Problems 06

Due: Friday, 22 October 2021 before 17:00 EDT

1. Find all solutions to the linear system with augmented matrix
$\left[\begin{array}{lllll}2 & 3 & 1 & 3 & b_{1} \\ 7 & 6 & 7 & 3 & b_{2} \\ 1 & 5 & 7 & 7 & b_{3} \\ 3 & 6 & 0 & 7 & b_{4}\end{array}\right]$
where the constant term vector $\overrightarrow{\mathbf{b}}$ is either $\left[\begin{array}{c}9 \\ 23 \\ 20 \\ 16\end{array}\right]$ or $\left[\begin{array}{c}8.92 \\ 23.01 \\ 20.01 \\ 16.03\end{array}\right]$.
2. For what real values of the parameters k and ℓ, does the linear system associated to the augmented matrix

$$
\left[\begin{array}{cccc}
1 & -1 & -3 & 1 \\
1 & 0 & k-3 & \ell+1 \\
3 & k & 3 k & 3
\end{array}\right]
$$

have exactly one solution, no solutions, or infinitely many solutions? When this linear system has infinitely many solutions, describe the solution set.
3. Consider a linear system $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ where the matrix \mathbf{A} and vector $\overrightarrow{\mathbf{b}}$ have all real entries.
(i) If $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ has more than one solution, then prove that it has infinitely many solutions.
(ii) If there is a solution with entries in the complex numbers, then show that there is also a solution with entries in the real numbers.

