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Every finite-dimensional vector space is isomorphic to a coordinate
space. Choosing such isomorphisms for the source and target of a
linear map allows one to identify the map with a matrix. This chapter
explores these matrix representations.

4.0 Change of Basis
How are coordinate vectors relative to different bases
related? Coordinate vectors provide a map from a finite-dimensional
vector space into the coordinate space of the same dimension.

4.0.0 Proposition. Let B := (v1, v2, . . . , vn) be an ordered basis for the
K-vector space V. The map w 7! (w)B, sending a vector w in V to its
coordinate vector (w)B in Kn, is an invertible linear map.

In particular, the vector space V is
isomorphic to Kn.

Proof. Fix two vectors w and w
0 in V. Since the vectors v1, v2, . . . , vn

span V, there exists scalars c1, c2, . . . , cn and scalars c01, c02, . . . , c0n such
that w = c1 v1 + c2 v2 + · · ·+ cn vn and w

0 = c01 v1 + c02 v2 + · · ·+ c0n vn,
so we have (w)B =

⇥
c1 c2 · · · cn

⇤
T and (w

0)B =
⇥
c01 c02 · · · c0n

⇤
T. It

follows that, for all scalars d and d0 in K, we have

d w + d0 w
0 = (dc1 + d0c01) v1 + (dc2 + d0c02) v2 + · · ·+ (dcn + d0c0n) vn

and

(d w + d0 w
0)B =

2

6664

dc1 + d0c01
dc2 + d0c02...
dcn + d0c0n

3

7775
= d

2

6664

c1
c2...
cn

3

7775
+ d0

2

6664

c01
c02...
c0n

3

7775
= d(w)B + d0(w

0)B ,

proving linearity.
For any scalars b1, b2, . . . , bn in K, the coordinate vector of the

vector b1 v1 + b2 v2 + · · ·+ bn vn in V is
⇥
b1 b2 · · · bn

⇤
T, so the linear

map w 7! (w)B is surjective. Since each vector u in V is a unique
linear combination of a basis [2.3.0], the linear map w 7! (w)B is
injective. Thus, the characterization of invertibility [3.2.5] shows that
the map w 7! (w)B is invertible.

4.0.1 Problem. Let f1(x) := 1 � cos(x), f2(x) := 1 � 3 cos(x) + sin(x),
and f3(x) := 1 � cos(x) + sin(x). Show that the functions f1, f2, f3 are
a basis for the R-vector space of trigonometric polynomials having
degree at most 1.
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Solution. The space of trigonometric polynomials [2.0.7] of degree
at most 1 has T :=

�
1, cos(x), sin(x)

�
is its canonical ordered basis.

Since this vector space has dimension 3, it suffices to show that the
functions f1, f2, f3 are linearly independent. Because the map sending
a trigonometric polynomial to its coordinate vector relative to T is
linear, the functions f1, f2, f3 are linearly independent if and only
if the vectors ( f1)T , ( f2)T , ( f3)T are linearly independent. Since
( f1)T =

⇥
1 �1 0

⇤
T, ( f2)T =

⇥
1 �3 1

⇤
T, ( f1)T =

⇥
1 �1 1

⇤
T, and

2

4
1 1 1

�1 �3 �1
0 1 1

3

5
~r1 7!~r1�~r3
~r2 7!~r2+3~r3�������!

⇠

2

4
1 0 0

�1 0 2
0 1 1

3

5 ~r2 7!~r2+~r1������!
⇠

2

4
1 0 0
0 0 2
0 1 1

3

5
~r2 7! �0.5~r2
~r3 7!~r3�0.5~r2��������!

⇠

2

4
1 0 0
0 0 1
0 1 0

3

5
~r2 7!~r3
~r3 7!~r1����!

⇠

2

4
1 0 0
0 1 0
0 0 1

3

5 ,

we deduce that ( f1)T , ( f2)T , ( f3)T are linearly independent.

4.0.2 Theorem (Change of basis). Fix ordered bases B := (v1, v2 . . . , vn)

and C := (w1, w2, . . . , wn) for a K-vector space V. The matrix

A :=
h
(w1)B (w2)B · · · (wn)B

i
,

whose k-th column is the coordinate vector of wk relative to B, is invertible.
Moreover, for any vector u in V, we have (u)B = A (u)C.

This theorem says that all directed
paths from V to Kn in the diagram
below lead to the same result.

V V

Kn Kn

(�)B (�)C

idV

A

Proof. For all 1 6 j 6 n and all 1 6 k 6 n, let the scalar aj,k be the
(j, k)-entry in the matrix A. The definition of the matrix A implies
that wk = a1,k v1 + a2,k v2 + · · ·+ an,k vn for all 1 6 k 6 n. For any
vector u := c1 w1 + c2 w2 + · · ·+ cn wn where c1, c2, . . . , cn are scalars
in K, we have

u =
n

Â
k=1

ck wk =
n

Â
k=1

ck

 
n

Â
j=1

aj,k vj

!
=

n

Â
j=1

 
n

Â
k=1

aj,k ck

!
vj

Since B is a basis for the vector space V, the vector u is a unique
linear combination [2.3.0] of the vectors v1, v2, . . . , vn. It follows that

(u)B =

2

6664

a1,1c1 + a1,2c2 + · · ·+ a1,ncn
a2,1c1 + a2,2c2 + · · ·+ a2,ncn

...
an,1c1 + an,2c2 + · · ·+ an,ncn

3

7775
=

2

6664

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n...

...
. . .

...
an,1 an,2 · · · an,n

3

7775

2

6664

c1
c2...
cn

3

7775
= A (u)C .

It remains to show that the matrix A is invertible. Consider a vector⇥
c1 c2 · · · cn

⇤
T in Ker(A). Setting u := c1 w1 + c2 w2 + · · ·+ cn wn, it

follows that 0 = A(u)C = (u)B. Hence, we deduce that

u = 0 v1 + 0 v2 + · · ·+ 0 vn = 0 ,

which implies that (u)C = 0 and c1 = c2 = · · · = cn = 0. Since
Ker(A) = {0}, combining the characterizations of injectivity [3.1.4]
and invertibility [3.2.5] shows that A is invertible.
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Knowing the change of basis matrix sometimes allows one to
avoid solving a linear system via row reduction.

4.0.3 Problem. Let M := (1, t, t2) and B :=
�
1, t � 1, (t � 1)2� be

ordered bases for the Q-vector space Q[t]62. Given the polynomial
f := a0 + a1 (t � 1) + a2 (t � 1)2, find rational scalars b0, b1, b2 such that
f = b0 + b1 t + b2 t2.

Solution. Since we have (1)M =
⇥
1 0 0

⇤
T, (t � 1)M =

⇥
�1 1 0

⇤
T,

and ((t � 1)2)M =
⇥
1 �2 1

⇤
T, change of basis [4.0.2] gives

2

4
b0
b1
b2

3

5 = ( f )M = A ( f )B =

2

4
1 �1 1
0 1 �2
0 0 1

3

5

2

4
a0
a1
a2

3

5 =

2

4
a0 � a1 + a2

a1 � 2a2
a2

3

5 .

Exercises

4.0.4 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. A change of basis matrix is always a square matrix.
ii. A change of basis matrix is always invertible.

iii. A change of basis matrix is always equal to its own inverse.
iv. When the two chosen bases on a vector space are equal, the

change of basis matrix is the identity matrix.
v. The zero matrix can never be a change of basis matrix.

4.0.5 Problem. Consider the four polynomials f0(t) := 1, f1(t) := t,
f2(t) := t(t � 1) and f3(t) := t(t � 1)(t � 2).

i. Show that B := ( f0, f1, f2, f3) is an ordered basis for Q[t]63.
ii. Suppose that we have the equation

a0 + a1 t + a2 t2 + a3 t3 = b0 f0(t) + b1 f1(t) + b2 f2(t) + b3 f3(t)

where a0, a1, . . . , a3, b0, b1, . . . , b3 2 Q. If ~a = [a0 a1 a2 a3]
T

and ~b = [b0 b1 b2 b3]
T, then find matrices M and N such that

M~a = ~b and N~b = ~a.
iii. Find the coordinates of t2 and t3 with respect to B.

4.1 Matrix of a Linear Map
How are linear maps and matrices related? Let T : V ! W be
a linear map. Choose B := (v1, v2, . . . , vn) and C := (w1, w2, . . . , wm)

to be ordered bases for the K-vector spaces V and W respectively.
For all 1 6 k 6 n, the vector T[vk] lying in W is a unique linear
combination [2.3.0] of the basis vectors w1, w2, . . . , wm. Hence, there
exists scalars a1,k, a2,k, . . . , am,k in K such that

T[vk] = a1,k w1 + a2,k w2 + · · ·+ am,k wm .
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Since a linear map is determined by its values on a basis [3.0.7], the
collection of scalars aj,k determines the map T. More formally, we
make the following definition.

4.1.0 Definition. The matrix of a linear map T : V ! W relative to the
ordered bases B and C for the K-vector spaces V and W is

(T)BC :=

2

664

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n...

...
. . .

...
am,1 am,2 · · · am,n

3

775 2 Km⇥n .

When vk denotes the k-th vector in the ordered basis B, the k-th
column of the matrix (T)BC is the coordinate vector of image T[vk]

relative to ordered basis C.

Our notation highlights the relation
between the coordinate vectors relative
to an ordered basis. Given a linear map
T : V ! W, an ordered basis B for V,
and an order basis C for W, we have
(T)BC (v)B = (T[v])C for all v 2 V. This
is equivalent to saying that all directed
paths from V to Km in the diagram
below lead to the same result.

V W

Kn Km

(�)C

T

(�)B

(T)BC
4.1.1 Remark. The change of basis matrix [4.0.2] is matrix of the
identity map relative to two ordered bases; A = (idV)CB.

4.1.2 Problem. Let M := (1, t, t2, . . . , tn) be the monomial basis for the
K-vector space K[t]6n. For the linear operator T : K[t]6n ! K[t]6n is
defined by T[tk] := (t + 1)k, compute the matrix (T)MM.

Solution. The Binomial Theorem [2.3.4] gives

T[tk] = (t + 1)k =
k

Â
j=0

✓
k
j

◆
tj ,

so we obtain

(T)MM =

2

6666664

(0
0) (1

0) (2
0) (3

0) (4
0) · · · (n

1)

(0
1) (1

1) (2
1) (3

1) (4
1) · · · (n

1)

(0
2) (1

2) (2
2) (3

2) (4
2) · · · (n

2)...
...

...
...

...
. . .

...
(0

n) (1
n) (2

n) (3
n) (4

n) · · · (n
n)

3

7777775
=

2

6666664

1 1 1 1 1 · · · 1
0 1 2 3 4 · · · n
0 0 1 3 6 · · · n(n�1)

2...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 1

3

7777775
.

4.1.3 Problem. Consider linear operator T : K[t]62 ! K[t]62 defined,
for all polynomials f in K[t]62, by T[ f ] := f 00 + 2 f 0 + f . Find the
matrix of T with respect to the monomial basis M := (1, t, t2). Using
this matrix, solve the equation T[ f ] = 1 + t + t2, and compute Ker(T).

Solution. Since T[1] = 1, T[t] = 2 + t, and T[t2] = 2 + 4t + t2, we have

(T)MM =

2

4
1 2 2
0 1 4
0 0 1

3

5 .

To solve the equation T[ f ] = 1 + t + t2, we consider the matrix
equation (T)MM ( f )M =

⇥
1 1 1

⇤
T. Elementary row operations give

2

4
1 2 2 1
0 1 4 1
0 0 1 1

3

5
r1 7! r1�2 r3
r2 7! r2�4 r3�������!

⇠

2

4
1 2 0 �1
0 1 0 �3
0 0 1 1

3

5 r1 7! r1�2 r2�������!
⇠

2

4
1 0 0 5
0 1 0 �3
0 0 1 1

3

5 ,
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so we deduce that T[5 � 3t + t2] = 1 + t + t2. Since the reduced
row echelon form of (T)MM is the identity matrix, the matrix (T)MM is
invertible. Thus, the operator T is invertible and Ker(T) = {0}.

4.1.4 Proposition. Let B := (v1, v2, . . . , vn) and C := (w1, w2 . . . , wm) be
ordered bases for the K-vector spaces V and W respectively. The map from
Hom(V, W) to Km⇥n defined by T 7! (T)BC is an invertible linear map, so
the K-vector space Hom(V, W) is isomorphic to Km⇥n.

Proof. Consider two linear maps T : V ! W and S : V ! W. For any
scalars c and d in K, we have (c T + d S)[vk] = c T[vk] + d T[vk] for
all 1 6 k 6 n, because Hom(V, W) has pointwise operations. For all
1 6 j 6 m and all 1 6 k 6 n, let the scalars aj,k and bj,k, denote the
(j, k)-entries in the matrices (T)BC and (S)BC respectively. We obtain

(c T + d S)BC =
⇥
c aj,k + d bj,k

⇤
= c

⇥
aj,k
⇤
+ d

⇥
bj,k
⇤
= c (T)BC + d (S)BC ,

because Km⇥n is equipped with entrywise operations. Therefore, the
map T 7! (T)BC is linear.

As a consequence of the characterization of invertibility [3.2.5], it
suffices to prove that this map is bijective.
• Suppose that the map T : V ! W belongs to the kernel. It follows

that (T)BC = 0 and T[vk] = 0 for all 1 6 k 6 n. Since (v1, v2, . . . , vn)

is a basis of V and a linear map is determined by its values on
a basis [3.0.7], we see that T = 0. Hence, the characterization of
injectivity [3.1.4] shows that the map T 7! (T)BC is injective.

• Given an (m ⇥ n)-matrix A whose (j, k)-entry is the scalar aj,k for
all 1 6 j 6 m and all 1 6 k 6 n, consider the linear map S : V ! W
defined by S[vk] = a1,k w1 + a2,k w2 + · · · + am,k wm; see [3.0.7].
Since we have (S)BC = A, the map T 7! (T)BC is surjective.

4.1.5 Corollary. For any two finite-dimensional K-vectors spaces V and W,
we have dim Hom(V, W) = dim(V) dim(W).

Proof. By choosing ordered bases B and C for V and W respectively,
Proposition 4.1.4 gives the invertible linear map T 7! (T)BC . This
invertible linear map sends any basis of Hom(V, W) to a basis for
Km⇥n. We conclude that dim Hom(V, W) = dim(V) dim(W).

Exercises

4.1.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample. Assume that V
and W are finite-dimensional vector spaces with order basis B and C

respectively. Let T : V ! W and S : V ! W be linear maps.
i. When m = dim(V) and n = dim(W), the matrix (T)CB is had m

rows and n columns.
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ii. The matrix (T)CB is always invertible.
iii. The matrix (idV)BB is always identity matrix.
iv. We have (T)CB = (S)CB if and only if T = S.
v. For all scalars b and c, we have (b T + c S)CB = b (T)CB + c (S)CB.

vi. The vector space Hom(V, W) is always equal to the vector space
Hom(W, V).

vii. The vector space Hom(V, W) is always isomorphic to the vector
space Hom(W, V).

4.1.7 Problem. Consider the following three complex (2 ⇥ 2)-matrices:

X :=


0 1
0 0

�
, H :=


1 0
0 �1

�
, Y :=


0 0
1 0

�
.

Problem 3.1.8 shows that B := (X, H, Y) is an ordered basis for the
linear subspace sl(2, C) of traceless complex (2 ⇥ 2)-matrices. For
any fixed complex (2 ⇥ 2)-matrix A, let adA : sl(2, C) ! C2⇥2 be the
function defined by adA(B) := A B � B A.

i. Show that adA is a linear map.
ii. Show that the image of adA is contained in sl(2, C).

iii. Determine the matrices (adX)BB, (adH)BB, and (adY)BB.

4.1.8 Problem. Let J : R[t]62 ! R[t]62 be the linear operator defined,
for all polynomials p in R[t]62, by

�
J[p]

�
(t) :=

1
2

Z 1

�1
(3 + 6st � 15s2t2) p(s) ds .

i. Let M := (1, t, t2) denote the monomial basis for R[t]62. Com-
pute the matrix (J)BB.

ii. Find bases for Ker(J) and Im(J).
iii. Show that J�1 exists and find an expression for J�1[a + b t + c t2].
iv. Find polynomial p in R[t]62 such that J[p] = (1 + t)2.
v. Find polynomial q in R[t]62 such that J2[q] = t2.

4.2 Similar Matrices
Is there an equivalence relation on linear operators? We
start with a new characterization of an invertible matrix.

4.2.0 Proposition. A matrix is invertible if and only if it is the matrix of the
identity map relative to some pair of ordered bases.

Proof. Let n be a nonnegative integer.
): Suppose that the (n ⇥ n)-matrix A is invertible. For all 1 6 j 6 n

and all 1 6 k 6 n, let the scalar aj,k be the (j, k)-entry in A. The
characterization of invertible matrices shows that the column
vectors a1, a2, . . . , an in the matrix A are a basis for Kn. For the
standard basis E := (e1, e2, . . . , en) and for all 1 6 k 6 n, we have
ak = a1,k e1 + a2,k e2 + · · ·+ an,k en, so A = (idKn)EA.
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(: For any two ordered bases B and C on an n-dimensional vector
space V, the change of basis theorem [4.0.2] establishes that the
(idV)BC is invertible.

4.2.1 Definition. For any two square matrices A and B, we say that A

is similar to B if there is an invertible matrix P such that P
�1

A P = B

and we write A ⇡ B.

4.2.2 Problem. Use the matrix P :=


1 �1
1 0

�
, to demonstrate that the

matrix A :=


3 �1
0 2

�
is similar to the matrix B :=


2 0
0 3

�
.

Solution. Since P
�1 =


1 �1
1 0

��1
=


0 1

�1 1

�
, we have

P
�1

A P =


0 1

�1 1

� 
3 �1
0 2

� 
1 �1
1 0

�
=


0 2

�3 3

� 
1 �1
1 0

�
=


2 0
0 3

�
= B ,

which establishes that A ⇡ B.

4.2.3 Lemma (Similarity is an equivalence relation). For any three
square matrices A, B, and C having the same number of columns, we have
the following properties.

(reflexivity) The matrix A is similar to itself; A ⇡ A;
(symmetry) When A ⇡ B, we have B ⇡ A;
(transitivity) When A ⇡ B and B ⇡ C, we have A ⇡ C.

Proof. As A = I A = I
�1

A I, we see that A ⇡ A. The relation A ⇡ B

means that there exists an invertible P such that P
�1

A P = B. Hence,
we have A = P B P

�1. Setting Q := P
�1 yields A = Q

�1
B Q, so

we deduce that B ⇡ A. The relations A ⇡ B and B ⇡ C imply that
there exists invertible matrices P and Q such that P

�1
A P = B and

Q
�1

B Q = C. It follows that

(P Q)�1
A (P Q) = Q

�1 (P�1
A P)Q = Q

�1
B Q = C ,

so we conclude that A ⇡ C.

4.2.4 Proposition (Properties of similar matrices). For any two similar
matrices A and B, we have the following.

i. det(A) = det(B);
ii. The matrix A is invertible if and only if B is invertible;

Proof. As the matrices A and B are similar, there exists an invertible
matrix P such that P

�1
A P = B.

i. The characterization of the determinant proves that det(I) = 1,
so the multiplicativity of determinants and the commutativity of
scalar multiplication give

det(B) = det(P�1
A P) = det(P�1)det(A)det(P)

= det(A)det(P�1
P) = det(A)det(I) = det(A) .
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ii. Since a matrix is invertible if and only if its determinant is
nonzero, the assertion follows immediately from part i.

The converse of this proposition is false.

4.2.5 Problem. Prove that the matrices I and A :=


1 1
0 1

�
have the

same determinant, but are not similar.

Solution. Although we have det(I) = 1 = det(A), we also have I 6⇡ A

because P
�1

I P = P
�1

P = I 6= A for any invertible matrix P.

4.2.6 Lemma (Multiplicative property). Let A, B, and C be ordered
bases for the K-vector spaces U, V, and W respectively. For all linear maps
S : U ! V and T : V ! W, we have (T S)AC = (T)BC (S)AB .

Proof. Suppose that A := (u1, u2, . . . , un), B := (v1, v2, . . . , vm) and
C := (w1, w2 . . . , w`). For all 1 6 i 6 `, all 1 6 j 6 m and all
1 6 k 6 n, let the scalar aj,k denote the (j, k)-entry in the matrix (S)AB
and let the scalar bi,j denote the (i, j)-entry in the matrix (T)BC . It
follows that

T
⇥
S[uk]

⇤
= T

"
m

Â
j=1

aj,k vj

#
=

m

Â
j=1

aj,k T[vj]

=
m

Â
j=1

aj,k

8
>>>:

`

Â
i=1

bi,j wi

9
>>>;=

`

Â
i=1

8
>>>>:

m

Â
j=1

bi,j aj,k

9
>>>>;wi .

Hence, (i, k)-entry in (n ⇥ `)-matrix the (T S)AC equals Âm
j=1 bi,j aj,k

which is (T)BC (S)AB by the definition of matrix multiplication.

4.2.7 Proposition. Let B and C be ordered bases for a finite-dimensional
vector space V. For any linear operator T : V ! V, we have

(T)CC = (idV)
B
C (T)BB(idV)

C
B and

�
(idV)

B
C

��1
= (idV)

C
B .

In other words, similar matrices represent the same linear operator relative
to different ordered bases.

Proof. The multiplicative property for the matrices associated to
linear maps shows that

(idV)
B
C (T)BB (idV)

C
B = (idV T)BC (idV)

C
B = (T idV)

C
C = (T)CC ,

(idV)BC (idV)CB = (idV)CC = I, and (idV)CB (idV)BC = (idV)BB = I.

V V

V V

Kn Kn

Kn Kn

(�)B

T

(�)B

idVidV

(�)C

T

(�)C

(idV )CB

(T)CC

(T)BB

(idV )BC

Exercises

4.2.8 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample. Assume that
U, V and W are finite-dimensional vector spaces with order basis A,
B, and C respectively. Let S : U ! V and T : V ! W be linear maps.
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i. Every invertible matrix is the change of basis matrix from some
pair of ordered bases.

ii. We always have (T�1)BC (T)CB = I.
iii. We always have (S�1)BA =

�
(S)AB

��1.
iv. The matrix (idV)BB is always identity matrix.
v. Similar matrices represent the same linear operator relative to

different ordered bases.


