. The product of nonzero linear transformations is never zero.
- *ii.* The product of two linear transformations is never commutative.
- *iii.* Consider any two linear transformations *S* and *T*, If we have ST = I, then we must have TS = I.
- *iv.* The \mathbb{K} -vector spaces $\mathbb{K}[t]_{\leq n}$ and \mathbb{K}^{n+1} are isomorphic.

3.2.10 Problem. Fix a nonnegative integer *n*. Show that a polynomial *f* in $\mathbb{R}[t]_{\leq n}$ is uniquely determined by the vector $[x_0 \ x_1 \ \cdots \ x_n]^{\mathsf{T}}$ in \mathbb{R}^{n+1} where $x_k := \int_0^1 t^k f(t) dt$.

3.3 Invertible Operators

ARE INVERTIBLE MAPS FROM A VECTOR SPACE TO ITSELF SPECIAL? Some of the deepest and most important parts of linear algebra deal with linear maps from a vector space to itself.

3.3.0 Definition. A linear map from a vector space to itself is called a *linear operator* or *endomorphism*.

3.3.1 Remark. For any \mathbb{K} -vector space V, the simplest linear operators are the identity map $\mathrm{id}_V \colon V \to V$ is a linear operator and its scalar multiples. For any scalar $c \in \mathbb{K}$, the linear map $c \mathrm{id}_V \colon V \to V$ is defined by $c \mathrm{id}_V[v] \coloneqq c v$ for all vectors v in V.

3.3.2 Problem. Let *V* be a finite-dimensional \mathbb{K} -vector space. Prove that the linear map $T: V \to V$ is a scalar multiple of the identity map if and only if, for any linear map $S: V \to V$, we have ST = TS.

Solution.

- ⇒: Suppose that we have $T = c \operatorname{id}_V$ for some scalar $c \operatorname{in} \mathbb{K}$. It follows that $ST = S(c \operatorname{id}_V) = c(S \operatorname{id}_V) = cS = (c \operatorname{id}_V)S = TS$.
- ⇐: Suppose that the map $T: V \to V$ commutes with every linear operator on the K-vector space *V*. Choose a basis $v_1, v_2, ..., v_n$ for the finite-dimensional vector space *V*. For all $1 \le k \le n$, the image $T[v_k]$ is a unique linear combination of the basis vectors. Hence, there exists unique scalars $a_{1,k}, a_{2,k}, ..., a_{n,k}$ in K such that $T[v_k] = a_{1,k}v_1 + a_{2,k}v_2 + \cdots + a_{n,k}v_n$.

A linear map is determined by its values on a basis [3.0.7]. For all $1 \leq j \leq n$, consider the linear map $P_j: V \rightarrow V$ defined by $P_i[v_i] = v_i$ and $P_i[v_k] = \mathbf{0}$ if $k \neq j$. When $k \neq j$, we obtain

$$\mathbf{0} = T[\mathbf{0}] = (T P_j)[\mathbf{v}_k] = (P_j T)[\mathbf{v}_k] = P_j[a_{1,k} \, \mathbf{v}_1 + a_{2,k} \, \mathbf{v}_2 + \dots + a_{n,k} \, \mathbf{v}_n] = a_{j,k} \, \mathbf{v}_j \,,$$

so $a_{i,k} = 0$ and $T[v_k] = a_{k,k} v_k$.

Next, consider the linear map $S: V \to V$ defined, for all $1 \leq k \leq n-1$, by $S[v_k] = v_{k+1}$ and $S[v_n] = v_1$. It follows that

$$\begin{aligned} a_{k+1,k+1} \, \boldsymbol{v}_{k+1} &= T[\boldsymbol{v}_{k+1}] = (T\,S)[\boldsymbol{v}_k] = (S\,T)[\boldsymbol{v}_k] = S[a_{k,k} \, \boldsymbol{v}_k] = a_{k,k} \, \boldsymbol{v}_{k+1} \\ \Rightarrow \quad (a_{k+1,k+1} - a_{k,k}) \, \boldsymbol{v}_{k+1} = \boldsymbol{0} \,, \end{aligned}$$

so we deduce that $c := a_{1,1} = a_{2,2} = \cdots = a_{n,n}$. We conclude that $T[v_k] = c v_k$. for all $1 \le k \le n$, proving that $T = c \operatorname{id}_V$.

3.3.3 Problem. Demonstrate that the linear operator on $\mathbb{K}[t]$ defined via multiplication by t^2 is injective, but is not surjective.

Solution. Let $M: \mathbb{K}[t] \to \mathbb{K}[t]$ be the map defined, for any polynomial f in $\mathbb{K}[t]$, by $M[f] := t^2 f$. The equation $0 = M[f] = t^2 f$ implies that f = 0. Since $\operatorname{Ker}(M) = \{0\}$, the characterization of injectivity [3.1.4]

The set of all linear operators on the \mathbb{K} -vector space *V* is sometimes denoted by $\operatorname{End}(V) := \operatorname{Hom}(V, V)$.

Square matrices correspond to linear operators. More precisely, for any nonnegative integer n, left multiplication by an $(n \times n)$ -matrix defines a linear operator on the coordinate space \mathbb{K}^n .

shows that *M* is injective. Since every nonzero polynomial in the image of *M* must have degree at least 2, the map *M* is not surjective: neither 1 nor *t* belong to Im(M).

3.3.4 Problem. The backward shift operator $B: \mathbb{K}^{\mathbb{N}} \to \mathbb{K}^{\mathbb{N}}$ is defined by $B[(a_0, a_1, a_2, \ldots)] := (a_1, a_2, a_3, \ldots)$. Show that *B* is surjective, but is not injective.

Solution. Since Ker(B) = {($a_0, 0, 0, ...$) $\in \mathbb{K}^{\mathbb{N}} | a_0 \in \mathbb{K}$ } \neq {0}, the map B is not injective. For any sequence ($a_0, a_1, a_2, ...$) in $\mathbb{K}^{\mathbb{N}}$, we have $B[(0, a_0, a_1, ...)] = (a_0, a_1, a_2, ...)$, so the map B is surjective. \Box

In view of the last two problems, the next theorem is remarkable.

3.3.5 Theorem (Characterization of invertible operators). *Let V be a finite-dimensional vector space. For any linear map* $T: V \rightarrow V$, *the following are equivalent.*

- a. The linear map T is invertible.
- b. *The linear map T is injective.*
- c. The linear map T is surjective.

Proof.

- $a \Rightarrow b$: The characterization of invertibility [3.2.5] shows that every invertible linear map is bijective and, in particular, injective.
- $b \Rightarrow c$: Since *T* is injective, the characterization of injectivity [3.1.4] implies that dim(Ker(T)) = 0. Hence, the dimension formula [3.1.6] gives dim $(V) = \dim(\text{Ker}(T)) + \dim(\text{Im}(T)) = \dim(\text{Im}(T))$. As $\text{Im}(T) \subseteq V$, we see that V = Im(T) and *T* is surjective.
- $c \Rightarrow a$: The surjectivity of *T* means Im(T) = V. Hence, the dimension formula [3.1.6] implies that $\dim(\text{Ker}(T)) = 0$ and the linear characterization of injectivity [3.1.4] implies that the map *T* is injective. Thus, the characterization of invertibility [3.2.5] demonstrates that the linear map *T* is invertible.

3.3.6 Problem. Let *f* be a polynomial in $\mathbb{R}[t]$. Establish that there exists a polynomial *g* in $\mathbb{R}[t]$ such that $\frac{d^2}{dt^2}((t+1)^2g) = f$.

Solution. Let *n* denote the degree of the polynomial *f*. Consider the map $T: \mathbb{R}[t]_{\leq n} \to \mathbb{R}[t]_{\leq n}$ defined, for all polynomials *g* in $\mathbb{R}[t]_{\leq n}$, by $T[g] := \frac{d^2}{dt^2}((t+1)^2g)$. Since multiplying by a nonzero polynomial by $(t+1)^2$ increases the degree by 2 and differentiating twice decreases the degree by 2, we see that *T* is a linear operator on $\mathbb{R}[t]_{\leq n}$.

Every polynomial whose second derivative equals 0 has the form $a_0 + a_1 t$ for some $a_0, a_1 \in \mathbb{R}$. We deduce that $\text{Ker}(T) = \{0\}$ and the characterization of injectivity [3.1.4] implies that *T* is injective. Hence, the characterization of invertible operators [3.3.5] shows that *T* is surjective. Therefore, there exists *g* in $\mathbb{R}[T]_{\leq n}$ such that T[g] = f. \Box

Exercises

3.3.7 Problem. Determine which of the following statements are true.

If a statement is false, then provide a counterexample.

- *i*. The zero homomorphism is always a linear operator.
- *ii.* The identity map is always a linear operator.
- *iii.* Consider any two linear operators *S* and *T* on a finite-dimensional vector space. If we have ST = I, then we must have TS = I.

3.3.8 Problem. Let *V* be a finite-dimensional vector space. Consider two linear operators *S* and *T* on *V*.

- *i*. Show that the product *ST* is invertible if and only if both *S* and *T* are invertible.
- *ii.* Prove that ST = I if and only if TS = I.
- *iii.* Give an example illustrating that both (a) and (b) are false over an infinite-dimensional vector space.