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Because diagonal matrices are especially easy to handle, we want to
pinpoint when a linear operator is represented by a diagonal matrix.

6.0 Eigenbasis
When is the matrix of a linear operator diagonal? To find
more tractable matrices associated to a linear operator, we focus on
bases that yield diagonal matrices.

6.0.0 Problem. Find a diagonal matrix L :=


l1 0
0 l2

�
that is similar to

the matrix A :=


0 1
�2 3

�
.

Solution. Suppose that there exists an invertible matrix P such that
P
�1

A P = L. Let p1 and p2 in Q2 denote the columns of the matrix P.
Hence, we obtain

⇥
A p1 A p2

⇤
= A P = P L =

⇥
p1 p2

⇤ l1 0
0 l2

�
=

⇥
l1 p1 l2 p2

⇤
.

By comparing columns, we see that p1 and p2 are eigenvectors for
A and the diagonal entries in L are eigenvalues of A; see [5.0.0]. By
definition [5.1.2], the characteristic polynomial of the matrix A is

p
A
(t) = det(t I � A) = det

8
>>:


t �1
2 t � 3

�9
>>;

= t(t � 3) + 2 = t2 � 3 t + 2 = (t � 1)(t � 2) ,

so the eigenvalues of A are 1 and 2; see [5.1.5]. By determining the
reduced row echelon form of the relevant matrices, we find the
corresponding eigenvectors:

I�A =


1 �1
2 �2

�
r2 7! r2�2 r1�������!

⇠


1 �1
0 0

�
) Ker(I�A) = Span

8
>>:


1
1

�9
>>;,

2 I�A =


2 �1
2 �1

�
r2 7! r2� r1�������!

⇠


2 �1
0 0

�
) Ker(2 I�A) = Span

8
>>:


1
2

�9
>>;.

Hence, we obtain


1 1
1 2

��1 
0 1

�2 3

� 
1 1
1 2

�
=


2 �1

�1 1

� 
1 2
1 4

�
=


1 0
0 2

�
,

and we conclude that A ⇡


1 0
0 2

�
.
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6.0.1 Definition. A linear operator T : V ! V is diagonalizable if
there exists an ordered basis B for the vector space V such that the
associated matrix (T)BB of T relative to B is diagonal.

A square matrix is diagonalizable if it is
similar to a diagonal matrix.

6.0.2 Theorem (Diagonalizability criterion). A linear operator T on a
finite-dimensional K-vector space V is diagonalizable if and only if T has
dim(V) linearly independent eigenvectors.

An eigenbasis is a basis consisting of
eigenvectors. With this terminology, a
linear operator on a finite-dimensional
vector space is diagonalizable if and
only if it has an eigenbasis.

Proof. Let n := dim(V). Choose an ordered basis B for the vector
space V and consider the matrix A := (T)BB. Since similar matrices
represent the same linear operator relative to different ordered
basis [4.2.7], it is enough to show that the matrix A is diagonalizable
if and only if the matrix A has n linearly independent eigenvectors.
): Suppose that there is an invertible matrix P and a diagonal

matrix L such that P
�1

A P = L or equivalently A P = P L. It
follows that, for each 1 6 k 6 n, the matrix A times the k-th
column of P is the k-th diagonal entry of L times the k-th column
of P. By definition [5.0.0], the k-th column of P is an eigenvector of
A with eigenvalue equal to the k-th diagonal entry of L. Since P is
invertible, the characterization of invertible matrices implies that
these are n eigenvectors are linearly independent.

(: Suppose that the vectors p1, p2 . . . , pn are linearly independent
eigenvectors of the matrix A. The characterization of invertible
matrices establishes that the matrix P, having these eigenvectors as
its columns, is invertible. For all 1 6 k 6 n, let the scalar lk in K

be the eigenvalue associated to the eigenvector pk. It follow that

P
�1

A P = P
�1 ⇥

A p1 A p2 · · · A pn
⇤

= P
�1 ⇥l1 p1 l2 p2 · · · ln pn

⇤

= P
�1 ⇥

p1 p2 · · · pn
⇤

2

664

l1 0 · · · 0
0 l2 · · · 0...

...
. . .

...
0 0 · · · ln

3

775

= P
�1

P

2

664

l1 0 · · · 0
0 l2 · · · 0...

...
. . .

...
0 0 · · · ln

3

775 =

2

664

l1 0 · · · 0
0 l2 · · · 0...

...
. . .

...
0 0 · · · ln

3

775 .

6.0.3 Corollary (Sufficient condition for diagonalizable). Let V be a
finite-dimensional K-vector space. Any linear operator T : V ! V with
dim(V) distinct eigenvalues is diagonalizable.

� This condition is not necessary!

Proof. The eigenvectors corresponding the distinct eigenvalues are
linearly independent [5.0.6], so the diagonalizablility criterion [6.0.2]
implies that the linear operator T is diagonalizable.

We next demonstrate that this sufficient condition is not necessary.



copyright © 2022 by gregory g. smith diagonalization 61

6.0.4 Problem. Is the matrix B :=

2

64
1 2 0 0
0 �1 0 0
0 0 1 0
0 0 �1 2

3

75 diagonalizable?

Solution. The characteristic polynomial of the matrix B is

p
B
(t) = det(t I�B) = det

8
>>>>>>>>:

2

64
t � 1 �2 0 0

0 t + 1 0 0
0 0 t � 1 0
0 0 1 t � 2

3

75

9
>>>>>>>>;
= (t+ 1)(t� 1)2(t� 2) ,

so this (4 ⇥ 4)-matrix has only 3 distinct eigenvalues. We find the
corresponding eigenvectors as follows:

�1 I � B =

2

64
�2 �2 0 0

0 0 0 0
0 0 �2 0
0 0 1 �3

3

75 ⇠

2

64
1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

75 ) Ker(�1 I � B) = Span

8
>>>>>>>>:

2

64
�1

1
0
0

3

75

9
>>>>>>>>;

,

1 I � B =

2

64
0 �2 0 0
0 2 0 0
0 0 0 0
0 0 �1 1

3

75 ⇠

2

64
0 1 0 0
0 0 1 �1
0 0 0 0
0 0 0 0

3

75 ) Ker(1 I � B) = Span

8
>>>>>>>>:

2

64
1
0
0
0

3

75 ,

2

64
0
0
1
1

3

75

9
>>>>>>>>;

,

2 I � B =

2

64
�3 �2 0 0

0 �2 0 0
0 0 �3 0
0 0 1 0

3

75 ⇠

2

64
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

3

75 ) Ker(2 I � B) = Span

8
>>>>>>>>:

2

64
0
0
0
1

3

75

9
>>>>>>>>;

.

Since

det

8
>>>>>>>>:

2

64
�1 1 0 0

1 0 0 0
0 0 1 0
0 0 1 1

3

75

9
>>>>>>>>;

= det

8
>>>>>>>>:

2

64
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

3

75

9
>>>>>>>>;

= �1 6= 0 ,

the characterizations of determinants and invertible matrices show
that the matrix B has 4 linearly independent eigenvectors. Therefore,
the criterion for diagonalizability [6.0.2] proves that the matrix B is
diagonalizable.

6.0.5 Problem. Let V be the R-vector space of trigonometric polynomi-
als of degree at most 1. Is the linear operator S : V ! V defined, for
all f in V, by S[ f ] := f (x + p/4) diagonalizable?

Solution. Let T :=
�
1, cos(x), sin(x)

�
be canonical ordered basis of the

R-vector space V. The special values cos(p/4) = sin(p/4) = 1/
p

2
together with the angle sum formulae give

The angle sum formulae assert that
sin(q+f) = sin(q) cos(f)+sin(f) cos(q),
cos(q+f) = cos(q) cos(f)�sin(f) sin(q).

S[1] = 1 ) (1)T =

2

4
1
0
0

3

5 ,

S[cos] = cos
�
x + p

4
�
= 1p

2
cos(x)� 1p

2
sin(x) ) (cos)T =

1p
2

2

4
0
1

�1

3

5 ,

S[sin] = sin
�

x + p
4
�
= 1p

2
cos(x) + 1p

2
sin(x) ) (sin)T =

1p
2

2

4
0
1
1

3

5 .
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Since (S)TT =
1p
2

2

4
p

2 0 0
0 1 1
0 �1 1

3

5, the characteristic polynomial of S is

pS(t) = det((t idV �S)TT) = det

8
>>>>>>>>>:

2

664

t � 1 0 0
0 t � 1p

2
� 1p

2
0 1p

2
t � 1p

2

3

775

9
>>>>>>>>>;

= (t � 1)
8
:
⇣

t � 1p
2

⌘2
+ 1

2

9
;

= (t � 1)
⇣

t � 1p
2
(1 + i)

⌘⇣
t � 1p

2
(1 � i)

⌘
.

Since dim(V) = 3 and there are 3 distinct eigenvalues, we conclude
that the linear operator S is diagonalizable [6.0.3].

Exercises

6.0.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The identity and zero operators on any finite-dimensional vector
space are both diagonalizable.

ii. Every linear operator on a finite-dimensional vector space is
diagonalizable.

iii. A linear operator is diagonalizable if and only if its underlying
vector space has a basis consisting of eigenvectors.

iv. A linear operator is diagonalizable if and only if the number
distinct eigenvalues equals the dimension of the vector space.

v. When a linear operator is diagonalizable, the associated matrix
relative to any ordered basis is diagonal.

6.0.7 Problem. Consider the linear operator T : R[t]62 ! R[t]62

defined, for all p in R[t]62, by T[p] := (1 � t2)p00(t)� t p0(t) + 2 p(t).
Show that T is diagonalizable and find an eigenbasis.

6.1 Eigenspaces
How do we find a largest possible collection of linearly
independent eigenvectors? Motivated by our diagonalizability
criterion [6.0.2], we seek a maximal set of linearly independent
eigenvectors for a given linear operator. To accomplish this task, we
introduce the linear subspace associated to an eigenvalue.

6.1.0 Definition. For any scalar l, the l-eigenspace of linear operator
is the span of all eigenvectors with eigenvalue l. The dimension of
the l-eigenspace called the geometric multiplicity of l.

When the scalar l is not a eigenvalue,
the l-eigenspace is the zero linear
subspace and its geometric multiplicity
is 0.

6.1.1 Problem. Find a basis for the 2-eigenspace of A :=

2

4
4 �1 6
2 1 6
2 �1 8

3

5.

Solution. Since

2 I � A =

2

4
�2 1 �6
�2 1 �6
�2 1 �6

3

5 ⇠

2

4
�2 1 �6

0 0 0
0 0 0

3

5 ) Ker(2 I � A) = Span

8
>>>>>:

2

4
1
2
0

3

5,

2

4
0
6
1

3

5
9
>>>>>; ,
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so
⇥
1 2 0

⇤
T and

⇥
0 6 1

⇤
T are a basis for the 2-eigenspace.

6.1.2 Lemma. Each vector in the l-eigenspace of a linear operator is either
an eigenvector of the linear operator with eigenvalue l or the zero vector.

Proof. It suffices to prove that any nonzero linear combination of
eigenvectors with eigenvalue l is also an eigenvector with eigen-
value l. Suppose that v and w are eigenvectors of a linear operator
T : V ! V both with eigenvalue l. For any scalars c and d, we have
T[c v + d w] = c T[v] + d T[w] = l(c v + d w). When c v + d w 6= 0,
this linear combination is an eigenvector with eigenvalue l.

The next proposition establishes that choosing a basis for each
eigenspace produces a linearly independent set of eigenvectors.

6.1.3 Proposition. For any linear operator on a finite-dimensional vector
space, the union of any bases for its eigenspaces is linearly independent.

Proof. Let V be an finite-dimensional K-vector space. Consider the
distinct eigenvalues l1, l2, . . . , l` of a linear operator T : V ! V. For
each 1 6 j 6 `, choose an ordered basis Bj := (vj,1, vj,2, . . . , vj,dj) for
the lj-eigenspace of T. By definition, the eigenvalue lj has geometric
multiplicity dj. It suffices to prove that the union

[̀

j=1
Bj = {v1,1, v1,2, . . . , v1,d1 , v2,1, v2,2, . . . , v2,d2 , . . . , v`,1, v`,2, . . . , v`,d`}

is a linearly independent set of vectors. Suppose that, for all 1 6 j 6 `

and all 1 6 k 6 dj, there are scalars cj,k in K such that

`

Â
j=1

dj

Â
k=1

cj,k vj,k = 0 .

Set wj := Â
dj
k=1 cj,k vj,k for all 1 6 j 6 `, so w1 + w2 + · · ·+ w` = 0.

Since the vector wj lies in the lj-eigenspace of the linear operator T,
Lemma 6.1.2 establishes that wj is either an eigenvector of T with
eigenvalue lj or the zero vector. Since the l1, l2, . . . , l` are distinct,
the corresponding eigenvectors are linearly independent [5.0.6].
Hence, the equation w1 + w2 + · · · + w` = 0 implies that, for all
1 6 j 6 `, we have 0 = wj = cj,1 vj,1 + cj,2 vj,2 + · · ·+ cj,dj vj,dj . For
all 1 6 j 6 `, we deduce that cj,1 = cj,2 = · · · = cj,dj = 0 because the
set Bj is linearly independent. We conclude that the union

S`
j=1 Bj is

also linearly independent.

Although Proposition 6.1.3 creates sets of linearly independent
eigenvectors, these collections can be small.
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6.1.4 Problem. Fix a positive integer n and a scalar l. Compute the
geometric and algebraic multiplicity for the unique eigenvalue of the
(n ⇥ n)-matrix

J :=

2

666664

l 1 0 0 · · · 0 0
0 l 1 0 · · · 0 0
0 0 l 1 · · · 0 0...

...
...

...
. . .

...
...

0 0 0 0 · · · l 1
0 0 0 0 · · · 0 l

3

777775
.

Solution. Since the determinant of a triangular matrix is the product
of the entries on its diagonal, we have

p
J
(t) = det

8
>>>>>>>>>>>>>>>>:

2

666664

t � l �1 0 0 · · · 0 0
0 t � l �1 0 · · · 0 0
0 0 t � l �1 · · · 0 0...

...
...

...
. . .

...
...

0 0 0 0 · · · t � l �1
0 0 0 0 · · · 0 t � l

3

777775

9
>>>>>>>>>>>>>>>>;

= (t � l)n ,

so l is the only eigenvalue and it has algebraic multiplicity n. Since

l I � J =

2

666664

0 �1 0 0 · · · 0 0
0 0 �1 0 · · · 0 0
0 0 0 �1 · · · 0 0...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 �1
0 0 0 0 · · · 0 0

3

777775
⇠

2

666664

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0

3

777775
,

and Ker(l I � J) = Span(e1), the geometric multiplicity of l is 1.

Remarkably, the eigenvalue of the
matrix J has the maximal possible
algebraic multiplicity and the minimal
possible geometric multiplicity.

Geometric and algebraic multiplicity are related by an inequality.

6.1.5 Proposition (Multiplicity inequality). For any linear operator on a
finite-dimensional vector space, the geometric multiplicity of an eigenvalue
is less than or equal to the algebraic multiplicity of the same eigenvalue.

Proof. Fix a positive integer n. Let V be an n-dimensional K-vector
space. Consider a linear operator T : V ! V and a scalar l in K.
Choose an ordered basis (v1, v2, . . . , vd) for the l-eigenspace of the
linear operator T. Extend this list of linearly independent vectors to
an ordered basis B := (v1, v2, . . . , vd, vd+1, vd+2, . . . , vn) of V. For all
1 6 k 6 d, we have T[vk] = l vk; for all d + 1 6 k 6 n, there are scalars
a1,k, a2,k, . . . , an,k such that T[vk] = a1,k v1 + a2,k v2 + · · · + an,k vn. It
follows that

(t idV �T)BB =

2

6666666664

t � l 0 0 · · · 0 �a1,d+1 �a1,d+2 · · · �a1,n
0 t � l 0 · · · 0 �a2,d+1 �a2,d+2 · · · �a2,n
...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · t � l �ad,d+1 �ad,d+2 · · · �ad+2,n
0 0 0 · · · 0 t � ad+1,d+1 �ad+1,d+2 · · · �ad+1,n...

...
...

. . .
...

...
...

. . .
...

0 0 0 · · · 0 �an,d+1 �an,d+2 · · · t � an,n

3

7777777775

,

so det((t idV �T)BB) = (t � l)d q(t) where q is a polynomial of degree
n � d. Therefore, the algebraic multiplicity of l is at least d.
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Exercises

6.1.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The 1-eigenspace of the identity operator on a vector space V is
always equal to V.

ii. Every vector v in the l-eigenspace of a linear operator T satisfies
the equation T[v] = l v.

iii. The geometric multiplicity of a scalar l in K is positive if and
only if l is an eigenvalue.

iv. When the algebraic multiplicity of an eigenvalue is 1, its geomet-
ric multiplicity must also be 1.

6.1.7 Problem. Let V denote the R-vector space of trigonometric
polynomials having degree at most 1. Consider the linear operator
J : V ! V defined, for all f in V, by

�
J[ f ]

�
(x) :=

R p
0 f (x � t) dt. Show

that J is diagonalizable and find an eigenbasis.

6.2 Diagonalizability
How do we characterize diagonalizable linear operators?
By consolidating our knowledge about eigenbases and eigenspaces,
we completely describe diagonalizable linear operators.

6.2.0 Theorem (Characterization of diagonalizable operators). Let V be
a finite-dimensional K-vector space. For any linear operator T : V ! V, the
following are equivalent:
a. the linear operator T is diagonalizable,
b. the union of any bases for the eigenspaces of T contains dim(V) vectors,
c. the sum of the algebraic multiplicities of all eigenvalues equals dim V

and, for each eigenvalue, the algebraic and geometric multiplicities are
equal.

Proof. Set n := dim V and let the scalars l1, l2, . . . , l` in K denote
the distinct eigenvalues of the linear operator T. For all 1 6 k 6 `,
we write dk and mk for the geometric and algebraic multiplicity of lk
respectively.
a ) b: The diagonalizability criterion [6.0.2] implies that the linear

operator T has n linearly independent eigenvectors. If d0k of these
eigenvectors correspond to the eigenvalue lk for all 1 6 k 6 `,
then any basis for the lk-eigenspace contains at least d0k vectors.
Hence, the union of the bases of the eigenspaces contains at least n
vectors. Since the Proposition 6.1.3 shows that this union is linearly
independent, the union contains at most n vectors.

b ) c: Suppose that n = d1 + d2 + · · · + d`. For all 1 6 k 6 `,
the characteristic polynomial pT(t) is divisible by (t � lk)

mk and
the degree of pT(t) is n. It follows that m1 + m2 + · · · + m` 6 n
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and (m1 � d1) + (m2 � d2) + · · · + (m` � d`) 6 0. Since the
geometric multiplicity of a eigenvalue is at most its algebraic
multiplicity [6.1.5], we have mk � dk > 0 for all 1 6 k 6 `. We
deduce that mk = dk for all 1 6 k 6 ` and m1 + m2 + · · ·+ m` = n.

c ) a: The characteristic polynomial is a product of linear factors
if and only if m1 + m2 + · · · + m` = n. Under the additional
hypothesis that dk = mk for all 1 6 k 6 `, the linear operator T has
d1 + d2 + · · ·+ d` = m1 + m2 + · · ·+ m` = n linearly independent
eigenvectors [6.1.3]. Thus, the diagonalizability criterion [6.0.2]
shows that the linear operator T is diagonalizable.

6.2.1 Problem. Let T : R[x]62 ! R[x]62 be the linear operator defined,
for all p in R[x]62, by

T[p] := 3
8

Z 1

�1

�
1 + 4(x + t) + 5(x2 + t2)� 15x2t2�p(t) dt .

Show that T is diagonalizable, find an eigenbasis, and describe T�1.

Solution. Fix the monomial basis M := (1, x, x2) for R[x]62. Since

T[1] = 3
8

Z 1

�1
1+4(x+t)+5(x2+t2)�15x2t2 dt = 3

8

h
t+4xt+2t2+5x2t+ 5

3 t3�5x2t3
it=1

t=�1
= 2+3x ,

T[x] = 3
8

Z 1

�1
t+4xt+4t2+5x2t+5t3�15x2t3 dt = 3

8

h
1
2 t2+2xt2+ 4

3 t3+ 5
2 x2t2+ 5

4 t4� 15
4 x2t4

it=1

t=�1
= 1 ,

T[x2] = 3
8

Z 1

�1
t2+4xt2+4t3+5x2t2+5t4�15x2t4 dt = 3

8

h
1
3 t3+ 4

3 xt3+t4+ 5
3 x2t3+t5�3x2t5

it=1

t=�1
= 1+x�x2 ,

we have (T)MM =

2

4
2 1 1
3 0 1
0 0 �1

3

5. Hence, the characteristic polynomial is

pT(t) = det

8
>>>>>:

2

4
t � 2 �1 �1
�3 t �1
0 0 t + 1

3

5
9
>>>>>;= (t + 1)

�
(t � 2)t � 3

�
= (t + 1)2(t � 3) .

Since

(� id+T)MM =

2

4
�3 �1 �1
�3 �1 �1

0 0 0

3

5 ⇠

2

4
3 1 1
0 0 0
0 0 0

3

5 ) Ker(� id+T) = Span(3x � 1, 3x2 � 1) ,

(3 id+T)MM =

2

4
1 �1 �1

�3 3 �1
0 0 4

3

5 ⇠

2

4
1 �1 0
0 0 1
0 0 0

3

5 ) Ker(3 id�T) = Span(x + 1) ,

we see that C := (3x � 1, 3x2 � 1, x + 1) forms an eigenbasis,

(T)CC =

2

4
�1 0 0

0 �1 0
0 0 3

3

5 , and (T�1)CC =

2

4
�1 0 0

0 �1 0
0 0 1

3

3

5 .

When f := c1(3x � 1) + c2(3x2 � 1) + c3(x + 1), it follows that

T[ f ] = �c1(3x � 1)� c2(3x2 � 1) + (3)c3(x + 1)

T�1[ f ] = �c1(3x � 1)� c2(3x2 � 1) +
� 1

3
�
c3(x + 1) .
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6.2.2 Problem. Fix two positive integers m and n such that m 6 n.
Let A be an (m ⇥ n)-matrix and let B be an (n ⇥ m)-matrix. Prove the
(n ⇥ n)-matrix B A has the same eigenvalues with the same algebraic
multiplicity as the (m ⇥ m)-matrix A B together with an additional
n � m eigenvalues equal to 0.

Solution. Consider the following two block-matrix identities:


A B 0

B 0

� 
I A

0 I

�
=


A B A B A

B B A

� 
I A

0 I

� 
0 0

B B A

�
=


A B A B A

B B A

�
.

Since the matrix


I A

0 I

�
is invertible, it follows that


I A

0 I

��1 
A B 0

B 0

� 
I A

0 I

�
=


0 0

B B A

�

Since the eigenvalues of these similar matrices are the same, the
assertion follows.

Exercises

6.2.3 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. A linear operator over a complex vector space is diagonalizable.
ii. A linear operator is diagonalizable if and only if the algebraic

multiplicity of each eigenvalue equals its geometric multiplicity.
iii. A linear operator over a complex vector space is diagonalizable

if and only if the algebraic and geometric multiplicity are equal
for each eigenvalue.

6.2.4 Problem. Find all values of k for which the matrix A :=

2

4
1 1 k
1 1 k
1 1 k

3

5
is diagonalizable.


