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Exercises

8.1.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Any projection onto a linear subspace in an inner product space
minimizes norms.

ii. When the vector v is a solution to the linear equation T[x] = b,
the orthogonal projection of T[v] onto the image of T equals b.

iii. Taylor polynomials always provide the best approximation to a
function.

iv. The defining basis for the space of trigonometric polynomials is
an orthonormal basis.

8.1.7 Problem. Fix a nonnegative integer n and consider the n-element
set X :=

� 2p`
n

2 R
�� 0 6 ` 6 n � 1

 
. Let V := CX the complex inner

product space, consisting of all functions from the finite set X of real
numbers to C with the inner product

h f , gi := Â
x2X

f (x) g(x) =
n�1

Ầ
=0

f
� 2p`

n

�
g
� 2p`

n

�
.

i. For all integers j satisfying 0 6 j 6 n � 1, demonstrate that
the functions wj(x) := exp(�j x i) are pairwise orthogonal and
compute kwj(x)k.

ii. For all integers k satisfying 0 6 k 6 n � 1, consider the function

hk(x) :=

8
<

:
1 if x = 2pk

n

0 if x 6= 2pk

n
.

Which function in the linear subspace

W := Span
�
w0(x), w1(x), . . . , wn�1(x)

�
⇢ V

best approximates the function hk(x)?
iii. For all integers k satisfying 0 6 k 6 n � 1, calculate the norm of

the different between hk(x) and its best approximate.

8.2 Least-Squares
How do we find the best approximate solution? Auspiciously,
the optimal approximate solutions to an inconsistent linear system
are the solutions to an auxiliary consistent linear system.

8.2.0 Proposition. Let A be a complex (m ⇥ n)-matrix and let b be a vector

in Cm
. The set of least-squares approximations to A x = b coincides with

the nonempty set of solutions to the normal equations A
?

A x = A
? b.

Proof. Let P be the orthogonal projection onto the column space
Im(A) of the matrix A. Since orthogonal projections minimize



copyright © 2022 by gregory g. smith orthogonal projections 85

norms [8.1.0] and the vector A x lies in Im(A) = Im(P), we have
kb � P[b]k 6 kb � A xk with equality if and only if A x = P[b].
Hence, a vector x in Cn is a least-squares approximation of a solution
to the linear system A x = b if and only if the vector x is a solution to
A x = P[b]. To show that the set of least-squares approximations to
A x = b coincides with the set of solutions to the normal equations,
we prove containment in both directions.
✓: Suppose that the vector x in Cn satisfies A x = P[b]. Since P

2 = P,
we see that b � P[b] lies in Ker(P). The orthogonality [8.0.3] of the
projection P implies that hb � P[b], wi = w?(b � A x) = 0 for all w
in Im(A). For all 1 6 k 6 n, the k-th column vector ak in the matrix
A satisfies a?

k
(b � A x) = 0, which means that the vector x in Cn

satisfies A
?

A x = A
? b.

◆: Suppose that the vector x in Cn satisfies A
?

A x = A
? b. Since

A
? (b � A x) = 0, we see that b � A x is orthogonal to the columns

of A and the vector b � A x lies in the kernel Ker(P). As the vector
A x lies in Im(P) and b = A x + (b � A x), the properties of
projections [8.0.2] establish that A x = P[b].

8.2.1 Problem. Find a least-square approximation to A x = b where

A :=

2

4
4 0
0 2
1 1

3

5 and b :=

2

4
2
0

11

3

5 .

Solution. Since

A
?

A =


4 0 1
0 2 1

� 2

4
4 0
0 2
1 1

3

5 =


17 1
1 5

�
, A

? b =


4 0 1
0 2 1

� 2

4
2
0
11

3

5 =


19
11

�
,

the normal equation A
?

A x = A
? b becomes


17 1
1 5

� 
x1
x2

�
=


19
11

�
, so


x1
x2

�
=

1
84


5 �1

�1 17

� 
19
11

�
=

1
84


84

168

�
=


1
2

�
.

8.2.2 Problem. Find a least-square approximation to A x = b where

A :=

2

64
1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

3

75

T

and b :=
⇥
�3 �1 0 2 5 1

⇤T .

Solution. Since

A
?

A =

2

64
1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

3

75

2

666664

1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1

3

777775
=

2

64
6 2 2 2
2 2 0 0
2 0 2 0
2 0 0 2

3

75 , A
? b =

2

64
1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

3

75

2

666664

�3
�1

0
2
5
1

3

777775
=

2

64
4

�4
2
6

3

75 ,
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the augmented matrix for A
?

A x = A
? b is

2

64
6 2 2 2 4
2 2 0 0 �4
2 0 2 0 2
2 0 0 2 6

3

75

r1 7! 0.5 r1
r2 7! 0.5 r2
r3 7! 0.5 r3
r4 7! 0.5 r4������!

⇠

2

64
3 1 1 1 2
1 1 0 0 �2
1 0 1 0 1
1 0 0 1 3

3

75
r1 7! r4
r4 7! r1����!

⇠

2

64
1 0 0 1 3
1 1 0 0 �2
1 0 1 0 1
3 1 1 1 2

3

75

r2 7! r2�r1
r3 7! r3�r1
r4 7! r4�3 r1�������!

⇠

2

64
1 0 0 1 3
0 1 0 �1 �5
0 0 1 �1 �2
0 1 1 �2 �7

3

75

r4 7!r4�r2�����!
⇠

2

64
1 0 0 1 3
0 1 0 �1 �5
0 0 1 �1 �2
0 0 1 �1 �2

3

75
r4 7!r4�r3�����!

⇠

2

64
1 0 0 1 3
0 1 0 �1 �5
0 0 1 �1 �2
0 0 0 0 0

3

75 .

The general solution is x=
⇥
3 �5 �2 0

⇤
T+ Span

�⇥
�1 1 1 1

⇤
T
�
.

The approach also yields the matrix associated to the orthogonal
projection onto any linear subspace relative to the standard basis.

8.2.3 Lemma. For any complex (m ⇥ n)-matrix B with linearly independent

columns, the product B
?

B is an invertible (n ⇥ n)-matrix.

Proof. For any vector v in Cn satisfying B
?

B v = 0, we have

kB vk2 = (B v)?(B v) = v?
B
?

B v = v?
0 = 0 ,

so the properties of norms [7.1.1] establish that B v = 0. Since the
columns of the matrix B are linearly independent, we deduce that
v = 0. The characterizations of invertible matrices establish that the
product B

?
B is invertible.

8.2.4 Proposition. Fix positive integers m and n. Let B be a complex

(m ⇥ n)-matrix whose columns form a basis for a linear subspace W in Cm

and let P : Cm ! Cm
be the orthogonal projection onto W. For the standard

basis E := (e1, e2, . . . , em) of Cm
, we have (P)EE = B (B?

B)�1
B
?
.

Proof. Consider a vector v in Cm and set w := P[v]. Since P
2 = P, it

follows that the vector v � w lies in Ker(P). The orthogonality [8.0.3]
of the projection P implies that B

?(v � w) = 0. Since the columns
of matrix B span the linear subspace W, there exists a vector x in Cn

such that w = B x, so we have 0 = B
? (v � w) = B

? v � B
?

B x and
B
?

B x = B
? v. The invertibility of the matrix B

?
B establishes that

x = (B?
B)�1

B
? v and P[v] = w = B(B?

B)�1
B
? v. Thus, for all

1 6 k 6 m, the k-th column of the matrix B(B?
B)�1

B
? equals P[ek].

We conclude that (P)EE = B (B?
B)�1

B
?.

Exercises

8.2.5 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. Every linear system has a unique approximate solution.
ii. The normal equations always have a solution.
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iii. If the columns of the coefficient matrix are linearly indepen-
dent, then the associated linear system always has a unique
approximate solution.

iv. Given any complex matrix B, the associated matrix B
?

B is
always invertible.

8.2.6 Problem. The population of Canada, as determined by the
Canadian census, was as follows:

year 1996 2001 2006 2011 2016
population (in millions) 28.8 30.0 31.6 33.5 35.2

Let t denote the time measured in years from 1996.
i. Suppose that population of Canada (measure in millions) is

modeled by the linear function p`(t) = a + b t. Find the least-
squares estimates for the parameters a and b.

ii. Suppose that the population of Canada (measure in millions)
is modeled by the exponential function pe(t) = c e

l t. Linearize
the model and use the least-squares method to estimate the
parameters c and l.

8.2.7 Problem. Consider

A :=

2

664

0 1 1 0
1 �1 1 �1
1 0 1 0
1 1 1 1

3

775 and b =

2

664

5
3

�1
1

3

775 .

Show that a least-squares solution to A x = b is not unique and solve
the normal equations to find all of the least-squares solutions.
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The compatibility between a linear map and the inner products on its
source and target has wonderful consequences.

9.0 Adjoint Maps
How do inner products give rise to new maps? Each linear
map between finite-dimensional inner product spaces comes with a
companion. Before describing this partner, we use inner products to
recognize equality of vectors and introduce a special class of maps.

9.0.0 Lemma (Equality test). Let V be an inner product space. For any two

vectors u and w in V, we have u = w if and only if hv, ui = hv, wi for all

vectors v in V.

Proof. The conjugate-linearity [7.0.9] of inner products shows that
hv, ui = hv, wi if and only if 0 = hv, ui � hv, wi = hv, u � wi.
): Suppose that u = w. The properties [7.0.9] of inner products

show that hv, u � wi = hv, 0i = 0.
(: Suppose that, for all vectors v in V, we have hv, ui = hv, wi.

Setting v := u � w, we obtain 0 = hv, u � wi = hu � w, u � wi and
the positivity [7.0.0] of inner products implies that u � w = 0.

9.0.1 Definition. A linear functional is a linear map from a K-vector
space to its underlying field K of scalars.

When a vector space is equipped with an inner product, linear
functionals are easily characterized.

9.0.2 Proposition (Representation of linear functionals). Let V be a

finite-dimensional inner product space over the field K of scalars. For any

linear functional j : V ! K, there exists a unique vector v in V such that

j[w] = hw, vi for all vectors w in V.

Proof. Set n := dim V. As n is a nonnegative integer, we may choose
an orthonormal basis u1, u2, . . . , un for V; see [7.2.2]. For any vector
w in V, orthonormal coordinates [7.1.7] on V, the linearity of j, and
the conjugate-linearity [7.0.9] of the inner product give

j[w] = j[hw, u1i u1 + hw, u2i u2 + · · ·+ hw, uni un]

= hw, u1i j[u1] + hw, u2i j[u2] + · · ·+ hw, uni j[un]

= hw, j[u1] u1 + j[u2] u2 + · · ·+ j[un] uni .
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By setting v := j[u1] u1 + j[u2] u2 + · · ·+ j[un] un, we see that there
exists a vector v in V such that j[w] = hw, vi for all vectors w in V.

Suppose that there exists vectors v and ev in V such that, for all
vectors w in V, we have hw, vi = hw, ev i. The equality test proves that
v = ev. Thus, there is a unique vector v in V such that j[w] = hw, vi
for all vectors w in V.

9.0.3 Definition. Let V and W be finite-dimensional inner product
spaces and let T : V ! W be a linear map. Conceptually, the adjoint
map T

? : W ! V is determined, for all vectors v in V and all vectors
w in W, by the equation hT[v], wi

W
= hv, T

?[w]i
V

. More pedantically,
each vector w in W yields a linear functional jw : V ! K defined,
for all vectors u in V, by jw[u] := hT[u], wi

W
. The representation of

linear functionals implies that there is a unique vector v in V such
that jw[u] = hu, vi

V
for all vectors u in V. The map T

? : W ! V is
defined by T

?[w] = v.

Although their definition is somewhat opaque, the properties of
adjoint maps are straightforward and instinctual.

9.0.4 Proposition (Properties of adjoints). Let U, V, and W be three

finite-dimensional inner product spaces over the same field of scalars. The

adjoint operation has the following properties:

(linearity) For any linear map T : V ! W, the adjoint map T
? : W ! V is linear.

(conjuguate-linearity) For any linear maps S, T : V ! W and any scalars b, c, we have (b S + c T)? = b S
? + c T

?
.

(involution) For any linear map T : V ! W, we have (T?)? = T.

(identity) We have id?
W = idW.

(multiplicativity) For any linear maps S : U ! V and T : V ! W, we have (T S)? = S
?

T
?
.

Proof. Throughout the proof, let v be a vector in V, let w and x be
vectors in W, and let b and c be scalars.
(linearity) The definition of the adjoint map and the conjugate-

linearity [7.0.9] of the inner product give

hv, T
?[b w + c x]i

V
= hT[v], b w + c xi

W
= b hT[v], wi

W
+ c hT[v], xi

W

= b hv, T
?[w]i

V
+ c hv, T

?[x]i
V
= hv, b T

?[w] + c T
?[x]i

V
.

The equality test implies that T
?[b w + c x] = b T

?[w] + c T
?[x], so

the adjoint map T
? : W ! V is linear.

(conjugate-linearity) The definition of the adjoint map, the pointwise
operations [1.1.0] on linear maps, linearity [7.0.0] of inner products,
and conjugate-linearity [7.0.9] of inner products give

hv, (b S + c T)?[w]i
V
= h(b S + c T)[v], wi

W
= hb S[v] + c T[v], wi

W

= b hS[v], wi
W
+ c hT[v], wi

W
= b hv, S

?[w]i
V
+ c hv, T

?[w]i
V
= hv, b S

?[w] + c T
?[w]i

V
.

The equality test implies that (b S + c T)?[w] = b S
?[w] + c T

?[w], so
we have (b S + c T)? = b S

? + c T
?.
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(involution) The definition of the adjoint map and the conjugate-
symmetry [7.0.0] of the inner product give

hT[v], wi
W

= hv, T
?[w]i

V
= hT?[w], vi

V
= hw, (T?)?[v]i

W
= h(T?)?[v], wi

W
.

The equality test yields T[v] = (T?)?[v], so T = (T?)?.
(identity) The definition of the adjoint map gives

hw, id?
W [x]i

W
= hidW [w], xi

W
= hw, xi

W
= hw, idW [x]i

W
.

The equality test yields id?
W [x] = idW [x], so id?

W = idW .
(multiplicativity) For any vector u in U, the definition of the adjoint

map gives

hu, (T S)?[w]i
U
= h(T S)[u], wi

W
=
⌦

T
⇥
S[u]

⇤
, w

↵
W

= hS[u], T
?[w]i

V
=
⌦
u, S

?⇥
T
?[w]

⇤↵
U
= hu, (S?

T
?)[w]i

U
.

Since the equality test implies that (T S)?[w] = (S?
T
?)[w], we

conclude that (T S)? = S
?

T
?.

The next problem shows that our notation for the adjoint map is
consistent with our notation for the conjugate-transpose [7.0.2].

9.0.5 Problem. Let T : V ! V be a linear map on a finite-dimensional
inner product space V. For any orthonormal basis U := (u1, u2, . . . , un)

of V, the matrix of T
⇤ relative to U is the conjugate-transpose of the

matrix of T relative to U, or equivalently (T
?)UU =

�
(T)UU

�?.

Proof. For all 1 6 k 6 n, the orthonormal coordinates [7.1.7] relative
to U give T[uk] = hT[uk], u1i u1 + hT[uk], u2i u2 + · · ·+ hT[uk], uni un,
so the (j, k)-entry in the matrix (T)UU is hT[uk], uji. In the same way,
the properties of inner products [7.0.9] and the definition of the
adjoint map [9.0.3] also give

T
?[uk] = hT?[uk], u1i u1 + hT?[uk], u2i u2 + · · ·+ hT?[uk], uni un

= hu1, T?[uk]i u1 + hu2, T?[uk]i u2 + · · ·+ hun, T?[uk]i un

= hT[u1], uki u1 + hT[u2], uki u2 + · · ·+ hT[un], uki un ,

so the (j, k)-entry in the matrix (T
?)UU is hT[uj], uki. Comparing

entries, we conclude that (T
?)UU =

�
(T)UU

�?.

Exercises

9.0.6 Problem. Determine which of the following statements are true.
If a statement is false, then provide a counterexample.

i. On a finite-dimensional vector space, there is a bijection between
linear functionals and vectors.

ii. Every linear operator is equal to its adjoint.
iii. An orthogonal projection is equal to its adjoint.
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9.0.7 Problem. Let u1, u2, . . . , un be an orthonormal basis for an inner
product space V. For all 1 6 j 6 n, consider the linear functional
yj : V ! K defined by yj[uk] = dj,k for all 1 6 k 6 n. Show that the
list (y1, y2, . . . , yn) forms a basis for V

? := Hom(V, K).

9.0.8 Problem. Let V denote the real vector space of continuous real-
valued functions on the interval [a, b] with h f , gi :=

R
b

a
f (s) g(s) ds.

Fix a continuous function K : R2 ! R. Consider the linear operator
J : V ! V defined by

�
J[ f ]

�
(x) :=

R
b

a
K(s, x) f (s) ds. Show that the

adjoint J
? exists.

9.0.9 Problem. Let V be a finite-dimensional K-vector space, let
V
? := Hom(V, K) be its dual space, and let V

?? := Hom(V?, K) be its
double dual space.

i. For any vector v in V, the map bv : V
? ! K is defined, for all

linear functionals j in V
?, by bv[j] = j(v). Prove that bv is a

linear functional on V
?.

ii. Consider the map Y : V ! V
?? defined by Y[v] = bv. Prove that

Y is a linear map and an isomorphism.

9.1 Isometries
Which linear maps perserve norms? We analyze the distance-
preserving linear maps between inner product spaces.

9.1.0 Definition. Let V and W be inner product spaces over the
same field of scalars. A linear map S : V ! W is an isometry if
kS[v]k

W
= kvk

V
for all vectors v in V.

Coming from ancient Greek, the word
"isometry" means equality of measure.

9.1.1 Lemma. Every isometry is injective. Moreover, an linear operator on a

finite-dimensional vector space that is an isometry is an isomorphism.

Proof. Let S : V ! W be an isometry. For any vector v in Ker(v),
we have 0 = k0k

W
= kS[v]k

W
= kvk

V
which implies that v = 0.

Since Ker(S) = {0}, the injectivity criterion [3.1.4] shows that S

is injective. The first claim together with the characterization of
invertible operators [3.3.5] proves the second claim.

9.1.2 Lemma. A linear map S : V ! W between complex inner product

spaces is an isometry if and only if hS[v1], S[v2]iW = hv1, v2iV for all

vectors v1 and v2 in V.

Proof.

): Suppose that S is an isometry. For all vectors v1 and v2 in V,
the polar identity [7.0.11], the linearity of S, and the definition of
isometry give

hS[v1], S[v2]i = 1
4
�
kS[v1] + S[v2]k2 � kS[v1]� S[v2]k2 + i kS[v1] + i S[v2]k2 � i kS[v1]� i S[v2]k2�

= 1
4
�
kS[v1 + v2]k2 � kS[v1 � v2]k2 + i kS[v1 + i v2]k2 � i kS[v1 � i v2]k2�

= 1
4
�
kv1 + v1k2 � kv1 � v2k2 + i kv1 + i v2k2 � i kv1 � i v2k2� = hv1, v2i .
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(: Suppose that hS[v1], S[v2]iW = hv1, v2iV for all vectors v1 and v2

in V. It follows that, for any vector v in V, we have

kS[v]k2
W

= hS[v], S[v]i
W

= hv, vi
V
= kvk2

V
.

Since the norm of a vector is a nonnegative real number, taking
square-roots gives kS[v]k

W
= kvk

V
.

Surjective isometries have several more equivalent descriptions.

9.1.3 Theorem (Characterizations of surjective isometries). Let V and

W be inner product spaces over the same field K of scalars. For any linear

map S : V ! W, the following are equivalent:

a. The linear map S is a surjective isometry.

b. The linear map S is surjective and S
?

S = idV.

c. The linear map S is invertible and S
�1 = S

?
.

d. The linear map S
?

is surjective and S S
? = idW.

e. The linear map S
?

is a surjective isometry.

f. The vectors u1, u2, . . . , un form an orthonormal basis of V if and only if

the vectors S[u1], S[u2], . . . , S[un] form an orthonormal basis of W.

Proof.

a ) b: For all vectors v1 and v2 in V, Lemma 9.1.2, the conjugate-
symmetry [7.0.0] of inner products, and the definition [9.0.3] of the
adjoint map give

hv1, v2iV = hS[v1], S[v2]iW = hS[v2], S[v1]iW = hv2, (S? S)[v1]iV = h(S?
S)[v1], v2iV ,

so we have h(S?
S � idV)[v1], v2i = 0. The equality test [9.0.0]

proves that (S?
S � idV)[v1] = 0, so S

?
S = idV .

b ) c: For any vector v in Ker(S), we have Ker(S) = {0} because
v = (S?

S)[v] = S
?
⇥
S[v]

⇤
= S

?[0] = 0. Hence, the injectivity
criterion [3.1.4] shows that the linear map S is injective. Since S is
bijective, the characterization of invertibility [3.2.5] establishes that
the linear map S is invertible and the uniqueness of inverses [3.2.4]
demonstrates that S

? = S
�1.

c ) d: By definition [3.2.2], a linear operator is invertible if there
exists S

�1 : V ! V such that S S
�1 = idW and S

�1
S = idV . By

hypothesis, we also have S
�1 = S

?, so we infer that S S
? = idW .

d ) e: For all vectors w1 and w2 in W, the definition of the adjoint
map [9.0.3] gives

hS?[w1], S
?[w2]iV = hw1, (S S

?)[w2]iW = hw1, w2iW .

Hence, Lemma 9.1.2 establishes that S
? is an isometry.

e ) d ) c ) b ) a: By replacing S with S
? and using the involutive

property [9.0.4] of adjoint maps, the first four steps in the prove
establishes these implications.
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a ) f : For all indices 1 6 j 6 k 6 n, Lemma 9.1.2 demonstrates
that huj, uki = hS[uj], S[uk]i. Hence, the vectors u1, u2, . . . , un are
orthonormal if and only if the vectors S[u1], S[u2], . . . , S[un] are
orthonormal. Since S is invertible, the vectors u1, u2, . . . , un are
a basis of V if and only if the vectors S[u1], S[u2], . . . , S[un] are a
basis of W.

f ) a: Fix an orthonormal basis u1, u2, . . . , un for the inner product
space V. For any vector v in V, the orthonormal coordinates [7.1.7],
linearity of S, and the Parseval identity [7.1.5] imply that

kS[v]k2 = kS[hv, u1i u1 + hv, u2i u2 + · · ·+ hv, uni un]k2

= khv, u1i S[u1] + hv, u2i S[u2] + · · ·+ hv, uni S[un]k2

= |hv, u1i|2 + |hv, u2i|2 + · · ·+ |hv, uni|2

= khv, u1i u1 + hv, u2i u2 + · · ·+ hv, uni unk2 = kvk2 .

The nonnegativity of inner products [7.0.0] establishes that, by
taking the square root, we obtain kS[v]k = kvk.

9.1.4 Remark. An isometry on a complex inner product space is often
called a unitary operator, and an isometry on a real inner product
space is often called an orthogonal operator. Similarly, a complex
square matrix Q is unitary if Q

? = Q
�1 and a real square matrix Q is

orthogonal if Q
T = Q

�1.

9.1.5 Proposition (Orthonormal triangularization). For any linear map

T : V ! V on a finite-dimensional complex inner product space V, there

exists an ordered orthonormal basis for V such that the matrix of T relative

to this basis is upper triangular.

Proof. Set n := dim V. By the triangularization theorem [5.2.1],
there exists an ordered basis B := (b1, b2, . . . , bn) of the C-vector
space V such that the matrix of T relative to B is upper-triangular.
The orthonormalization algorithm [7.2.0] applied to the basis B

returns an orthonormal basis U := (u1, u2, . . . , un) such that, for
all 1 6 k 6 n, we have Span(u1, u2, . . . , uk) = Span(b1, b2, . . . , bk).
It follows from the characterization of triangular operators [5.2.0]
that, for all 1 6 k 6 n, we have T[bk] 2 Span(u1, u2, . . . , uk). Since
uk 2 Span(b1, b2, . . . , bk), there exists scalars c1, c2, . . . , ck 2 C such
that uk = c1 b1 + c2 b2 + · · ·+ ck bk. We deduce that

T[uk] = T[c1 b1 + c2 b2 + · · ·+ ck bk]

= c1 T[b1] + c2 T[b2] + · · ·+ ck T[bk] 2 Span(u1, u2, . . . , uk) ,

so the characterization of triangular operators demonstrates that the
matrix (T)UU of T relative to U is upper-triangular.


