4 Coordinates

Copyright © 2022, Gregory G. Smith Last updated: 2022-02-06

Every finite-dimensional vector space is isomorphic to a coordinate space. Choosing such isomorphisms for the source and target of a linear map allows one to identify the map with a matrix. This chapter explores these matrix representations.

Change of Basis 4.0

How are coordinate vectors relative to different bases **RELATED**? Coordinate vectors provide a map from a finite-dimensional vector space into the coordinate space of the same dimension.

4.0.0 Proposition. Let $\mathcal{B} := (v_1, v_2, \dots, v_n)$ be an ordered basis for the **K**-vector space V. The map $w \mapsto (w)_{\mathbb{B}}$, sending a vector w in V to its coordinate vector $(w)_{\mathcal{B}}$ in \mathbb{K}^n , is an invertible linear map.

Proof. Fix two vectors w and w' in V. Since the vectors v_1, v_2, \ldots, v_n span *V*, there exists scalars c_1, c_2, \ldots, c_n and scalars c'_1, c'_2, \ldots, c'_n such that $w = c_1 v_1 + c_2 v_2 + \dots + c_n v_n$ and $w' = c'_1 v_1 + c'_2 v_2 + \dots + c'_n v_n$, so we have $(w)_{\mathbb{B}} = \begin{bmatrix} c_1 & c_2 & \cdots & c_n \end{bmatrix}^{\mathsf{T}}$ and $(w')_{\mathbb{B}} = \begin{bmatrix} c'_1 & c'_2 & \cdots & c'_n \end{bmatrix}^{\mathsf{T}}$. It follows that, for all scalars *d* and d' in \mathbb{K} , we have

 $dw + d'w' = (dc_1 + d'c_1')v_1 + (dc_2 + d'c_2')v_2 + \dots + (dc_n + d'c_n')v_n$

and

and

$$(dw + d'w')_{\mathcal{B}} = \begin{bmatrix} dc_1 + d'c_1' \\ dc_2 + d'c_2' \\ \vdots \\ dc_n + d'c_n' \end{bmatrix} = d \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} + d' \begin{bmatrix} c_1' \\ c_2' \\ \vdots \\ c_n' \end{bmatrix} = d(w)_{\mathcal{B}} + d'(w')_{\mathcal{B}},$$

proving linearity.

For any scalars b_1, b_2, \ldots, b_n in \mathbb{K} , the coordinate vector of the vector $b_1 v_1 + b_2 v_2 + \cdots + b_n v_n$ in V is $\begin{bmatrix} b_1 & b_2 & \cdots & b_n \end{bmatrix}^\mathsf{T}$, so the linear map $w \mapsto (w)_{\mathcal{B}}$ is surjective. Since each vector u in V is a unique linear combination of a basis [2.3.0], the linear map $w \mapsto (w)_{\mathcal{B}}$ is injective. Thus, the characterization of invertibility [3.2.5] shows that the map $w \mapsto (w)_{\mathcal{B}}$ is invertible.

4.0.1 Problem. Let $f_1(x) := 1 - \cos(x)$, $f_2(x) := 1 - 3\cos(x) + \sin(x)$, and $f_3(x) \coloneqq 1 - \cos(x) + \sin(x)$. Show that the functions f_1, f_2, f_3 are a basis for the \mathbb{R} -vector space of trigonometric polynomials having degree at most 1.

In particular, the vector space V is isomorphic to \mathbb{K}^n .

Solution. The space of trigonometric polynomials [2.0.7] of degree at most 1 has $\mathcal{T} := (1, \cos(x), \sin(x))$ is its canonical ordered basis. Since this vector space has dimension 3, it suffices to show that the functions f_1, f_2, f_3 are linearly independent. Because the map sending a trigonometric polynomial to its coordinate vector relative to \mathcal{T} is linear, the functions f_1, f_2, f_3 are linearly independent if and only if the vectors $(f_1)_{\mathcal{T}}, (f_2)_{\mathcal{T}}, (f_3)_{\mathcal{T}}$ are linearly independent. Since $(f_1)_{\mathcal{T}} = [1 \ -1 \ 0]^{\mathsf{T}}, (f_2)_{\mathcal{T}} = [1 \ -3 \ 1]^{\mathsf{T}}, (f_1)_{\mathcal{T}} = [1 \ -1 \ 1]^{\mathsf{T}}$, and

$$\begin{bmatrix} 1 & 1 & 1 \\ -1 & -3 & -1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\vec{r}_1 \mapsto \vec{r}_1 - \vec{r}_3}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ -1 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_2 + \vec{r}_1}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto -0.5 \vec{r}_2}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_3 - \vec{r}_2 \to \vec{r}_3}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_3 \to \vec{r}_1}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_3 \to \vec{r}_1}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_3 \to \vec{r}_1}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_3 \to \vec{r}_1}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_3 \to \vec{r}_1}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_3 \to \vec{r}_1}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{\vec{r}_2 \mapsto \vec{r}_3 \to \vec{r}_1}_{\sim} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

we deduce that $(f_1)_T$, $(f_2)_T$, $(f_3)_T$ are linearly independent.

4.0.2 Theorem (Change of basis). *Fix ordered bases* $\mathcal{B} := (v_1, v_2, ..., v_n)$ and $\mathcal{C} := (w_1, w_2, ..., w_n)$ for a \mathbb{K} -vector space V. The matrix

$$\mathbf{A}\coloneqq egin{bmatrix} (w_1)_{\mathbb{B}} & (w_2)_{\mathbb{B}} & \cdots & (w_n)_{\mathbb{B}} \end{bmatrix}$$
 ,

whose k-th column is the coordinate vector of w_k relative to \mathbb{B} , is invertible. Moreover, for any vector u in V, we have $(u)_{\mathbb{B}} = \mathbf{A}(u)_{\mathbb{C}}$.

Proof. For all $1 \le j \le n$ and all $1 \le k \le n$, let the scalar $a_{j,k}$ be the (j,k)-entry in the matrix **A**. The definition of the matrix **A** implies that $w_k = a_{1,k}v_1 + a_{2,k}v_2 + \cdots + a_{n,k}v_n$ for all $1 \le k \le n$. For any vector $u := c_1 w_1 + c_2 w_2 + \cdots + c_n w_n$ where c_1, c_2, \ldots, c_n are scalars in **K**, we have

$$\boldsymbol{u} = \sum_{k=1}^{n} c_k \, \boldsymbol{w}_k = \sum_{k=1}^{n} c_k \left(\sum_{j=1}^{n} a_{j,k} \, \boldsymbol{v}_j \right) = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} a_{j,k} \, c_k \right) \boldsymbol{v}_j$$

Since \mathcal{B} is a basis for the vector space *V*, the vector *u* is a unique linear combination [2.3.0] of the vectors v_1, v_2, \ldots, v_n . It follows that

$$(u)_{\mathcal{B}} = \begin{bmatrix} a_{1,1}c_1 + a_{1,2}c_2 + \dots + a_{1,n}c_n \\ a_{2,1}c_1 + a_{2,2}c_2 + \dots + a_{2,n}c_n \\ \vdots \\ a_{n,1}c_1 + a_{n,2}c_2 + \dots + a_{n,n}c_n \end{bmatrix} = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \dots & a_{n,n} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \mathbf{A}(u)_{\mathcal{C}}$$

It remains to show that the matrix **A** is invertible. Consider a vector $[c_1 \ c_2 \ \cdots \ c_n]^{\mathsf{T}}$ in Ker(**A**). Setting $\boldsymbol{u} \coloneqq c_1 \boldsymbol{w}_1 + c_2 \boldsymbol{w}_2 + \cdots + c_n \boldsymbol{w}_n$, it follows that $\boldsymbol{0} = \mathbf{A}(\boldsymbol{u})_{\mathcal{C}} = (\boldsymbol{u})_{\mathcal{B}}$. Hence, we deduce that

$$u = 0 v_1 + 0 v_2 + \cdots + 0 v_n = 0$$
,

which implies that $(u)_{\mathbb{C}} = \mathbf{0}$ and $c_1 = c_2 = \cdots = c_n = 0$. Since $\operatorname{Ker}(\mathbf{A}) = \{\mathbf{0}\}$, combining the characterizations of injectivity [3.1.4] and invertibility [3.2.5] shows that \mathbf{A} is invertible.

This theorem says that all directed paths from V to \mathbb{K}^n in the diagram below lead to the same result.

Knowing the change of basis matrix sometimes allows one to avoid solving a linear system via row reduction.

4.0.3 Problem. Let $\mathcal{M} := (1, t, t^2)$ and $\mathcal{B} := (1, t - 1, (t - 1)^2)$ be ordered bases for the Q-vector space $\mathbb{Q}[t]_{\leq 2}$. Given the polynomial $f := a_0 + a_1 (t - 1) + a_2 (t - 1)^2$, find rational scalars b_0, b_1, b_2 such that $f = b_0 + b_1 t + b_2 t^2$.

Solution. Since we have $(1)_{\mathcal{M}} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}}$, $(t-1)_{\mathcal{M}} = \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^{\mathsf{T}}$, and $((t-1)^2)_{\mathcal{M}} = \begin{bmatrix} 1 & -2 & 1 \end{bmatrix}^{\mathsf{T}}$, change of basis [4.0.2] gives

$$\begin{bmatrix} b_0 \\ b_1 \\ b_2 \end{bmatrix} = (f)_{\mathcal{M}} = \mathbf{A} (f)_{\mathcal{B}} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} a_0 - a_1 + a_2 \\ a_1 - 2a_2 \\ a_2 \end{bmatrix} . \square$$

Exercises

4.0.4 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample.

- *i*. A change of basis matrix is always a square matrix.
- *ii.* A change of basis matrix is always invertible.
- iii. A change of basis matrix is always equal to its own inverse.
- *iv.* When the two chosen bases on a vector space are equal, the change of basis matrix is the identity matrix.
- v. The zero matrix can never be a change of basis matrix.

4.0.5 Problem. Consider the four polynomials $f_0(t) := 1$, $f_1(t) := t$, $f_2(t) := t(t-1)$ and $f_3(t) := t(t-1)(t-2)$.

- *i*. Show that $\mathcal{B} := (f_0, f_1, f_2, f_3)$ is an ordered basis for $\mathbb{Q}[t]_{\leq 3}$.
- ii. Suppose that we have the equation

$$a_0 + a_1 t + a_2 t^2 + a_3 t^3 = b_0 f_0(t) + b_1 f_1(t) + b_2 f_2(t) + b_3 f_3(t)$$

where $a_0, a_1, \ldots, a_3, b_0, b_1, \ldots, b_3 \in \mathbb{Q}$. If $\vec{a} = \begin{bmatrix} a_0 & a_1 & a_2 & a_3 \end{bmatrix}^T$ and $\vec{b} = \begin{bmatrix} b_0 & b_1 & b_2 & b_3 \end{bmatrix}^T$, then find matrices **M** and **N** such that **M** $\vec{a} = \vec{b}$ and **N** $\vec{b} = \vec{a}$.

iii. Find the coordinates of t^2 and t^3 with respect to \mathcal{B} .

4.1 Matrix of a Linear Map

How ARE LINEAR MAPS AND MATRICES RELATED? Let $T: V \to W$ be a linear map. Choose $\mathcal{B} := (v_1, v_2, \ldots, v_n)$ and $\mathcal{C} := (w_1, w_2, \ldots, w_m)$ to be ordered bases for the K-vector spaces V and W respectively. For all $1 \leq k \leq n$, the vector $T[v_k]$ lying in W is a unique linear combination [2.3.0] of the basis vectors w_1, w_2, \ldots, w_m . Hence, there exists scalars $a_{1,k}, a_{2,k}, \ldots, a_{m,k}$ in \mathbb{K} such that

$$T[v_k] = a_{1,k} w_1 + a_{2,k} w_2 + \cdots + a_{m,k} w_m$$

Since a linear map is determined by its values on a basis [3.0.7], the collection of scalars $a_{j,k}$ determines the map *T*. More formally, we make the following definition.

4.1.0 Definition. The *matrix* of a linear map $T: V \to W$ relative to the ordered bases \mathcal{B} and \mathcal{C} for the \mathbb{K} -vector spaces V and W is

$$(T)_{\mathcal{C}}^{\mathcal{B}} := \begin{bmatrix} a_{1,1} & a_{1,2} \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} \cdots & a_{m,n} \end{bmatrix} \in \mathbb{K}^{m \times n}.$$

When v_k denotes the *k*-th vector in the ordered basis \mathcal{B} , the *k*-th column of the matrix $(T)^{\mathcal{B}}_{\mathcal{C}}$ is the coordinate vector of image $T[v_k]$ relative to ordered basis \mathcal{C} .

4.1.1 Remark. The change of basis matrix [4.0.2] is matrix of the identity map relative to two ordered bases; $\mathbf{A} = (\mathrm{id}_V)_B^{\mathbb{C}}$.

4.1.2 Problem. Let $\mathcal{M} := (1, t, t^2, ..., t^n)$ be the monomial basis for the \mathbb{K} -vector space $\mathbb{K}[t]_{\leq n}$. For the linear operator $T : \mathbb{K}[t]_{\leq n} \to \mathbb{K}[t]_{\leq n}$ is defined by $T[t^k] := (t+1)^k$, compute the matrix $(T)_{\mathcal{M}}^{\mathcal{M}}$.

Solution. The Binomial Theorem [2.3.4] gives

$$T[t^k] = (t+1)^k = \sum_{j=0}^k \binom{k}{j} t^j,$$

so we obtain

$$(T)_{\mathcal{M}}^{\mathcal{M}} = \begin{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 4 \\ 0 \end{pmatrix} & \begin{pmatrix} n \\ 1 \end{pmatrix} \\ \begin{pmatrix} 0 \\ 2 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 2 \end{pmatrix} & \begin{pmatrix} 4 \\ 1 \end{pmatrix} & \begin{pmatrix} n \\ 1 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} & 1 \end{pmatrix} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \begin{pmatrix} 0 \\ 1 \end{pmatrix} & \begin{pmatrix} 1 \\ 2 \end{pmatrix} &$$

4.1.3 Problem. Consider linear operator $T: \mathbb{K}[t]_{\leq 2} \to \mathbb{K}[t]_{\leq 2}$ defined, for all polynomials f in $\mathbb{K}[t]_{\leq 2}$, by T[f] := f'' + 2f' + f. Find the matrix of T with respect to the monomial basis $\mathcal{M} := (1, t, t^2)$. Using this matrix, solve the equation $T[f] = 1 + t + t^2$, and compute Ker(T).

Solution. Since T[1] = 1, T[t] = 2 + t, and $T[t^2] = 2 + 4t + t^2$, we have

$$(T)_{\mathcal{M}}^{\mathcal{M}} = \begin{bmatrix} 1 & 2 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

To solve the equation $T[f] = 1 + t + t^2$, we consider the matrix equation $(T)_{\mathcal{M}}^{\mathcal{M}}(f)_{\mathcal{M}} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^{\mathsf{T}}$. Elementary row operations give

$$\begin{bmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_1 \mapsto r_1 - 2r_3}_{\sim} \begin{bmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{r_1 \mapsto r_1 - 2r_2}_{\sim} \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 1 \end{bmatrix} ,$$

Our notation highlights the relation between the coordinate vectors relative to an ordered basis. Given a linear map $T: V \to W$, an ordered basis \mathcal{B} for V, and an order basis \mathcal{C} for W, we have $(T)^{\mathcal{B}}_{\mathcal{C}}(v)_{\mathcal{B}} = (T[v])_{\mathcal{C}}$ for all $v \in V$. This is equivalent to saying that all directed paths from V to \mathbb{K}^m in the diagram below lead to the same result.

$$\begin{array}{c} V \xleftarrow{T} W \\ (-)_{e} \downarrow & \downarrow (-)_{\mathcal{B}} \\ \mathbb{K}^{n} \xleftarrow{(T)_{e}^{\mathfrak{B}}} \mathbb{K}^{m} \end{array}$$

4.1.4 Proposition. Let $\mathcal{B} := (v_1, v_2, ..., v_n)$ and $\mathcal{C} := (w_1, w_2, ..., w_m)$ be ordered bases for the K-vector spaces V and W respectively. The map from Hom(V, W) to $\mathbb{K}^{m \times n}$ defined by $T \mapsto (T)^{\mathcal{B}}_{\mathcal{C}}$ is an invertible linear map, so the K-vector space Hom(V, W) is isomorphic to $\mathbb{K}^{m \times n}$.

Proof. Consider two linear maps $T: V \to W$ and $S: V \to W$. For any scalars c and d in \mathbb{K} , we have $(cT + dS)[v_k] = cT[v_k] + dT[v_k]$ for all $1 \leq k \leq n$, because Hom(V, W) has pointwise operations. For all $1 \leq j \leq m$ and all $1 \leq k \leq n$, let the scalars $a_{j,k}$ and $b_{j,k}$, denote the (j,k)-entries in the matrices $(T)^{\mathcal{B}}_{\mathcal{C}}$ and $(S)^{\mathcal{B}}_{\mathcal{C}}$ respectively. We obtain

$$(cT+dS)^{\mathcal{B}}_{\mathcal{C}} = [ca_{j,k}+db_{j,k}] = c[a_{j,k}]+d[b_{j,k}] = c(T)^{\mathcal{B}}_{\mathcal{C}}+d(S)^{\mathcal{B}}_{\mathcal{C}},$$

because $\mathbb{K}^{m \times n}$ is equipped with entrywise operations. Therefore, the map $T \mapsto (T)_{\mathbb{C}}^{\mathfrak{B}}$ is linear.

As a consequence of the characterization of invertibility [3.2.5], it suffices to prove that this map is bijective.

- Suppose that the map $T: V \to W$ belongs to the kernel. It follows that $(T)_{\mathbb{C}}^{\mathfrak{B}} = \mathbf{0}$ and $T[v_k] = \mathbf{0}$ for all $1 \leq k \leq n$. Since (v_1, v_2, \ldots, v_n) is a basis of V and a linear map is determined by its values on a basis [3.0.7], we see that T = 0. Hence, the characterization of injectivity [3.1.4] shows that the map $T \mapsto (T)_{\mathbb{C}}^{\mathfrak{B}}$ is injective.
- Given an (*m* × *n*)-matrix **A** whose (*j*, *k*)-entry is the scalar *a_{j,k}* for all 1 ≤ *j* ≤ *m* and all 1 ≤ *k* ≤ *n*, consider the linear map *S*: *V* → *W* defined by *S*[*v_k*] = *a*_{1,k} *w*₁ + *a*_{2,k} *w*₂ + ··· + *a_{m,k} w_m*; see [3.0.7]. Since we have (*S*)^B_C = **A**, the map *T* → (*T*)^B_C is surjective. □

4.1.5 Corollary. For any two finite-dimensional \mathbb{K} -vectors spaces V and W, we have dim Hom $(V, W) = \dim(V) \dim(W)$.

Proof. By choosing ordered bases \mathcal{B} and \mathcal{C} for V and W respectively, Proposition 4.1.4 gives the invertible linear map $T \mapsto (T)_{\mathcal{C}}^{\mathcal{B}}$. This invertible linear map sends any basis of $\operatorname{Hom}(V, W)$ to a basis for $\mathbb{K}^{m \times n}$. We conclude that dim $\operatorname{Hom}(V, W) = \dim(V) \dim(W)$.

Exercises

4.1.6 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample. Assume that V and W are finite-dimensional vector spaces with order basis \mathcal{B} and \mathcal{C} respectively. Let $T: V \to W$ and $S: V \to W$ be linear maps.

i. When $m = \dim(V)$ and $n = \dim(W)$, the matrix $(T)_{\mathcal{B}}^{\mathbb{C}}$ is had m rows and n columns.

- *ii.* The matrix $(T)^{\mathbb{C}}_{\mathcal{B}}$ is always invertible.
- *iii.* The matrix $(id_V)^{\mathcal{B}}_{\mathcal{B}}$ is always identity matrix.
- *iv.* We have $(T)^{\mathcal{C}}_{\mathcal{B}} = (S)^{\mathcal{C}}_{\mathcal{B}}$ if and only if T = S.
- *v*. For all scalars *b* and *c*, we have $(bT + cS)^{\mathbb{C}}_{\mathbb{B}} = b(T)^{\mathbb{C}}_{\mathbb{B}} + c(S)^{\mathbb{C}}_{\mathbb{B}}$.
- *vi.* The vector space Hom(*V*, *W*) is always equal to the vector space Hom(*W*, *V*).
- *vii*. The vector space Hom(*V*, *W*) is always isomorphic to the vector space Hom(*W*, *V*).

4.1.7 Problem. Consider the following three complex (2×2) -matrices:

$$\mathbf{X} := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \qquad \mathbf{H} := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \qquad \mathbf{Y} := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Problem 3.1.8 shows that $\mathcal{B} := (\mathbf{X}, \mathbf{H}, \mathbf{Y})$ is an ordered basis for the linear subspace $\mathfrak{sl}(2, \mathbb{C})$ of traceless complex (2×2) -matrices. For any fixed complex (2×2) -matrix \mathbf{A} , let $\mathrm{ad}_{\mathbf{A}} : \mathfrak{sl}(2, \mathbb{C}) \to \mathbb{C}^{2 \times 2}$ be the function defined by $\mathrm{ad}_{\mathbf{A}}(\mathbf{B}) := \mathbf{A} \mathbf{B} - \mathbf{B} \mathbf{A}$.

- *i*. Show that ad_A is a linear map.
- *ii.* Show that the image of ad_A is contained in $\mathfrak{sl}(2, \mathbb{C})$.
- *iii.* Determine the matrices $(ad_X)^{\mathcal{B}}_{\mathcal{B}}$, $(ad_H)^{\mathcal{B}}_{\mathcal{B}}$, and $(ad_Y)^{\mathcal{B}}_{\mathcal{B}}$.

4.1.8 Problem. Let $J : \mathbb{R}[t]_{\leq 2} \to \mathbb{R}[t]_{\leq 2}$ be the linear operator defined, for all polynomials p in $\mathbb{R}[t]_{\leq 2}$, by

$$(J[p])(t) := \frac{1}{2} \int_{-1}^{1} (3 + 6st - 15s^2t^2) p(s) \, ds$$

- *i.* Let $\mathcal{M} := (1, t, t^2)$ denote the monomial basis for $\mathbb{R}[t]_{\leq 2}$. Compute the matrix $(J)_{\mathcal{B}}^{\mathcal{B}}$.
- *ii.* Find bases for Ker(J) and Im(J).
- *iii.* Show that J^{-1} exists and find an expression for $J^{-1}[a + bt + ct^2]$.
- *iv.* Find polynomial p in $\mathbb{R}[t]_{\leq 2}$ such that $J[p] = (1+t)^2$.
- *v*. Find polynomial *q* in $\mathbb{R}[t]_{\leq 2}$ such that $J^2[q] = t^2$.

4.2 Similar Matrices

IS THERE AN EQUIVALENCE RELATION ON LINEAR OPERATORS? We start with a new characterization of an invertible matrix.

4.2.0 Proposition. A matrix is invertible if and only if it is the matrix of the identity map relative to some pair of ordered bases.

Proof. Let *n* be a nonnegative integer.

⇒: Suppose that the $(n \times n)$ -matrix **A** is invertible. For all $1 \le j \le n$ and all $1 \le k \le n$, let the scalar $a_{j,k}$ be the (j,k)-entry in **A**. The characterization of invertible matrices shows that the column vectors $a_1, a_2, ..., a_n$ in the matrix **A** are a basis for \mathbb{K}^n . For the standard basis $\mathcal{E} := (e_1, e_2, ..., e_n)$ and for all $1 \le k \le n$, we have $a_k = a_{1,k} e_1 + a_{2,k} e_2 + \cdots + a_{n,k} e_n$, so $\mathbf{A} = (\operatorname{id}_{\mathbb{K}^n})_{\mathcal{A}}^{\mathcal{E}}$. **4.2.1 Definition.** For any two square matrices **A** and **B**, we say that **A** is *similar* to **B** if there is an invertible matrix **P** such that $P^{-1}AP = B$ and we write $\mathbf{A} \approx \mathbf{B}$.

4.2.2 Problem. Use the matrix $\mathbf{P} \coloneqq \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$, to demonstrate that the matrix $\mathbf{A} \coloneqq \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix}$ is similar to the matrix $\mathbf{B} \coloneqq \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

Solution. Since $\mathbf{P}^{-1} = \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$, we have

$$\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} = \mathbf{B},$$

which establishes that $\mathbf{A} \approx \mathbf{B}$.

which establishes that $\mathbf{A} \approx \mathbf{B}$.

4.2.3 Lemma (Similarity is an equivalence relation). For any three square matrices A, B, and C having the same number of columns, we have the following properties.

> *The matrix* **A** *is similar to itself;* $\mathbf{A} \approx \mathbf{A}$ *;* (reflexivity) *When* $\mathbf{A} \approx \mathbf{B}$ *, we have* $\mathbf{B} \approx \mathbf{A}$ *;* (symmetry) (transitivity) When $\mathbf{A} \approx \mathbf{B}$ and $\mathbf{B} \approx \mathbf{C}$, we have $\mathbf{A} \approx \mathbf{C}$.

Proof. As $\mathbf{A} = \mathbf{I}\mathbf{A} = \mathbf{I}^{-1}\mathbf{A}\mathbf{I}$, we see that $\mathbf{A} \approx \mathbf{A}$. The relation $\mathbf{A} \approx \mathbf{B}$ means that there exists an invertible **P** such that $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{B}$. Hence, we have $\mathbf{A} = \mathbf{P} \mathbf{B} \mathbf{P}^{-1}$. Setting $\mathbf{Q} := \mathbf{P}^{-1}$ yields $\mathbf{A} = \mathbf{Q}^{-1} \mathbf{B} \mathbf{Q}$, so we deduce that **B** \approx **A**. The relations **A** \approx **B** and **B** \approx **C** imply that there exists invertible matrices **P** and **Q** such that $\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{B}$ and $\mathbf{Q}^{-1} \mathbf{B} \mathbf{Q} = \mathbf{C}$. It follows that

$$(\mathbf{P}\,\mathbf{Q})^{-1}\,\mathbf{A}\,(\mathbf{P}\,\mathbf{Q}) = \mathbf{Q}^{-1}\,(\mathbf{P}^{-1}\,\mathbf{A}\,\mathbf{P})\,\mathbf{Q} = \mathbf{Q}^{-1}\,\mathbf{B}\,\mathbf{Q} = \mathbf{C}\,,$$

so we conclude that $A \approx C$.

4.2.4 Proposition (Properties of similar matrices). For any two similar matrices **A** and **B**, we have the following.

i. $det(\mathbf{A}) = det(\mathbf{B});$

ii. The matrix **A** is invertible if and only if **B** is invertible;

Proof. As the matrices **A** and **B** are similar, there exists an invertible matrix **P** such that $\mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{B}$.

i. The characterization of the determinant proves that $det(\mathbf{I}) = 1$, so the multiplicativity of determinants and the commutativity of scalar multiplication give

$$det(\mathbf{B}) = det(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}) = det(\mathbf{P}^{-1}) det(\mathbf{A}) det(\mathbf{P})$$
$$= det(\mathbf{A}) det(\mathbf{P}^{-1} \mathbf{P}) = det(\mathbf{A}) det(\mathbf{I}) = det(\mathbf{A}).$$

ii. Since a matrix is invertible if and only if its determinant is nonzero, the assertion follows immediately from part *i*.

The converse of this proposition is false.

4.2.5 Problem. Prove that the matrices **I** and **A** := $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ have the same determinant, but are not similar.

Solution. Although we have det(I) = 1 = det(A), we also have $I \not\approx A$ because $P^{-1}IP = P^{-1}P = I \neq A$ for any invertible matrix P.

4.2.6 Lemma (Multiplicative property). Let \mathcal{A} , \mathcal{B} , and \mathcal{C} be ordered bases for the \mathbb{K} -vector spaces U, V, and W respectively. For all linear maps $S: U \to V$ and $T: V \to W$, we have $(TS)_{\mathcal{C}}^{\mathcal{A}} = (T)_{\mathcal{C}}^{\mathcal{B}}(S)_{\mathcal{B}}^{\mathcal{A}}$.

Proof. Suppose that $\mathcal{A} := (u_1, u_2, ..., u_n)$, $\mathcal{B} := (v_1, v_2, ..., v_m)$ and $\mathcal{C} := (w_1, w_2, ..., w_\ell)$. For all $1 \leq i \leq \ell$, all $1 \leq j \leq m$ and all $1 \leq k \leq n$, let the scalar $a_{j,k}$ denote the (j, k)-entry in the matrix $(S)_{\mathcal{B}}^{\mathcal{A}}$ and let the scalar $b_{i,j}$ denote the (i, j)-entry in the matrix $(T)_{\mathcal{C}}^{\mathcal{B}}$. It follows that

$$T[S[\boldsymbol{u}_k]] = T\left[\sum_{j=1}^m a_{j,k} \, \boldsymbol{v}_j\right] = \sum_{j=1}^m a_{j,k} \, T[\boldsymbol{v}_j]$$
$$= \sum_{j=1}^m a_{j,k} \left(\sum_{i=1}^\ell b_{i,j} \, \boldsymbol{w}_i\right) = \sum_{i=1}^\ell \left(\sum_{j=1}^m b_{i,j} \, a_{j,k}\right) \boldsymbol{w}_i \,.$$

Hence, (i, k)-entry in $(n \times \ell)$ -matrix the $(TS)_{\mathbb{C}}^{\mathcal{A}}$ equals $\sum_{j=1}^{m} b_{i,j} a_{j,k}$ which is $(T)_{\mathbb{C}}^{\mathcal{B}} (S)_{\mathcal{B}}^{\mathcal{A}}$ by the definition of matrix multiplication. \Box

4.2.7 Proposition. Let \mathcal{B} and \mathcal{C} be ordered bases for a finite-dimensional vector space *V*. For any linear operator $T: V \to V$, we have

$$(T)^{\mathcal{C}}_{\mathcal{C}} = (\mathrm{id}_V)^{\mathcal{B}}_{\mathcal{C}} (T)^{\mathcal{B}}_{\mathcal{B}} (\mathrm{id}_V)^{\mathcal{C}}_{\mathcal{B}} \quad and \quad \left((\mathrm{id}_V)^{\mathcal{B}}_{\mathcal{C}} \right)^{-1} = (\mathrm{id}_V)^{\mathcal{C}}_{\mathcal{B}}$$

In other words, similar matrices represent the same linear operator relative to different ordered bases.

Proof. The multiplicative property for the matrices associated to linear maps shows that

$$(\mathrm{id}_V)^{\mathcal{B}}_{\mathcal{C}}(T)^{\mathcal{B}}_{\mathcal{B}}(\mathrm{id}_V)^{\mathcal{C}}_{\mathcal{B}} = (\mathrm{id}_V T)^{\mathcal{B}}_{\mathcal{C}}(\mathrm{id}_V)^{\mathcal{C}}_{\mathcal{B}} = (T \mathrm{id}_V)^{\mathcal{C}}_{\mathcal{C}} = (T)^{\mathcal{C}}_{\mathcal{C}},$$

$$(\mathrm{id}_V)^{\mathcal{B}}_{\mathcal{C}}(\mathrm{id}_V)^{\mathcal{C}}_{\mathcal{B}} = (\mathrm{id}_V)^{\mathcal{C}}_{\mathcal{C}} = \mathbf{I}$$
, and $(\mathrm{id}_V)^{\mathcal{C}}_{\mathcal{B}}(\mathrm{id}_V)^{\mathcal{B}}_{\mathcal{C}} = (\mathrm{id}_V)^{\mathcal{B}}_{\mathcal{B}} = \mathbf{I}$. \Box

Exercises

4.2.8 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample. Assume that U, V and W are finite-dimensional vector spaces with order basis A, B, and C respectively. Let $S: U \to V$ and $T: V \to W$ be linear maps.

- *i*. Every invertible matrix is the change of basis matrix from some pair of ordered bases.

- *ii.* We always have $(T^{-1})^{\mathcal{B}}_{\mathcal{C}}(T)^{\mathcal{C}}_{\mathcal{B}} = I$. *iii.* We always have $(S^{-1})^{\mathcal{B}}_{\mathcal{A}} = ((S)^{\mathcal{A}}_{\mathcal{B}})^{-1}$. *iv.* The matrix $(\mathrm{id}_V)^{\mathcal{B}}_{\mathcal{B}}$ is always identity matrix.
- v. Similar matrices represent the same linear operator relative to different ordered bases.