Problems 04

Due: Friday, 1 October 2021 before 17:00 EDT

1. Let *n* be a positive integer.

- (i) For any two vectors $\vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^n$, show that $|\|\vec{\mathbf{v}}\| \|\vec{\mathbf{w}}\|| \le \|\vec{\mathbf{v}} \vec{\mathbf{w}}\|$.
- (ii) Given vectors $\vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^n$ such that, for all $\vec{\mathbf{u}} \in \mathbb{R}^n$, we have $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{u}} \cdot \vec{\mathbf{w}}$, prove that $\vec{\mathbf{v}} = \vec{\mathbf{w}}$.
- **2.** For any three vectors $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}} \in \mathbb{R}^3$, the *scalar triple product* is defined to be $\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) \in \mathbb{R}$.
 - (i) Prove that $|\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}})|$ is the volume of the parallelepiped formed by the vectors $\vec{\mathbf{u}}, \vec{\mathbf{v}}, \vec{\mathbf{w}}$.
 - (ii) Demonstrate that $\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) = \vec{\mathbf{v}} \cdot (\vec{\mathbf{w}} \times \vec{\mathbf{u}}) = \vec{\mathbf{w}} \cdot (\vec{\mathbf{u}} \times \vec{\mathbf{v}}).$
 - (iii) Show that the geometric definition of the cross product satisfies the distributivity property. **Hint:** Use Problem 4.1 (ii).
- 3. (i) Use vectors to show that a triangle that is inscribed in a circle and has a diameter as one of its sides must be a right-angled triangle.
 - (ii) Use the dot product to prove the law of cosines. Specifically, in any triangle with sides of length *a*, *b*, and *c*, demonstrate that $c^2 = a^2 + b^2 2ab\cos(\varphi)$, where φ is the angle between the sides of length *a* and *b*.

FIGURE 1. Two triangles

