10.3 Polar Decomposition

Can we generalize the polar form for complex numbers? Since complex (1×1)-matrices are linear operators on the vector space \mathbb{C}^{1}, we can ambitiously attempt to lift ideas from the complex numbers to linear maps. We have the following analogy in mind.

numbers	maps
complex number: $z \in \mathbb{C}$	linear map: $T: V \rightarrow W$
conjugate: $\bar{z} \in \mathbb{C}$	adjoint: $T^{\star}: W \rightarrow V$
points on the unit circle: $\bar{z} z=1$	isometries: $T^{\star} T=\mathrm{id}_{V}$
real numbers: $z=\bar{z}$	self-adjoint operators: $T=T^{\star}$
nonnegative real numbers: $z \geqslant 0$	positive-semidefinite operators
polar form: $z=r e^{i \theta}$??

Table 10.1: Analogy between complex numbers and linear operators

Given the success of the first parts in this analogy, one wonders if every linear operator can be expressed as a product of a positivesemidefinite operator and an isometry.
10.3.0 Lemma (Positive part). Let V and W be finite-dimensional inner product spaces. For any linear map $T: V \rightarrow W$, let $\sqrt{T^{\star} T}: V \rightarrow V$ denote the unique positive-semidefinite square root of the positive-semidefinite operator $T^{\star} T: V \rightarrow V$.
i. For any vector v in V, we have $\|T[v]\|_{W}=\left\|\left(\sqrt{T^{\star} T}\right)[v]\right\|_{V}$.
ii. We have $\operatorname{Ker}(T)=\operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$.

Theorem 10.2.2 and Corollary 10.2.3 already establish that $T^{\star} T$ has a unique positive-semidefinite square root.

Proof.
i. For any vector v in V, the definition [7.1.0] of the norm, properties [9.0.4] of adjoint maps, and the self-adjointness of the linear map $\sqrt{T^{\star} T}$ give

$$
\begin{aligned}
\|T[\boldsymbol{v}]\|_{W}^{2} & =\langle T[\boldsymbol{v}], T[\boldsymbol{v}]\rangle_{W}=\left\langle\left(T^{\star} T\right)[\boldsymbol{v}], \boldsymbol{v}\right\rangle_{V}=\left\langle\left(\sqrt{T^{\star} T}\right)^{2}[v], v\right\rangle_{V}=\left\langle\left(\sqrt{T^{\star} T}\right)\left[\left(\sqrt{T^{\star} T}\right)[v]\right], \boldsymbol{v}\right\rangle_{V} \\
& =\left\langle\left(\sqrt{T^{\star} T}\right)[\boldsymbol{v}],\left(\sqrt{T^{\star} T}\right)^{\star}[\boldsymbol{v}]\right\rangle_{V}=\left\langle\left(\sqrt{T^{\star} T}\right)[v],\left(\sqrt{T^{\star} T}\right)[\boldsymbol{v}]\right\rangle_{V}=\left\|\left(\sqrt{T^{\star} T}\right)[v]\right\|_{V}^{2} .
\end{aligned}
$$

The nonnegative [7.o.o] of inner products shows that, by taking the square root, we have $\|T[v]\|_{W}=\left\|\left(\sqrt{T^{\star} T}\right)[v]\right\|_{V}$.
ii. The definition of the kernel [3.1.0], the positivity [7.1.1] of norms, and part i yields the following equivalences:
$\boldsymbol{v} \in \operatorname{Ker}(T) \Leftrightarrow T[\boldsymbol{v}]=\mathbf{0}_{W} \Leftrightarrow\|T[v]\|_{W}=0 \Leftrightarrow\left\|\left(\sqrt{T^{\star} T}\right)[\boldsymbol{v}]\right\|_{V}=0 \Leftrightarrow\left(\sqrt{T^{\star} T}\right)[\boldsymbol{v}]=\mathbf{0}_{V} \Leftrightarrow \boldsymbol{v} \in \operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$, which proves that $\operatorname{Ker}(T)=\operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$.
10.3.1 Theorem (Polar decomposition). Let V and W be two finitedimensional inner product spaces such that $\operatorname{dim} W \geqslant \operatorname{dim} V$. For any linear map $T: V \rightarrow W$, there exists an isometry $S: V \rightarrow W$ such that $T=S \sqrt{T^{\star} T}$.

Proof. Since the linear operator $\sqrt{T^{\star} T}$ is self-adjoint [10.2.3], the self-adjoint spectral theorem [10.1.4] implies that there exists an orthonormal basis of V consisting of eigenvectors for $\sqrt{T^{\star} T}$. The basis vectors lying in the 0-eigenspace span $\operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$ and the basis vectors with nonzero eigenvalues span $\operatorname{Im}\left(\sqrt{T^{\star} T}\right)$. Hence, for all vectors v in V, there exists unique vectors v^{\prime} in $\operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$ and $v^{\prime \prime}$ in $\operatorname{Im}\left(\sqrt{T^{\star} T}\right)$ such that $v=v^{\prime}+v^{\prime \prime}$. The properties [10.1.3] of self-adjointness prove that the linear subspaces $\operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$ and $\operatorname{Im}\left(\sqrt{T^{\star} T}\right)$ are orthogonal. To exhibit the isometry S, we construct linear maps on $\operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$ and $\operatorname{Im}\left(\sqrt{T^{\star} T}\right)$ separately.

Set $n:=\operatorname{dim} V$ and $r:=\operatorname{dim} \operatorname{Im}(T)$. The dimension formula [3.1.6] shows that $\operatorname{dim} \operatorname{Ker}(T)=n-r$ and part $i i$ of the positive part lemma shows that $\operatorname{Ker}(T)=\operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$. Choose an orthonormal basis $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n-r}$ for the linear subspace $\operatorname{Ker}\left(\sqrt{T^{\star} T}\right) \subseteq V$. Similarly, set $m:=\operatorname{dim} W$, choose an orthonormal basis $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{r}$ for the linear subspace $\operatorname{Im}(T) \subseteq W$, and extend it to an orthonormal basis $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}$ of W. Let $W^{\prime}:=\operatorname{Span}\left(\boldsymbol{w}_{r+1}, \boldsymbol{w}_{r+2}, \ldots, \boldsymbol{w}_{m}\right)$. By construction, the linear subspaces W^{\prime} and $\operatorname{Im}(T)$ are orthogonal and, by hypothesis, we have $\operatorname{dim} W^{\prime}=m-r \geqslant n-r=\operatorname{dim} \operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$. The linear map $S_{1}: \operatorname{Ker}\left(\sqrt{T^{\star} T}\right) \rightarrow W^{\prime}$ is defined, for all $1 \leqslant j \leqslant n-r$, by $S_{1}\left[\boldsymbol{u}_{j}\right]=\boldsymbol{w}_{r+j}$. Using the Parseval identity [7.1.5] twice gives

$$
\begin{aligned}
\left\|S_{1}\left[c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{n-r} \boldsymbol{u}_{n-r}\right]\right\|_{W}^{2} & =\left\|c_{1} \boldsymbol{w}_{r+1}+c_{2} \boldsymbol{w}_{r+2}+\cdots+c_{n-r} \boldsymbol{w}_{n}\right\|_{W}^{2} \\
& =\left|c_{1}\right|^{2}+\left|c_{2}\right|^{2}+\cdots+\left|c_{n-r}\right|^{2}=\left\|c_{1} \boldsymbol{u}_{1}+c_{2} \boldsymbol{u}_{2}+\cdots+c_{n-r} \boldsymbol{u}_{n-r}\right\|_{V}^{2}
\end{aligned}
$$

The nonnegativity [7.0.0] shows that, by taking the square root, we obtain $\left\|S_{1}[\boldsymbol{u}]\right\|_{W}=\|\boldsymbol{u}\|_{V}$ for all vectors \boldsymbol{u} in $\operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$.

We next focus on $\operatorname{Im}\left(\sqrt{T^{\star} T}\right)$. Consider vectors v_{1} and v_{2} in V such that $\left(\sqrt{T^{\star} T}\right)\left[\boldsymbol{v}_{1}\right]=\left(\sqrt{T^{\star} T}\right)\left[\boldsymbol{v}_{2}\right]$. Part i of the positive part lemma and the linearity of the maps give

$$
\left\|T\left[\boldsymbol{v}_{1}\right]-T\left[\boldsymbol{v}_{2}\right]\right\|_{W}=\left\|T\left[\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right]\right\|_{W}=\left\|\left(\sqrt{T^{\star} T}\right)\left[\boldsymbol{v}_{1}-\boldsymbol{v}_{2}\right]\right\|_{V}=\left\|\left(\sqrt{T^{\star} T}\right)\left[\boldsymbol{v}_{1}\right]-\left(\sqrt{T^{\star} T}\right)\left[\boldsymbol{v}_{1}\right]\right\|_{V}=0
$$

so the properties [7.1.1] of norms show that $T\left[\boldsymbol{v}_{1}\right]=T\left[\boldsymbol{v}_{2}\right]$. Hence, the linear map $S_{2}: \operatorname{Im}\left(\sqrt{T^{\star} T}\right) \rightarrow \operatorname{Im}(T)$ defined, for all vectors v in V, by $S_{2}\left[\left(\sqrt{T^{\star} T}\right)[\boldsymbol{v}]\right]=T[\boldsymbol{v}]$ is well-defined. Part i of the lemma also implies that, for all vectors v in $\operatorname{Im}\left(\sqrt{T^{\star} T}\right)$, we have $\left\|S_{2}[v]\right\|_{W}=$ $\|\boldsymbol{v}\|_{V}$.

Combining S_{1} and S_{2} gives the linear map $S: V \rightarrow W$ defined by $S[\boldsymbol{v}]=S_{1}\left[\boldsymbol{v}^{\prime}\right]+S_{2}\left[\boldsymbol{v}^{\prime \prime}\right]$ where $\boldsymbol{v}=\boldsymbol{v}^{\prime}+\boldsymbol{v}^{\prime \prime}, \boldsymbol{v}^{\prime} \in \operatorname{Ker}\left(\sqrt{T^{\star} T}\right)$, and $v^{\prime \prime} \in \operatorname{Im}\left(\sqrt{T^{\star} T}\right)$. For all vectors v in V, we have

$$
\left(S \sqrt{T^{\star} T}\right)[\boldsymbol{v}]=S\left[\left(\sqrt{T^{\star} T}\right)[\boldsymbol{v}]\right]=S_{2}\left[\left(\sqrt{T^{\star} T}\right)[\boldsymbol{v}]\right]=T[\boldsymbol{v}]
$$

so $T=S \sqrt{T^{\star} T}$. Moreover, the Pythagorean theorem [7.1.2] gives

$$
\|S[\boldsymbol{v}]\|^{2}=\left\|S_{1}\left[v^{\prime}\right]+S_{2}\left[\boldsymbol{v}^{\prime \prime}\right]\right\|^{2}=\left\|S_{1}\left[v^{\prime}\right]\right\|^{2}+\left\|S_{2}\left[v^{\prime \prime}\right]\right\|^{2}=\left\|v^{\prime}\right\|^{2}+\left\|v^{\prime \prime}\right\|^{2}=\|v\|^{2}
$$

which proves that S is an isometry.
10.3.2 Problem. Find the polar decomposition of $\mathbf{A}:=\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 1 & -1 \\ -2 & 1 & 0\end{array}\right]$.

Solution. Since $\mathbf{A}^{\star} \mathbf{A}=\left[\begin{array}{rrr}1 & 1 & -2 \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right]\left[\begin{array}{rrr}1 & 1 & 1 \\ 1 & 1 & -1 \\ -2 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}6 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$, it follows that $\sqrt{\mathbf{A}^{\star} \mathbf{A}}=\left[\begin{array}{ccc}\sqrt{6} & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & \sqrt{2}\end{array}\right]$ and

$$
\begin{aligned}
\mathbf{S} & =\mathbf{A}\left(\sqrt{\mathbf{A}^{\star} \mathbf{A}}\right)^{-1} \\
& =\left[\begin{array}{rrr}
1 & 1 & 1 \\
1 & 1 & -1 \\
-2 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{6} & 0 & 0 \\
0 & 1 / \sqrt{3} & 0 \\
0 & 0 & 1 / \sqrt{2}
\end{array}\right] \\
& =\left[\begin{array}{rcr}
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & -1 / \sqrt{2} \\
s-2 / \sqrt{6} & 1 / \sqrt{3} & 0
\end{array}\right] .
\end{aligned}
$$

10.4 Singular-Value Decomposition

Can we extend the spectral theorems to all linear maps? To associate a diagonal matrix to every linear map, we need a pair of ordered bases: one for the source and another for the target.
10.4.0 Definition. Let V and W be finite-dimensional inner product spaces. The singular values of the linear map $T: V \rightarrow W$ are the eigenvalues of the linear operator $\sqrt{T^{\star} T}: V \rightarrow V$. Since $\sqrt{T^{\star} T}$ is the unique positive-semidefinite square root of $T^{\star} T: V \rightarrow V$, the singular values of T are nonnegative real numbers and they are typically listed in increasing order.
10.4.1 Theorem (Singular-value decomposition). Let V and W be finitedimensional inner product spaces such that $m:=\operatorname{dim} W \geqslant \operatorname{dim} V=: n$. For any linear map $T: V \rightarrow W$ with singular values $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$, there exists an orthonormal basis $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}$ of V and an orthonormal basis $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \ldots, \boldsymbol{w}_{m}$ of W such that, for all vectors \boldsymbol{v} in V, we have

$$
T[\boldsymbol{v}]=\sigma_{1}\left\langle\boldsymbol{v}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{w}_{1}+\sigma_{2}\left\langle\boldsymbol{v}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{w}_{2}+\cdots+\sigma_{n}\left\langle\boldsymbol{v}, \boldsymbol{u}_{n}\right\rangle \boldsymbol{w}_{n} .
$$

Proof. The self-adjoint spectral theorem [10.1.4] establishes that there exists an orthonormal basis $\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}$ of V consisting of eigenvectors for the self-adjoint linear operator $\sqrt{T^{\star} T}$. The polar decomposition [10.3.1] shows that there exists an isometry $S: V \rightarrow W$ such that $T=S \sqrt{T^{\star} T}$. Expressing the vector v in V in terms of its orthonormal coordinate [7.1.7] and applying linear operator
$T=S \sqrt{T^{\star} T}$, we obtain

$$
\begin{aligned}
T[\boldsymbol{v}] & =\left(S \sqrt{T^{\star} T}\right)[\boldsymbol{v}] \\
& =S\left[\left(\sqrt{T^{\star} T}\right)\left[\left\langle\boldsymbol{v}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\left\langle\boldsymbol{v}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2}+\cdots+\left\langle\boldsymbol{v}, \boldsymbol{u}_{n}\right\rangle \boldsymbol{u}_{n}\right]\right] \\
& =S\left[\left\langle\boldsymbol{v}, \boldsymbol{u}_{1}\right\rangle\left(\sqrt{T^{\star} T}\right)\left[\boldsymbol{u}_{1}\right]+\left\langle\boldsymbol{v}, \boldsymbol{u}_{2}\right\rangle\left(\sqrt{T^{\star} T}\right)\left[\boldsymbol{u}_{2}\right]+\cdots+\left\langle\boldsymbol{v}, \boldsymbol{u}_{n}\right\rangle\left(\sqrt{T^{\star} T}\right)\left[\boldsymbol{u}_{n}\right]\right] \\
& =S\left[\sigma_{1}\left\langle\boldsymbol{v}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1}+\sigma_{2}\left\langle\boldsymbol{v}, \boldsymbol{u}_{2}\right\rangle \boldsymbol{u}_{2}+\cdots+\sigma_{n}\left\langle\boldsymbol{v}, \boldsymbol{u}_{n}\right\rangle \boldsymbol{u}_{n}\right] \\
& =\sigma_{1}\left\langle\boldsymbol{v}, \boldsymbol{u}_{1}\right\rangle S\left[\boldsymbol{u}_{1}\right]+\sigma_{2}\left\langle v, \boldsymbol{u}_{2}\right\rangle S\left[\boldsymbol{u}_{2}\right]+\cdots+\sigma_{n}\left\langle\boldsymbol{v}, \boldsymbol{u}_{n}\right\rangle S\left[\boldsymbol{u}_{n}\right] .
\end{aligned}
$$

The characterizations [9.1.3] of surjective isometries demonstrate that the vectors $S\left[\boldsymbol{u}_{1}\right], S\left[\boldsymbol{u}_{2}\right], \ldots, S\left[\boldsymbol{u}_{n}\right]$ form an orthonormal list for W. For all $1 \leqslant j \leqslant n$, set $\boldsymbol{w}_{j}:=S\left[\boldsymbol{u}_{j}\right]$. Extending the orthonormal list $w_{1}, w_{2}, \ldots, w_{n}$ to an orthonormal basis of W completes the proof.
10.4.2 Corollary. Let m and n be positive integers such that $m \geqslant n$. For any complex $(m \times n)$-matrix \mathbf{A}, there is a factorization $\mathbf{A}=\mathbf{P} \mathbf{\Sigma} \mathbf{Q}^{\star}$ where \mathbf{P} is a unitary $(m \times m)$-matrix, \mathbf{Q} is a unitary $(n \times n)$-matrix, and $\boldsymbol{\Sigma}$ is a diagonal $(m \times n)$-matrix whose diagonal entries are the singular values of \mathbf{A}.

Proof. Combining the singular-value decomposition theorem and the changes of basis theorem [4.0.2] proves the claim.
10.4.3 Remark. The singular-value decomposition of an $(m \times n)$-matrix

A, where $m \geqslant n$, can be computed using the following steps.

- Compute a unitary diagonalization of the product $\mathbf{A}^{\star} \mathbf{A}=\mathbf{Q}^{\star} \boldsymbol{\Lambda} \mathbf{Q}$ where $\mathbf{Q}^{\star} \mathbf{Q}=\mathbf{I}, \boldsymbol{\Lambda}:=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right), \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{r}>0$, and $\lambda_{j}=0$ for all $r+1 \leqslant j \leqslant n$.
- Consider the invertible $(r \times r)$-matrix $\mathbf{D}:=\operatorname{diag}\left(\sqrt{\lambda_{1}}, \sqrt{\lambda_{2}}, \ldots, \sqrt{\lambda_{r}}\right)$ and let $\boldsymbol{\Sigma}:=\left[\begin{array}{ll}\mathbf{D} & 0 \\ 0 & 0\end{array}\right]$ be a diagonal $(m \times n)$-matrix.
- For all $1 \leqslant j \leqslant r$, set $\boldsymbol{w}_{j}:=\frac{1}{\sqrt{\lambda_{j}}} \mathbf{A} \boldsymbol{u}_{j}$ where the vector \boldsymbol{u}_{j} denotes the j-th column in the matrix Q. Extend the list $w_{1}, w_{2}, \ldots, w_{r}$ to an orthonormal basis of \mathbb{K}^{m}. This orthonormal basis determines the columns of the $(m \times m)$-matrix \mathbf{P}.
10.4.4 Problem. Find a singular-value decomposition of $\mathbf{A}:=\left[\begin{array}{rr}1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1\end{array}\right]$.

Solution. Since

$$
\mathbf{A}^{\star} \mathbf{A}=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
1 & -1 \\
1 & -1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]
$$

we have

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

and $\mathbf{Q}=\mathbf{I}$. Because $\boldsymbol{w}_{1}=\frac{1}{2} \boldsymbol{a}_{1}$ and $\boldsymbol{w}_{2}=\frac{1}{2} \boldsymbol{a}_{2}$, we obtain an orthonormal basis for \mathbb{R}^{4} by choosing $w_{3}:=\frac{1}{2}\left[\begin{array}{llll}1 & 1 & -1 & -1\end{array}\right]^{\top}$ and $w_{4}:=\frac{1}{2}\left[\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right]^{\top}$. Thus, a singular-value decomposition is

$$
\mathbf{A}=\left(\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
1 & 1 & -1 & -1
\end{array}\right]\right)\left[\begin{array}{ll}
2 & 0 \\
0 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

10.4.5 Problem. Find a singular value decomposition of

$$
\mathbf{B}:=\left[\begin{array}{rr}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right]
$$

Solution. Since

$$
\mathbf{B}^{\star} \mathbf{B}=\left[\begin{array}{rrr}
1 & -2 & 2 \\
-1 & 2 & -2
\end{array}\right]\left[\begin{array}{rr}
1 & -1 \\
-2 & 2 \\
2 & -2
\end{array}\right]=\left[\begin{array}{rr}
9 & -9 \\
-9 & 9
\end{array}\right]
$$

we see the eigenvalues are 18 and 0 with unit eigenvectors given by the columns of the matrix $\mathbf{Q}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$. Hence, we have

$$
\Sigma:=\left[\begin{array}{ccc}
3 \sqrt{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]^{\top}
$$

Since we have $\boldsymbol{w}_{1}=\frac{1}{3 \sqrt{2}} \mathbf{A} \boldsymbol{u}_{1}=\frac{1}{3}\left[\begin{array}{lll}1 & -2 & 2\end{array}\right]^{\top}$, we may choose $\boldsymbol{w}_{2}:=\frac{1}{\sqrt{5}}\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]^{\top}$ and $\boldsymbol{w}_{3}:=\frac{1}{\sqrt{45}}\left[\begin{array}{lll}-2 & 4 & 1\end{array}\right]^{\top}$. Thus, a singular-value decomposition is

$$
\mathbf{B}=\left[\begin{array}{rrr}
1 / 3 & 2 / \sqrt{5} & -2 \sqrt{45} \\
-2 / 3 & 1 / \sqrt{5} & 4 / \sqrt{45} \\
2 / 3 & 0 & 5 / \sqrt{45}
\end{array}\right]\left[\begin{array}{rr}
3 \sqrt{2} & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]^{\star}\right)
$$

Exercises

10.4.6 Problem. Determine which of the following statements are true. If a statement is false, then provide a counterexample.
i. The singular values of any linear operator on a finite-dimensional vector space are also eigenvalues of the operator.
ii. The singular values of any matrix \mathbf{A} are the eigenvalues of $\mathbf{A}^{\star} \mathbf{A}$.
iii. The singular values of any linear operator are nonnegative.
iv. Every eigenvalue of a self-adjoint matrix \mathbf{A} is a singular value of A.

