Problems 03

Due: Friday, 24 September 2021 before 17:00 EDT

- 1. Find all $w \in \mathbb{C}$ such that $w^2 + (-7+5i)w 15i = 0$. Express your solution(s) in the form w = a + bi where $a, b \in \mathbb{Z}$.
- **2.** Consider the complex numbers $z \coloneqq -1 \sqrt{3}i$ and $w \coloneqq 3 \sqrt{3}i$.
 - (i) Find zw and z/w. Give your answer in the form x + yi where $x, y \in \mathbb{R}$.
 - (ii) Put z and w into polar form $re^{\theta i} = r(\cos(\theta) + \sin(\theta)i)$. Find zw and z/w using the polar form and verify that you get the same answer as in part (i).
- **3.** Consider a triangle with side lengths *a*, *b*, and *c* and let α , β , and γ denote the opposite angles. Using the geometric definition of the cross product, prove the that

FIGURE 1. The angles α , β , γ in the triangle are opposite to the sides having length *a*, *b*, *c*.

