Problems 04

Due: Friday, 1 October 2021 before 17:00 EDT

1. Let n be a positive integer.
(i) For any two vectors $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \in \mathbb{R}^{n}$, show that $|\|\overrightarrow{\mathbf{v}}\|-\|\overrightarrow{\mathbf{w}}\|| \leqslant\|\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}}\|$.
(ii) Given vectors $\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \in \mathbb{R}^{n}$ such that, for all $\overrightarrow{\mathbf{u}} \in \mathbb{R}^{n}$, we have $\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{w}}$, prove that $\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{w}}$.
2. For any three vectors $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}} \in \mathbb{R}^{3}$, the scalar triple product is defined to be $\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}) \in \mathbb{R}$.
(i) Prove that $|\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})|$ is the volume of the parallelepiped formed by the vectors $\overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}$.
(ii) Demonstrate that $\overrightarrow{\mathbf{u}} \cdot(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}})=\overrightarrow{\mathbf{v}} \cdot(\overrightarrow{\mathbf{w}} \times \overrightarrow{\mathbf{u}})=\overrightarrow{\mathbf{w}} \cdot(\overrightarrow{\mathbf{u}} \times \overrightarrow{\mathbf{v}})$.
(iii) Show that the geometric definition of the cross product satisfies the distributivity property.

Hint: Use Problem 4.1 (ii).
3. (i) Use vectors to show that a triangle that is inscribed in a circle and has a diameter as one of its sides must be a right-angled triangle.
(ii) Use the dot product to prove the law of cosines. Specifically, in any triangle with sides of length a, b, and c, demonstrate that $c^{2}=a^{2}+b^{2}-2 a b \cos (\varphi)$, where φ is the angle between the sides of length a and b.

Figure 1. Two triangles

