1. Find all \(w \in \mathbb{C} \) such that \(w^2 + 3w + (3 - i) = 0 \). Express your solution(s) in the form \(w = a + bi \) where \(a, b \in \mathbb{R} \).

2. Consider the complex numbers \(z := -3 - i\sqrt{3} \) and \(w := -1 + i\sqrt{3} \).
 (a) Find \(zw \) and \(z/w \). Give your answer in the form \(x + iy \) where \(x, y \in \mathbb{R} \).
 (b) Put \(z \) and \(w \) into polar form \(re^{i\theta} = r(\cos(\theta) + \sin(\theta)i) \). Find \(zw \) and \(z/w \) using the polar form and verify that you get the same answer as in part (a).

3. Find the orthogonal distance between the following skew lines in \(\mathbb{R}^3 \). The first line passes through the points \(O := (0, 0, 0) \) and \(P := (-1, -1, 1) \), and the second line passes through the points \(Q := (0, -2, 0) \) and \(R := (2, 0, 5) \).