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Compared to the coordinate space Rn, an abstract vector space lacks
geometry. For example, it does not have the concept of the length
of a vector. To regain some geometry, this chapter introduces an
additional structure that associates a scalar to each pair of vectors.

7.0 Inner Products
How do we concoct an analogue of the dot product? The
desired structure builds on the properties of the dot product.

7.0.0 Definition. An inner product on C-vector space V is a function
from V ⇥ V to C, sending the pair (v, w) of vectors in V ⇥ V to the
scalar hv, wi in C, that satisfies the following four properties:

The axiomatic definition of an inner
product was first given by Giuseppe
Peano in 1898.

(linearity) hc u + d v, wi= c hu, wi+ d hv, wi for all u, v, w in V and all c, d in C.
(conjugate-symmetry) hv, wi= hw, vi for all v, w in V.

(nonnegativity) hv, vi> 0 for all v in V.
(positivity) hv, vi= 0 if and only if v = 0.

An inner product space is a vector space together with a specified
inner product.

7.0.1 Remarks.

• For any fixed vector w in V, linearity asserts that the map from V

to C defined by v 7! hv, wi is linear.
Conventions differ as to which
argument should be linear. In quantum
mechanics and mathematical physics,
one traditionally defines linearity in the
second argument.

• Conjugate-symmetry guarantees that, for all vectors v in V, we
have hv, vi = hv, vi or equivalently hv, vi 2 R, so the nonnegative
property is well-defined.

• When working over R-vector spaces, conjugate-symmetry is just
symmetry: hv, wi = hw, vi for all v and w in V.

7.0.2 Notation. For any nonnegative integers m and n, the conjugate-
transpose of a complex (m ⇥ n)-matrix A is the (n ⇥ m)-matrix
A
? := AT = (A)T.

Since conjugation and taking the
transpose are both involutions, we have
(A?)? = A for all A.

7.0.3 Problem. Let n be a positive integer and let A be an invertible
complex (n ⇥ n)-matrix. Show that hv, wi := w?

A
?

A v defines an
inner product on the coordinate space Cn.
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Solution. For all vectors u, v, w in Cn and all scalars c, d in C, the
linearity of matrix multiplication gives

hc u + d v, wi = w?
A
?

A (c u + d v)
= c (w?

A
?

A u) + d (w?
A
?

A v) = c hu, wi+ d hv, wi ,

establishing the linearity property. The properties of the transpose
and conjugation also give

hv, wi = w?
A
?

A v = (w?
A
?

A v)T = vT
A

T (A?)T (w?)T

= v?
A
? (A?)? (w?)? = v?

A
?

A w = hw, vi ,

establishing conjugate-symmetry. Setting w := A v, we obtain

hv, vi = v?
A
?

A v = (A v)? (A v) = w? w
= w1w1 + w2w2 + · · ·+ wnwn = |w1|2 + |w2|2 + · · ·+ |wn|2 .

We deduce the nonnegativity property, because the absolute value
of any nonzero complex number is a positive real number. Since A

is invertible, we see that w = A v = 0 if and only if v = 0, which
establishes the positivity property.

When the invertible matrix is just the identity matrix, we obtain
the canonical inner product on the coordinate space Cn. Similar
constructions give the canonical inner products on the vector space of
matrices and the vector space of continuous functions.

7.0.4 Definition. For any nonnegative integer n, the standard inner
product on Cn is defined, for all v and w in Cn, by

hv, wi := w? v =
n

Â
k=1

wk vk = w1 v1 + w2 v2 + · · ·+ wn vn .

7.0.5 Definition. For any two nonnegative integers m and n, the
Frobenius inner product on the C-vector space Cm⇥n of all complex
(m ⇥ n)-matrices is defined, for all matrices A and B in Cm⇥n, by

hA, BiF := tr(B?
A) =

m

Â
j=1

n

Â
k=1

bj,k aj,k .

If the matrices are converted into column vectors, then this inner
product coincides with the standard inner product.

This inner product is named after
Georg Frobenius, seemingly inspired by
his 1909 work on nonnegative matrices.

7.0.6 Definition. The canonical inner product on the R-vector space
of all real-valued continuous functions on the interval [a, b] ⇢ R is
defined, for all functions f and g, by h f , gi :=

R
b

a
f (t) g(t) dt.
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7.0.7 Remarks. For any continuous functions f , g, h on the interval
[a, b] and any scalars c, e in R, the properties of definite integrals give

hc f + e g, hi =
Z

b

a

(c f + e g)(t) h(t) dt = c

Z
b

a

f (t) h(t) dt + e

Z
b

a

g(t) h(t) dt = c h f , hi+ e hg, hi ,

h f , gi =
Z

b

a

f (t) g(t) dt =
Z

b

a

g(t) f (t) dt = hg, f i ,

h f , f i =
Z

b

a

f (t) f (t) dt =
Z

b

a

| f (t)|2 dt > 0 .

For any continuous nonnegative function h such that
R

b

a
h(t) dt = 0, it

follows that h(t) = 0 for all t 2 [a, b]. Hence, the equation h f , f i = 0
implies that | f (t)|2 = 0 and f (t) = 0 for all t 2 [a, b].

7.0.8 Definition. Two vectors v and w in an inner product space are
orthogonal if hv, wi = 0.

7.0.9 Lemma (Properties of inner products). Let V be a complex inner

product space.

i. For all vectors v in V, we have h0, vi = 0 = hv, 0i.
The zero vector is orthogonal to every
vector. Moreover, the positivity of inner
products implies that the zero vector is
the only vector orthogonal to itself.

i. For all vectors u, v, w in V and all scalars c, d in C, we have

hu, c v + d wi = c hu, vi+ d hu, wi .

Proof. The properties of linear maps [3.0.3] and the linearity of inner
products imply that h0, vi = 0 and conjugate-symmetry implies that
hv, 0i = h0, vi = 0. For all vectors u, v, w in V and all scalars c, d in C,
the same two properties also give

hu, c v + d wi = hc v + d w, ui
= c hv, ui+ d hw, ui = c hu, vi+ d hu, wi .

Exercises

7.0.10 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. The inner product of any two vectors is a real number.
ii. Inner products are not defined when the base field is R.

iii. The C-vector space Cn has only one inner product.
iv. If C1 is equipped with the standard inner product, then every

nonzero vector is orthogonal to a unique vector.

7.0.11 Problem. Let V be a complex inner product space. For all
vectors v and w in V, prove the following identities:

(polar identity) hv, wi= 1
4
�
kv + wk2 � kv � wk2 + i kv + i wk2 � i kv � i wk2�

(parallelogram identity) kv + wk2 + kv � wk2 = 2
�
kvk2 + kwk2�
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7.1 Norms
How do we measure length in an inner product space? An
inner product induces a notion of length.

7.1.0 Definition. Let V be an inner product space. For any vector v in
V, its norm (also known as its length) is kvk :=

p
hv, vi 2 R.

To define a normed linear space, one
must assume that the underlying field
of scalars is either R or C.

7.1.1 Lemma (Properties of norms). Let V be an inner product space.

i. We have kvk = 0 if and only if v = 0.

ii. For all vectors v in V and all scalars c, we have kc vk = |c| kvk.

Proof.

i. The positivity of an inner product [7.0.0] asserts that hv, vi = 0 if
and only if v = 0. Since the real number 0 has a unique square
root, we have kvk = 0 if and only if v = 0.

ii. Linearity and conjugate-symmetry of an inner product [7.0.0]
show that kc vk2 = hc v, c vi = (c c) hv, vi = |c|2 kvk2. Since the
norm and the absolute value of any scalar are a nonnegative real
numbers, taking square roots gives kc vk = |c| kvk.

Since the square root symbol represents
the unique nonnegative square root, we
have |c| =

p
c2 for all scalars c in R.

7.1.2 Theorem (Pythagorean). For any two orthogonal vectors v and w in

an inner product space, we have kv + wk2 = kvk2 + kwk2
.

Proof. Since orthogonality [7.0.8] implies that hv, wi = 0, the linearity
and conjugate-symmetry of an inner product [7.0.0] establish that

kv + wk2 = hv + w, v + wi = hv, vi+ hv, wi+ hw, vi+ hw, wi
= kvk2 + hv, wi+ hv, wi+ kwk2 = kvk2 + kwk2 .

7.1.3 Definition. A set of vectors is orthonormal if the vectors are
pairwise orthogonal and each vector has norm 1.

7.1.4 Problem. Let V := C([�1, 1]) be the real inner product space
consisting of continuous functions on the interval [�1, 1] ⇢ R where
h f , gi :=

R 1
�1 f (x) g(x) dx. Demonstrate that the three polynomial

functions 1p
2
,
p

3p
2

x, and
p

5
2
p

2
(3 x

2 � 1) form an orthonormal set.

Solution. Since
D

1p
2

, 1p
2

E
=

Z 1

�1
1
2 dx = 1

2
�
1 � (�1)

�
= 1 ,

D
1p
2

,
p

3p
2

x

E
=

Z 1

�1

p
3

2 x dx =
p

3
2

h
1
2 x

2
ix=1

x=�1
= 0 ,

D
1p
2

,
p

5
2
p

2
(3 x

2 � 1)
E
=

Z 1

�1

p
5

4 (3 x
2 � 1) dx =

p
5

4

h
x

3 � x

ix=1

x=�1
=

p
5

4

h
x(x � 1)(x + 1)

ix=1

x=�1
= 0 ,

Dp
3p
2

x,
p

3p
2

x

E
=

Z 1

�1
3
2 x

2
dx = 3

2

h
1
3 x

3
ix=1

x=�1
= 1

2
�
1 � (�1)

�
= 1 ,

Dp
3p
2

x,
p

5
2
p

2
(3 x

2 � 1)
E
=

Z 1

�1

p
15
4 (3 x

3 � x) dx =
p

15
4

h
3
4 x

4 � 1
2 x

2
ix=1

x=�1
= 0 ,

D p
5

2
p

2
(3 x

2 � 1),
p

5
2
p

2
(3 x

2 � 1)
E
=

Z 1

�1
5
8 (3 x

2 � 1)2
dx = 5

8

h
9
5 x

5 � 2 x
3 + x

ix=1

x=�1
= 1

4 (9 � 10 + 5) = 1 ,

these functions form an orthonormal set.
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7.1.5 Corollary (Parseval identity). Let u1, u2, . . . , um be an orthonormal

set of vectors in an inner product space. For all scalars c1, c2, . . . , cm, we

have kc1 u1 + c2 u2 + · · ·+ cm umk2 = |c1|2 + |c2|2 + · · ·+ |cm|2.

This result is named after Marc-Antoine
Parseval who described a similar result
in an infinite-dimensional vector space.

Induction proof. We proceed by induction on the cardinality m of the
orthonormal set. The base case m = 0 is true because the empty
sum of vectors is 0, k0k = 0, and the empty sum of scalars is 0.
Suppose that m > 0. Since {u1, u2, . . . , um} is an orthonormal set, the
properties of an inner product [7.0.9] give

hc1 u1, c2 u2 + c3 u3 + · · ·+ cm umi = c1 hu1, c2 u2 + c3 u3 + · · ·+ cm umi
= c1 c2 hu1, u2i+ c1 c3 hu1, u3i+ · · ·+ c1 cm hu1, umi
= c1 c2 0 + c1 c3 0 + · · ·+ c1 cm 0 = 0 .

Hence, the Pythagorean theorem [7.1.2], induction hypothesis, and
properties of a norm [7.1.1] give

kc1 u1 + c2 u2 + · · ·+ cm umk2 = kc1 u1k2 + kc2 u2 + c3 u3 + · · ·+ cm umk2

= |c1|2ku1k2 + |c2|2 + |c3|2 + · · ·+ |cm|2

= |c1|2 + |c2|2 + · · ·+ |cm|2

because c1u1 and c2 u2 + c3 u3 + · · ·+ cm um are orthogonal.

7.1.6 Corollary. An orthonormal set of vectors is linearly independent.

Proof. Let u1, u2, . . . , um be an orthonormal set of vectors in an inner
product space. Suppose that there are scalars c1, c2, . . . , cm such that
c1 u1 + c2 u2 + · · ·+ cm um = 0. The Parseval identity [7.1.5] implies
that 0 = kc1 u1 + c2 u2 + · · ·+ cm umk2 = |c1|2 + |c2|2 + · · ·+ |cm|2. For
all 1 6 k 6 m, the real number |ck|2 is nonnegative, so we deduce that
|c1| = |c2| = · · · = |cm| = 0 which implies that c1 = c2 = · · · = cm = 0.
Therefore, the vectors u1, u2, . . . , um are linearly independent.

7.1.7 Corollary (Orthonormal coordinates). Let U := (u1, u2, . . . , un) be

an ordered orthonormal basis for an inner product space V. For any vector v
in V, we have v = hv, u1i u1 + hv, u2i u2 + · · ·+ hv, uni un. Equivalently,

the coordinate vector of v relative to the orthonormal basis U is

(v)U =
⇥
hv, u1i hv, u2i · · · hv, uni

⇤T .

Proof. Since u1, u2, . . . , un is a basis for the vector space V, there exists
scalars c1, c2, . . . , cn such that v = c1 u1 + c2 u2 + · · ·+ cn un. For each
1 6 k 6 n, the linearity of an inner product [7.0.0] gives

hv, uki = hc1 u1 + c2 u2 + · · ·+ cn un, uki
= c1 hu1, uki+ c2 hu2, uki+ · · ·+ ck�1 huk�1, uki+ ck huk, uki+ ck+1 huk+1, uki+ · · ·+ cn hun, uki
= c1 0 + c2 0 + · · ·+ ck�1 0 + ck 1 + ck+1 0 + · · ·+ cn 0 = ck ,

because the vectors u1, u2, . . . , un are orthonormal.


