Problems 03

Due: Friday, 24 September 2021 before 17:00 EDT

1. Find all $w \in \mathbb{C}$ such that $w^{2}+(-7+5 \mathrm{i}) w-15 \mathrm{i}=0$. Express your solution(s) in the form $w=a+b \mathrm{i}$ where $a, b \in \mathbb{Z}$.
2. Consider the complex numbers $z:=-1-\sqrt{3} \mathrm{i}$ and $w:=3-\sqrt{3} \mathrm{i}$.
(i) Find $z w$ and z / w. Give your answer in the form $x+y$ i where $x, y \in \mathbb{R}$.
(ii) Put z and w into polar form $r e^{\theta \mathrm{i}}=r(\cos (\theta)+\sin (\theta) \mathrm{i})$. Find $z w$ and z / w using the polar form and verify that you get the same answer as in part (i).
3. Consider a triangle with side lengths a, b, and c and let α, β, and γ denote the opposite angles. Using the geometric definition of the cross product, prove the that

$$
\frac{\sin (\alpha)}{a}=\frac{\sin (\beta)}{b}=\frac{\sin (\gamma)}{c} .
$$

Figure 1. The angles α, β, γ in the triangle are opposite to the sides having length a, b, c.

