Problems 08

Due: Friday, 5 November 2021 before 17:00 EDT

1. Fix positive integers m and n. Let $\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{n} \in \mathbb{K}^{m}$ be linearly independent vectors.
(i) Show that the vectors $\overrightarrow{\mathbf{v}}_{1}-\overrightarrow{\mathbf{v}}_{2}, \overrightarrow{\mathbf{v}}_{2}-\overrightarrow{\mathbf{v}}_{3}, \ldots, \overrightarrow{\mathbf{v}}_{n-1}-\overrightarrow{\mathbf{v}}_{n}, \overrightarrow{\mathbf{v}}_{n} \in \mathbb{K}^{m}$ are also linearly independent.
(ii) Suppose that, for some $\overrightarrow{\mathbf{w}} \in \mathbb{K}^{m}$, the vectors $\overrightarrow{\mathbf{v}}_{1}+\overrightarrow{\mathbf{w}}, \overrightarrow{\mathbf{v}}_{2}+\overrightarrow{\mathbf{w}}, \ldots, \overrightarrow{\mathbf{v}}_{n}+\overrightarrow{\mathbf{w}}$ are linearly dependent. Prove that $\overrightarrow{\mathbf{w}} \in \operatorname{Span}\left(\overrightarrow{\mathbf{v}}_{1}, \overrightarrow{\mathbf{v}}_{2}, \ldots, \overrightarrow{\mathbf{v}}_{n}\right)$.
2. Let n be a positive integer. The trace of an $(n \times n)$-matrix $\mathbf{A}:=\left[a_{j, k}\right]$ is the sum of its diagonal entries:

$$
\operatorname{tr}(\mathbf{A}):=a_{1,1}+a_{2,2}+\cdots+a_{n, n}=\sum_{j=1}^{n} a_{j, j}
$$

(i) Prove that the trace is linear. In other words, show that, for any $(n \times n)$-matrices \mathbf{A}, \mathbf{B} and any scalars $c, d \in \mathbb{K}$, we have $\operatorname{tr}(c \mathbf{A}+d \mathbf{B})=c \operatorname{tr}(\mathbf{A})+d \operatorname{tr}(\mathbf{B})$.
(ii) For any two $(n \times n)$-matrices \mathbf{A} and \mathbf{B}, prove that $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B} \mathbf{A})$.
(iii) Show that matrix equation $\mathbf{X Y}-\mathbf{Y} \mathbf{X}=\mathbf{I}$ has no solutions for $(n \times n)$-matrices \mathbf{X} and \mathbf{Y}.
3. (i) Let $\mathbf{R}:=\left[\begin{array}{rr}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$. For all nonnegative integers k, show that $\mathbf{R}^{k}=\left[\begin{array}{rr}\cos (k \theta) & -\sin (k \theta) \\ \sin (k \theta) & \cos (k \theta)\end{array}\right]$.
(ii) In 1969, Volker Strassen surprised the mathematical community by showing that two (2×2)-matrix can be multiplied using only seven multiplications of scalars. Establish his method by showing that, when

$$
\left.\begin{array}{rl}
\mathbf{A}:= & {\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \quad p_{1}:=(a+d)(w+z)} \\
\mathbf{B}:= & p_{3}:=a(y-z) \\
w & y \\
x & z
\end{array}\right] \quad p_{5}:=(a+c) z \quad p_{2}:=(b+d) w \quad p_{4}:=d(x-w) \quad p_{6}:=(b-a)(w+y), ~(c-d)(x+z), ~\left(\begin{array}{cc}
p_{1}+p_{4}-p_{5}+p_{7} & p_{3}+p_{5} \\
p_{2}+p_{4} & p_{1}+p_{3}-p_{2}+p_{6}
\end{array}\right] .
$$

