Coordinates

Every finite-dimensional vector space is isomorphic to a coordinate space. Choosing such isomorphisms for the source and target of a linear map allows one to identify the map with a matrix. This chapter explores these matrix representations.

4.0 Change of Basis

How are coordinate vectors relative to different bases

 related? Coordinate vectors provide a map from a finite-dimensional vector space into the coordinate space of the same dimension.4.0.o Proposition. Let $\mathcal{B}:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ be an ordered basis for the \mathbb{K}-vector space V. The map $\boldsymbol{w} \mapsto(w)_{\mathcal{B}}$, sending a vector \boldsymbol{w} in V to its coordinate vector $(w)_{\mathcal{B}}$ in \mathbb{K}^{n}, is an invertible linear map.

Proof. Fix two vectors w and w^{\prime} in V. Since the vectors $v_{1}, v_{2}, \ldots, v_{n}$ span V, there exists scalars $c_{1}, c_{2}, \ldots, c_{n}$ and scalars $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}$ such that $w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} \boldsymbol{v}_{n}$ and $w^{\prime}=c_{1}^{\prime} v_{1}+c_{2}^{\prime} v_{2}+\cdots+c_{n}^{\prime} v_{n}$, so we have $(w)_{\mathcal{B}}=\left[\begin{array}{llll}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right]^{\top}$ and $\left(w^{\prime}\right)_{\mathcal{B}}=\left[\begin{array}{llll}c_{1}^{\prime} & c_{2}^{\prime} & \cdots & c_{n}^{\prime}\end{array}\right]^{\top}$. It follows that, for all scalars d and d^{\prime} in \mathbb{K}, we have

$$
d \boldsymbol{w}+d^{\prime} \boldsymbol{w}^{\prime}=\left(d c_{1}+d^{\prime} c_{1}^{\prime}\right) v_{1}+\left(d c_{2}+d^{\prime} c_{2}^{\prime}\right) v_{2}+\cdots+\left(d c_{n}+d^{\prime} c_{n}^{\prime}\right) \boldsymbol{v}_{n}
$$

and
$\left(d \boldsymbol{w}+d^{\prime} \boldsymbol{w}^{\prime}\right)_{\mathcal{B}}=\left[\begin{array}{c}d c_{1}+d^{\prime} c_{1}^{\prime} \\ d c_{2}+d^{\prime} c_{2}^{\prime} \\ \vdots \\ d c_{n}+d^{\prime} c_{n}^{\prime}\end{array}\right]=d\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]+d^{\prime}\left[\begin{array}{c}c_{1}^{\prime} \\ c_{2}^{\prime} \\ \vdots \\ c_{n}^{\prime}\end{array}\right]=d(\boldsymbol{w})_{\mathcal{B}}+d^{\prime}\left(w^{\prime}\right)_{\mathcal{B}}$,
proving linearity.
For any scalars $b_{1}, b_{2}, \ldots, b_{n}$ in \mathbb{K}, the coordinate vector of the vector $b_{1} \boldsymbol{v}_{1}+b_{2} v_{2}+\cdots+b_{n} \boldsymbol{v}_{n}$ in V is $\left[\begin{array}{llll}b_{1} & b_{2} & \cdots & b_{n}\end{array}\right]^{\top}$, so the linear map $w \mapsto(w)_{\mathcal{B}}$ is surjective. Since each vector u in V is a unique linear combination of a basis [2.3.0], the linear map $w \mapsto(w)_{\mathcal{B}}$ is injective. Thus, the characterization of invertibility [3.2.5] shows that the map $\boldsymbol{w} \mapsto(w)_{\mathcal{B}}$ is invertible.
4.0.1 Problem. Let $f_{1}(x):=1-\cos (x), f_{2}(x):=1-3 \cos (x)+\sin (x)$, and $f_{3}(x):=1-\cos (x)+\sin (x)$. Show that the functions f_{1}, f_{2}, f_{3} are a basis for the \mathbb{R}-vector space of trigonometric polynomials having degree at most 1 .

In particular, the vector space V is isomorphic to \mathbb{K}^{n}.

Solution. The space of trigonometric polynomials [2.0.7] of degree at most 1 has $\mathcal{T}:=(1, \cos (x), \sin (x))$ is its canonical ordered basis. Since this vector space has dimension 3, it suffices to show that the functions f_{1}, f_{2}, f_{3} are linearly independent. Because the map sending a trigonometric polynomial to its coordinate vector relative to \mathcal{T} is linear, the functions f_{1}, f_{2}, f_{3} are linearly independent if and only if the vectors $\left(f_{1}\right)_{\mathcal{T}},\left(f_{2}\right)_{\mathcal{T}},\left(f_{3}\right)_{\mathcal{T}}$ are linearly independent. Since $\left(f_{1}\right)_{\mathcal{T}}=\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{\top},\left(f_{2}\right)_{\mathcal{T}}=\left[\begin{array}{lll}1 & -3 & 1\end{array}\right]^{\top},\left(f_{1}\right)_{\mathcal{T}}=\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]^{\top}$, and

$$
\left[\begin{array}{rrr}
1 & 1 & 1 \\
-1 & -3 & -1 \\
0 & 1 & 1
\end{array}\right] \xrightarrow[\sim]{\substack{\vec{r}_{1} \mapsto \vec{r}_{1}-\vec{r}_{3} \\
\vec{r}_{2} \mapsto \vec{r}_{2}+3 \vec{r}_{3}}}\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \xrightarrow[\sim]{\sim} \xrightarrow[\sim]{\vec{r}_{2} \mapsto \vec{r}_{2}+\vec{r}_{1}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] \xrightarrow[\sim]{\substack{\vec{r}_{2} \mapsto-0.5 \vec{r}_{2} \\
\vec{r}_{3} \mapsto \vec{r}_{3}-0.5 \vec{r}_{2}}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \xrightarrow[\sim]{\substack{\vec{r}_{2} \mapsto \vec{r}_{3} \\
\vec{r}_{3} \mapsto \vec{r}_{1}}}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],
$$

we deduce that $\left(f_{1}\right)_{\mathcal{J}},\left(f_{2}\right)_{\mathcal{T}},\left(f_{3}\right)_{\mathcal{T}}$ are linearly independent.
4.0.2 Theorem (Change of basis). Fix ordered bases $\mathcal{B}:=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2} \ldots, \boldsymbol{v}_{n}\right)$ and $\mathcal{C}:=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{n}\right)$ for $a \mathbb{K}$-vector space V. The matrix

$$
\mathbf{A}:=\left[\begin{array}{llll}
\left(w_{1}\right)_{\mathcal{B}} & \left(w_{2}\right)_{\mathcal{B}} & \cdots & \left(w_{n}\right)_{\mathcal{B}}
\end{array}\right]
$$

whose k-th column is the coordinate vector of \boldsymbol{w}_{k} relative to \mathcal{B}, is invertible.
Moreover, for any vector \boldsymbol{u} in V, we have $(u)_{\mathcal{B}}=\mathbf{A}(u)_{\mathrm{e}}$.

This theorem says that all directed paths from V to \mathbb{K}^{n} in the diagram below lead to the same result.

Proof. For all $1 \leqslant j \leqslant n$ and all $1 \leqslant k \leqslant n$, let the scalar $a_{j, k}$ be the (j, k)-entry in the matrix \mathbf{A}. The definition of the matrix \mathbf{A} implies that $\boldsymbol{w}_{k}=a_{1, k} \boldsymbol{v}_{1}+a_{2, k} \boldsymbol{v}_{2}+\cdots+a_{n, k} \boldsymbol{v}_{n}$ for all $1 \leqslant k \leqslant n$. For any vector $\boldsymbol{u}:=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{2}+\cdots+c_{n} \boldsymbol{w}_{n}$ where $c_{1}, c_{2}, \ldots, c_{n}$ are scalars in \mathbb{K}, we have

$$
\boldsymbol{u}=\sum_{k=1}^{n} c_{k} \boldsymbol{w}_{k}=\sum_{k=1}^{n} c_{k}\left(\sum_{j=1}^{n} a_{j, k} \boldsymbol{v}_{j}\right)=\sum_{j=1}^{n}\left(\sum_{k=1}^{n} a_{j, k} c_{k}\right) \boldsymbol{v}_{j}
$$

Since \mathcal{B} is a basis for the vector space V, the vector u is a unique linear combination [2.3.0] of the vectors $v_{1}, v_{2}, \ldots, v_{n}$. It follows that
$(u)_{\mathcal{B}}=\left[\begin{array}{c}a_{1,1} c_{1}+a_{1,2} c_{2}+\cdots+a_{1, n} c_{n} \\ a_{2,1} c_{1}+a_{2,2} c_{2}+\cdots+a_{2, n} c_{n} \\ \vdots \\ a_{n, 1} c_{1}+a_{n, 2} c_{2}+\cdots+a_{n, n} c_{n}\end{array}\right]=\left[\begin{array}{cccc}a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n, 1} & a_{n, 2} & \cdots & a_{n, n}\end{array}\right]\left[\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right]=\mathbf{A}(u)_{\mathcal{e}}$.
It remains to show that the matrix \mathbf{A} is invertible. Consider a vector $\left[\begin{array}{cccc}c_{1} & c_{2} & \cdots & c_{n}\end{array}\right]^{\top}$ in $\operatorname{Ker}(\mathbf{A})$. Setting $\boldsymbol{u}:=c_{1} \boldsymbol{w}_{1}+c_{2} \boldsymbol{w}_{2}+\cdots+c_{n} \boldsymbol{w}_{n}$, it follows that $\mathbf{0}=\mathbf{A}(u)_{\mathcal{C}}=(u)_{\mathcal{B}}$. Hence, we deduce that

$$
\boldsymbol{u}=0 \boldsymbol{v}_{1}+0 \boldsymbol{v}_{2}+\cdots+0 \boldsymbol{v}_{n}=\mathbf{0},
$$

which implies that $(u)_{\mathcal{C}}=0$ and $c_{1}=c_{2}=\cdots=c_{n}=0$. Since $\operatorname{Ker}(\mathbf{A})=\{\mathbf{0}\}$, combining the characterizations of injectivity [3.1.4] and invertibility [3.2.5] shows that \mathbf{A} is invertible.

Knowing the change of basis matrix sometimes allows one to avoid solving a linear system via row reduction.
4.0.3 Problem. Let $\mathcal{M}:=\left(1, t, t^{2}\right)$ and $\mathcal{B}:=\left(1, t-1,(t-1)^{2}\right)$ be ordered bases for the Q -vector space $\mathrm{Q}[t] \leqslant 2$. Given the polynomial $f:=a_{0}+a_{1}(t-1)+a_{2}(t-1)^{2}$, find rational scalars b_{0}, b_{1}, b_{2} such that $f=b_{0}+b_{1} t+b_{2} t^{2}$.

Solution. Since we have $(1)_{\mathcal{M}}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{\top},(t-1)_{\mathcal{M}}=\left[\begin{array}{lll}-1 & 1 & 0\end{array}\right]^{\top}$, and $\left((t-1)^{2}\right)_{\mathcal{M}}=\left[\begin{array}{lll}1 & -2 & 1\end{array}\right]^{\top}$, change of basis [4.0.2] gives

$$
\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2}
\end{array}\right]=(f)_{\mathcal{M}}=\mathbf{A}(f)_{\mathcal{B}}=\left[\begin{array}{rrr}
1 & -1 & 1 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
a_{0}-a_{1}+a_{2} \\
a_{1}-2 a_{2} \\
a_{2}
\end{array}\right] .
$$

Exercises

4.0.4 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample.
i. A change of basis matrix is always a square matrix.
ii. A change of basis matrix is always invertible.
iii. A change of basis matrix is always equal to its own inverse.
$i v$. When the two chosen bases on a vector space are equal, the change of basis matrix is the identity matrix.
v. The zero matrix can never be a change of basis matrix.
4.0.5 Problem. Consider the four polynomials $f_{0}(t):=1, f_{1}(t):=t$, $f_{2}(t):=t(t-1)$ and $f_{3}(t):=t(t-1)(t-2)$.
i. Show that $\mathcal{B}:=\left(f_{0}, f_{1}, f_{2}, f_{3}\right)$ is an ordered basis for $\mathbb{Q}[t]_{\leqslant 3}$.
ii. Suppose that we have the equation

$$
a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}=b_{0} f_{0}(t)+b_{1} f_{1}(t)+b_{2} f_{2}(t)+b_{3} f_{3}(t)
$$

where $a_{0}, a_{1}, \ldots, a_{3}, b_{0}, b_{1}, \ldots, b_{3} \in \mathbb{Q}$. If $\overrightarrow{\boldsymbol{a}}=\left[\begin{array}{llll}a_{0} & a_{1} & a_{2} & a_{3}\end{array}\right]^{\top}$ and $\overrightarrow{\boldsymbol{b}}=\left[\begin{array}{llll}b_{0} & b_{1} & b_{2} & b_{3}\end{array}\right]^{\top}$, then find matrices \mathbf{M} and \mathbf{N} such that $\mathbf{M} \vec{a}=\vec{b}$ and $\mathbf{N} \vec{b}=\vec{a}$.
iii. Find the coordinates of t^{2} and t^{3} with respect to \mathcal{B}.

4.1 Matrix of a Linear Map

How are linear maps and matrices related? Let $T: V \rightarrow W$ be a linear map. Choose $\mathcal{B}:=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)$ and $\mathcal{C}:=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}\right)$ to be ordered bases for the \mathbb{K}-vector spaces V and W respectively. For all $1 \leqslant k \leqslant n$, the vector $T\left[v_{k}\right]$ lying in W is a unique linear combination [2.3.0] of the basis vectors $w_{1}, w_{2}, \ldots, w_{m}$. Hence, there exists scalars $a_{1, k}, a_{2, k}, \ldots, a_{m, k}$ in \mathbb{K} such that

$$
T\left[\boldsymbol{v}_{k}\right]=a_{1, k} \boldsymbol{w}_{1}+a_{2, k} \boldsymbol{w}_{2}+\cdots+a_{m, k} \boldsymbol{w}_{m}
$$

Since a linear map is determined by its values on a basis [3.0.7], the collection of scalars $a_{j, k}$ determines the map T. More formally, we make the following definition.
4.1.0 Definition. The matrix of a linear map $T: V \rightarrow W$ relative to the ordered bases \mathcal{B} and \mathcal{C} for the \mathbb{K}-vector spaces V and W is

$$
(T)_{\mathrm{B}}^{\mathcal{B}}:=\left[\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right] \in \mathbb{K}^{m \times n} .
$$

When v_{k} denotes the k-th vector in the ordered basis \mathcal{B}, the k-th column of the matrix $(T)_{\mathcal{C}}^{\mathcal{B}}$ is the coordinate vector of image $T\left[v_{k}\right]$ relative to ordered basis \mathcal{C}.
4.1.1 Remark. The change of basis matrix [4.0.2] is matrix of the identity map relative to two ordered bases; $\mathbf{A}=\left(\mathrm{id}_{V}\right)_{\mathcal{B}}^{\mathrm{e}}$.
4.1.2 Problem. Let $\mathcal{M}:=\left(1, t, t^{2}, \ldots, t^{n}\right)$ be the monomial basis for the \mathbb{K}-vector space $\mathbb{K}[t]_{\leqslant n}$. For the linear operator $T: \mathbb{K}[t]_{\leqslant n} \rightarrow \mathbb{K}[t]_{\leqslant n}$ is defined by $T\left[t^{k}\right]:=(t+1)^{k}$, compute the matrix $(T)_{\mathcal{M}}^{\mathcal{M}}$.
Solution. The Binomial Theorem [2.3.4] gives

$$
T\left[t^{k}\right]=(t+1)^{k}=\sum_{j=0}^{k}\binom{k}{j} t^{j},
$$

so we obtain
4.1.3 Problem. Consider linear operator $T: \mathbb{K}[t]_{\leqslant 2} \rightarrow \mathbb{K}[t]_{\leqslant 2}$ defined, for all polynomials f in $\mathbb{K}[t]_{\leqslant 2}$, by $T[f]:=f^{\prime \prime}+2 f^{\prime}+f$. Find the matrix of T with respect to the monomial basis $\mathcal{M}:=\left(1, t, t^{2}\right)$. Using this matrix, solve the equation $T[f]=1+t+t^{2}$, and compute $\operatorname{Ker}(T)$.

Solution. Since $T[1]=1, T[t]=2+t$, and $T\left[t^{2}\right]=2+4 t+t^{2}$, we have

$$
(T)_{\mathcal{M}}^{\mathcal{M}}=\left[\begin{array}{lll}
1 & 2 & 2 \\
0 & 1 & 4 \\
0 & 0 & 1
\end{array}\right] .
$$

To solve the equation $T[f]=1+t+t^{2}$, we consider the matrix equation $(T)_{\mathcal{M}}^{\mathcal{M}}(f)_{\mathfrak{M}}=\left[\begin{array}{ll}1 & 1 \\ 1\end{array}\right]^{\top}$. Elementary row operations give

$$
\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
0 & 1 & 4 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[\sim]{\substack{r_{1} \mapsto r_{1}-2 r_{3} \\
r_{2} \mapsto r_{2}-4 r_{3}}}\left[\begin{array}{rrrr}
1 & 2 & 0 & -1 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[\sim]{r}\left[\begin{array}{rrrr}
1 & 0 & 0 & 5 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 1
\end{array}\right],
$$

Our notation highlights the relation between the coordinate vectors relative to an ordered basis. Given a linear map $T: V \rightarrow W$, an ordered basis \mathcal{B} for V, and an order basis \mathcal{C} for W, we have $(T)_{\mathcal{C}}^{\mathcal{B}}(v)_{\mathcal{B}}=(T[v])_{\mathrm{C}}$ for all $v \in V$. This is equivalent to saying that all directed paths from V to \mathbb{K}^{m} in the diagram below lead to the same result.

so we deduce that $T\left[5-3 t+t^{2}\right]=1+t+t^{2}$. Since the reduced row echelon form of $(T)_{\mathcal{M}}^{\mathcal{M}}$ is the identity matrix, the matrix $(T)_{\mathcal{M}}^{\mathcal{M}}$ is invertible. Thus, the operator T is invertible and $\operatorname{Ker}(T)=\{0\}$.
4.1.4 Proposition. Let $\mathcal{B}:=\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)$ and $\mathcal{C}:=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \ldots, \boldsymbol{w}_{m}\right)$ be ordered bases for the \mathbb{K}-vector spaces V and W respectively. The map from $\operatorname{Hom}(V, W)$ to $\mathbb{K}^{m \times n}$ defined by $T \mapsto(T)_{\mathcal{E}}^{\mathcal{B}}$ is an invertible linear map, so the \mathbb{K}-vector space $\operatorname{Hom}(V, W)$ is isomorphic to $\mathbb{K}^{m \times n}$.

Proof. Consider two linear maps $T: V \rightarrow W$ and $S: V \rightarrow W$. For any scalars c and d in \mathbb{K}, we have $(c T+d S)\left[\boldsymbol{v}_{k}\right]=c T\left[\boldsymbol{v}_{k}\right]+d T\left[\boldsymbol{v}_{k}\right]$ for all $1 \leqslant k \leqslant n$, because $\operatorname{Hom}(V, W)$ has pointwise operations. For all $1 \leqslant j \leqslant m$ and all $1 \leqslant k \leqslant n$, let the scalars $a_{j, k}$ and $b_{j, k}$, denote the (j, k)-entries in the matrices $(T)_{\mathcal{C}}^{\mathcal{B}}$ and $(S)_{\mathcal{C}}^{\mathcal{B}}$ respectively. We obtain

$$
(c T+d S)_{\mathcal{C}}^{\mathcal{B}}=\left[c a_{j, k}+d b_{j, k}\right]=c\left[a_{j, k}\right]+d\left[b_{j, k}\right]=c(T)_{\mathcal{C}}^{\mathcal{B}}+d(S)_{\mathcal{C}}^{\mathcal{B}}
$$

because $\mathbb{K}^{m \times n}$ is equipped with entrywise operations. Therefore, the $\operatorname{map} T \mapsto(T)_{\mathcal{C}}^{\mathcal{B}}$ is linear.

As a consequence of the characterization of invertibility [3.2.5], it suffices to prove that this map is bijective.

- Suppose that the map $T: V \rightarrow W$ belongs to the kernel. It follows
that $(T)_{\mathcal{C}}^{\mathcal{B}}=\mathbf{0}$ and $T\left[\boldsymbol{v}_{k}\right]=\mathbf{0}$ for all $1 \leqslant k \leqslant n$. Since $\left(\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}\right)$ is a basis of V and a linear map is determined by its values on a basis [3.0.7], we see that $T=0$. Hence, the characterization of injectivity [3.1.4] shows that the map $T \mapsto(T)_{\mathcal{C}}^{\mathcal{B}}$ is injective.
- Given an $(m \times n)$-matrix \mathbf{A} whose (j, k)-entry is the scalar $a_{j, k}$ for
all $1 \leqslant j \leqslant m$ and all $1 \leqslant k \leqslant n$, consider the linear map $S: V \rightarrow W$
defined by $S\left[\boldsymbol{v}_{k}\right]=a_{1, k} \boldsymbol{w}_{1}+a_{2, k} \boldsymbol{w}_{2}+\cdots+a_{m, k} \boldsymbol{w}_{m}$; see [3.o.7].
Since we have $(S)_{\mathcal{C}}^{\mathcal{B}}=\mathbf{A}$, the map $T \mapsto(T)_{\mathcal{C}}^{\mathcal{B}}$ is surjective.
4.1.5 Corollary. For any two finite-dimensional \mathbb{K}-vectors spaces V and W, we have $\operatorname{dim} \operatorname{Hom}(V, W)=\operatorname{dim}(V) \operatorname{dim}(W)$.

Proof. By choosing ordered bases \mathcal{B} and \mathcal{C} for V and W respectively, Proposition 4.1.4 gives the invertible linear map $T \mapsto(T)_{\mathcal{C}}^{\mathcal{B}}$. This invertible linear map sends any basis of $\operatorname{Hom}(V, W)$ to a basis for $\mathbb{K}^{m \times n}$. We conclude that $\operatorname{dim} \operatorname{Hom}(V, W)=\operatorname{dim}(V) \operatorname{dim}(W)$.

Exercises

4.1.6 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample. Assume that V and W are finite-dimensional vector spaces with order basis \mathcal{B} and \mathcal{C} respectively. Let $T: V \rightarrow W$ and $S: V \rightarrow W$ be linear maps.
i. When $m=\operatorname{dim}(V)$ and $n=\operatorname{dim}(W)$, the matrix $(T)_{\mathcal{B}}^{\mathcal{C}}$ is had m rows and n columns.
ii. The matrix $(T)_{\mathcal{B}}^{\mathcal{E}}$ is always invertible.
iii. The matrix $\left(\mathrm{id}_{V}\right)_{\mathcal{B}}^{\mathcal{B}}$ is always identity matrix.
iv. We have $(T)_{\mathcal{B}}^{\mathcal{C}}=(S)_{\mathcal{B}}^{\mathcal{C}}$ if and only if $T=S$.
v. For all scalars b and c, we have $(b T+c S)_{\mathcal{B}}^{\mathcal{C}}=b(T)_{\mathcal{B}}^{\mathcal{C}}+c(S)_{\mathcal{B}}^{\mathcal{C}}$.
vi. The vector space $\operatorname{Hom}(V, W)$ is always equal to the vector space $\operatorname{Hom}(W, V)$.
vii. The vector space $\operatorname{Hom}(V, W)$ is always isomorphic to the vector space $\operatorname{Hom}(W, V)$.
4.1.7 Problem. Consider the following three complex (2×2)-matrices:

$$
\mathbf{X}:=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \mathbf{H}:=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad \mathbf{Y}:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Problem 3.1.8 shows that $\mathcal{B}:=(\mathbf{X}, \mathbf{H}, \mathbf{Y})$ is an ordered basis for the linear subspace $\mathfrak{s l}(2, \mathbb{C})$ of traceless complex (2×2)-matrices. For any fixed complex (2×2)-matrix \mathbf{A}, let $\operatorname{ad}_{\mathbf{A}}: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathbb{C}^{2 \times 2}$ be the function defined by $\operatorname{ad}_{\mathbf{A}}(\mathbf{B}):=\mathbf{A} \mathbf{B}-\mathbf{B} \mathbf{A}$.
i. Show that ad_{A} is a linear map.
ii. Show that the image of $\operatorname{ad}_{\mathbf{A}}$ is contained in $\mathfrak{s l}(2, \mathbb{C})$.
iii. Determine the matrices $\left(\operatorname{ad}_{\mathbf{X}}\right)_{\mathcal{B}}^{\mathcal{B}},\left(\operatorname{ad}_{\mathbf{H}}\right)_{\mathcal{B}}^{\mathcal{B}}$, and $\left(\mathrm{ad}_{\mathbf{Y}}\right)_{\mathcal{B}}^{\mathcal{B}}$.
4.1.8 Problem. Let $J: \mathbb{R}[t]_{\leqslant 2} \rightarrow \mathbb{R}[t]_{\leqslant 2}$ be the linear operator defined, for all polynomials p in $\mathbb{R}[t]_{\leqslant 2}$, by

$$
(J[p])(t):=\frac{1}{2} \int_{-1}^{1}\left(3+6 s t-15 s^{2} t^{2}\right) p(s) d s
$$

i. Let $\mathcal{M}:=\left(1, t, t^{2}\right)$ denote the monomial basis for $\mathbb{R}[t]_{\leqslant 2}$. Compute the matrix $(J)_{\mathcal{B}}^{\mathcal{B}}$.
ii. Find bases for $\operatorname{Ker}(J)$ and $\operatorname{Im}(J)$.
iii. Show that J^{-1} exists and find an expression for $J^{-1}\left[a+b t+c t^{2}\right]$.
iv. Find polynomial p in $\mathbb{R}[t]_{\leqslant 2}$ such that $J[p]=(1+t)^{2}$.
v. Find polynomial q in $\mathbb{R}[t]_{\leqslant 2}$ such that $J^{2}[q]=t^{2}$.

4.2 Similar Matrices

Is there an equivalence relation on linear operators? We start with a new characterization of an invertible matrix.
4.2.0 Proposition. A matrix is invertible if and only if it is the matrix of the identity map relative to some pair of ordered bases.

Proof. Let n be a nonnegative integer.
\Rightarrow : Suppose that the $(n \times n)$-matrix \mathbf{A} is invertible. For all $1 \leqslant j \leqslant n$ and all $1 \leqslant k \leqslant n$, let the scalar $a_{j, k}$ be the (j, k)-entry in \mathbf{A}. The characterization of invertible matrices shows that the column vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{n}$ in the matrix \mathbf{A} are a basis for \mathbb{K}^{n}. For the standard basis $\mathcal{E}:=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right)$ and for all $1 \leqslant k \leqslant n$, we have $\boldsymbol{a}_{k}=a_{1, k} \boldsymbol{e}_{1}+a_{2, k} \boldsymbol{e}_{2}+\cdots+a_{n, k} \boldsymbol{e}_{n}$, so $\mathbf{A}=\left(\mathrm{id}_{\mathbb{K}^{n}}\right)_{\mathcal{A}}^{\mathcal{E}}$.
\Leftarrow : For any two ordered bases \mathcal{B} and \mathcal{C} on an n-dimensional vector space V, the change of basis theorem [4.o.2] establishes that the $\left(\mathrm{id}_{V}\right)_{\mathcal{C}}^{\mathcal{B}}$ is invertible.
4.2.1 Definition. For any two square matrices \mathbf{A} and \mathbf{B}, we say that \mathbf{A} is similar to \mathbf{B} if there is an invertible matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\mathbf{B}$ and we write $\mathbf{A} \approx \mathbf{B}$.
4.2.2 Problem. Use the matrix $\mathbf{P}:=\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right]$, to demonstrate that the matrix $\mathbf{A}:=\left[\begin{array}{rr}3 & -1 \\ 0 & 2\end{array}\right]$ is similar to the matrix $\mathbf{B}:=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$.

Solution. Since $\mathbf{P}^{-1}=\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right]^{-1}=\left[\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right]$, we have
$\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\left[\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right]\left[\begin{array}{rr}3 & -1 \\ 0 & 2\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{rr}0 & 2 \\ -3 & 3\end{array}\right]\left[\begin{array}{rr}1 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]=\mathbf{B}$,
which establishes that $\mathbf{A} \approx \mathbf{B}$.
4.2.3 Lemma (Similarity is an equivalence relation). For any three square matrices \mathbf{A}, \mathbf{B}, and \mathbf{C} having the same number of columns, we have the following properties.

$$
\begin{array}{ll}
\text { (reflexivity) } & \text { The matrix } \mathbf{A} \text { is similar to itself; } \mathbf{A} \approx \mathbf{A} \text {; } \\
\text { (symmetry) } & \text { When } \mathbf{A} \approx \mathbf{B} \text {, we have } \mathbf{B} \approx \mathbf{A} ; \\
\text { (transitivity) } & \text { When } \mathbf{A} \approx \mathbf{B} \text { and } \mathbf{B} \approx \mathbf{C} \text {, we have } \mathbf{A} \approx \mathbf{C} \text {. }
\end{array}
$$

Proof. As $\mathbf{A}=\mathbf{I} \mathbf{A}=\mathbf{I}^{-1} \mathbf{A} \mathbf{I}$, we see that $\mathbf{A} \approx \mathbf{A}$. The relation $\mathbf{A} \approx \mathbf{B}$ means that there exists an invertible \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\mathbf{B}$. Hence, we have $\mathbf{A}=\mathbf{P} \mathbf{B} \mathbf{P}^{-1}$. Setting $\mathbf{Q}:=\mathbf{P}^{-1}$ yields $\mathbf{A}=\mathbf{Q}^{-1} \mathbf{B} \mathbf{Q}$, so we deduce that $\mathbf{B} \approx \mathbf{A}$. The relations $\mathbf{A} \approx \mathbf{B}$ and $\mathbf{B} \approx \mathbf{C}$ imply that there exists invertible matrices \mathbf{P} and \mathbf{Q} such that $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\mathbf{B}$ and $\mathbf{Q}^{-1} \mathbf{B} \mathbf{Q}=\mathbf{C}$. It follows that

$$
(\mathbf{P} \mathbf{Q})^{-1} \mathbf{A}(\mathbf{P} \mathbf{Q})=\mathbf{Q}^{-1}\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right) \mathbf{Q}=\mathbf{Q}^{-1} \mathbf{B} \mathbf{Q}=\mathbf{C}
$$

so we conclude that $\mathbf{A} \approx \mathrm{C}$.
4.2.4 Proposition (Properties of similar matrices). For any two similar matrices \mathbf{A} and \mathbf{B}, we have the following.
i. $\operatorname{det}(\mathbf{A})=\operatorname{det}(\mathbf{B})$;
ii. The matrix \mathbf{A} is invertible if and only if \mathbf{B} is invertible;

Proof. As the matrices A and B are similar, there exists an invertible matrix \mathbf{P} such that $\mathbf{P}^{-1} \mathbf{A} \mathbf{P}=\mathbf{B}$.
i. The characterization of the determinant proves that $\operatorname{det}(\mathbf{I})=1$, so the multiplicativity of determinants and the commutativity of scalar multiplication give

$$
\begin{aligned}
\operatorname{det}(\mathbf{B}) & =\operatorname{det}\left(\mathbf{P}^{-1} \mathbf{A} \mathbf{P}\right)=\operatorname{det}\left(\mathbf{P}^{-1}\right) \operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{P}) \\
& =\operatorname{det}(\mathbf{A}) \operatorname{det}\left(\mathbf{P}^{-1} \mathbf{P}\right)=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{I})=\operatorname{det}(\mathbf{A})
\end{aligned}
$$

ii. Since a matrix is invertible if and only if its determinant is nonzero, the assertion follows immediately from part i.

The converse of this proposition is false.
4.2.5 Problem. Prove that the matrices I and $\mathbf{A}:=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ have the
same determinant, but are not similar.

Solution. Although we have $\operatorname{det}(\mathbf{I})=1=\operatorname{det}(\mathbf{A})$, we also have $\mathbf{I} \not \approx \mathbf{A}$ because $\mathbf{P}^{-1} \mathbf{I} \mathbf{P}=\mathbf{P}^{-1} \mathbf{P}=\mathbf{I} \neq \mathbf{A}$ for any invertible matrix \mathbf{P}.
4.2.6 Lemma (Multiplicative property). Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be ordered bases for the \mathbb{K}-vector spaces U, V, and W respectively. For all linear maps $S: U \rightarrow V$ and $T: V \rightarrow W$, we have $(T S)_{\mathcal{C}}^{\mathcal{A}}=(T)_{\mathcal{E}}^{\mathcal{B}}(S)_{\mathcal{B}}^{\mathcal{A}}$.
Proof. Suppose that $\mathcal{A}:=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right), \mathcal{B}:=\left(v_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{m}\right)$ and $\mathcal{C}:=\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2} \ldots, \boldsymbol{w}_{\ell}\right)$. For all $1 \leqslant i \leqslant \ell$, all $1 \leqslant j \leqslant m$ and all $1 \leqslant k \leqslant n$, let the scalar $a_{j, k}$ denote the (j, k)-entry in the matrix $(S)_{\mathcal{B}}^{\mathcal{A}}$ and let the scalar $b_{i, j}$ denote the (i, j)-entry in the matrix $(T)_{\mathbb{C}}^{\mathcal{B}}$. It follows that

$$
\begin{aligned}
T\left[S\left[\boldsymbol{u}_{k}\right]\right]=T\left[\sum_{j=1}^{m} a_{j, k} \boldsymbol{v}_{j}\right] & =\sum_{j=1}^{m} a_{j, k} T\left[\boldsymbol{v}_{j}\right] \\
& =\sum_{j=1}^{m} a_{j, k}\left(\sum_{i=1}^{\ell} b_{i, j} \boldsymbol{w}_{i}\right)=\sum_{i=1}^{\ell}\left(\sum_{j=1}^{m} b_{i, j} a_{j, k}\right) \boldsymbol{w}_{i} .
\end{aligned}
$$

Hence, (i, k)-entry in $(n \times \ell)$-matrix the $(T S)_{\mathcal{C}}^{\mathcal{A}}$ equals $\sum_{j=1}^{m} b_{i, j} a_{j, k}$ which is $(T)_{\mathcal{C}}^{\mathcal{B}}(S)_{\mathcal{B}}^{\mathcal{A}}$ by the definition of matrix multiplication.
4.2.7 Proposition. Let \mathcal{B} and \mathcal{C} be ordered bases for a finite-dimensional vector space V. For any linear operator $T: V \rightarrow V$, we have

$$
(T)_{\mathcal{C}}^{\mathcal{C}}=\left(\operatorname{id}_{V}\right)_{\mathcal{C}}^{\mathcal{B}}(T)_{\mathcal{B}}^{\mathcal{B}}\left(\mathrm{id}_{V}\right)_{\mathcal{B}}^{\mathcal{E}} \quad \text { and } \quad\left(\left(\mathrm{id}_{V}\right)_{\mathbb{C}}^{\mathfrak{B}}\right)^{-1}=\left(\mathrm{id}_{V}\right)_{\mathcal{B}}^{\mathcal{E}}
$$

In other words, similar matrices represent the same linear operator relative to different ordered bases.

Proof. The multiplicative property for the matrices associated to linear maps shows that

$$
\left(\operatorname{id}_{V}\right)_{\mathbb{C}}^{\mathcal{B}}(T)_{\mathcal{B}}^{\mathcal{B}}\left(\operatorname{id}_{V}\right)_{\mathcal{B}}^{\mathcal{E}}=\left(\operatorname{id}_{V} T\right)_{\mathcal{C}}^{\mathcal{B}}\left(\operatorname{id}_{V}\right)_{\mathcal{B}}^{\mathcal{E}}=\left(T \operatorname{id}_{V}\right)_{\mathbb{C}}^{\mathcal{E}}=(T)_{\mathbb{C}}^{\mathcal{E}}
$$

$\left(\mathrm{id}_{V}\right)_{\mathcal{E}}^{\mathcal{B}}\left(\mathrm{id}_{V}\right)_{\mathcal{B}}^{\mathcal{E}}=\left(\mathrm{id}_{V}\right)_{\mathcal{C}}^{\mathcal{E}}=\mathbf{I}$, and $\left(\mathrm{id}_{V}\right)_{\mathcal{B}}^{\mathcal{E}}\left(\mathrm{id}_{V}\right)_{\mathcal{C}}^{\mathcal{B}}=\left(\mathrm{id}_{V}\right)_{\mathcal{B}}^{\mathcal{B}}=\mathbf{I}$.

Exercises

4.2.8 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample. Assume that U, V and W are finite-dimensional vector spaces with order basis \mathcal{A}, \mathcal{B}, and \mathcal{C} respectively. Let $S: U \rightarrow V$ and $T: V \rightarrow W$ be linear maps.

i. Every invertible matrix is the change of basis matrix from some pair of ordered bases.
ii. We always have $\left(T^{-1}\right)_{\mathcal{C}}^{\mathcal{B}}(T)_{\mathcal{B}}^{\mathcal{C}}=I$.
iii. We always have $\left(S^{-1}\right)_{\mathcal{A}}^{\mathcal{B}}=\left((S)_{\mathcal{B}}^{\mathcal{A}}\right)^{-1}$.
$i v$. The matrix $\left(\mathrm{id}_{V}\right)_{\mathcal{B}}^{\mathcal{B}}$ is always identity matrix.
v. Similar matrices represent the same linear operator relative to different ordered bases.

