Problems 07

Due: Friday, 29 October 2021 before 17:00 EDT

1. Find vectors that span the kernel of the matrix

$$
\mathbf{M}:=\left[\begin{array}{cccccccccc}
0 & 0 & 1 & \sqrt{2} & 0 & 0 & -\mathrm{i} & 0 & e & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & \pi & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

2. A matrix that has the same number of rows as columns is square. A square matrix \mathbf{A} is symmetric if $\mathbf{A}^{\top}=\mathbf{A}$. Similarly, a square matrix \mathbf{A} is skew-symmetric if $\mathbf{A}^{\top}=-\mathbf{A}$.
(i) For any square matrix \mathbf{A}, show that the matrix $\frac{1}{2}\left(\mathbf{A}+\mathbf{A}^{\boldsymbol{T}}\right)$ is symmetric.
(ii) Prove that any square matrix can be written uniquely as the sum of a symmetric matrix and a
(iii) Illustrate part (ii) for the the matrix $\left[\begin{array}{rrr}6 & 5 & -3 \\ -3 & 4 & -4 \\ -7 & 2 & 2\end{array}\right]$.
3. The Gell-Mann matrices are the following eight complex (3×3)-matrices:

$$
\begin{array}{lll}
\mathbf{G}_{1}:=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], & \mathbf{G}_{2}:=\left[\begin{array}{ccc}
0 & -\mathrm{i} & 0 \\
\mathrm{i} & 0 & 0 \\
0 & 0 & 0
\end{array}\right], & \mathbf{G}_{3}:=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right],
\end{array} \quad \mathbf{G}_{4}:=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], .
$$

Describe all complex (3×3)-matrices \mathbf{B} for which there exists scalars $x_{1}, x_{2}, \ldots, x_{8} \in \mathbb{C}$ such that

$$
x_{1} \mathbf{G}_{1}+x_{2} \mathbf{G}_{2}+\cdots+x_{8} \mathbf{G}_{8}=\mathbf{B}
$$

