Problems 09

Due: Friday, 12 November 2021 before 17:00 EDT

1. Consider the matrix

$$
\mathbf{P}:=\left[\begin{array}{rrr}
-1 & -1 & -3 \\
2 & -3 & 2 \\
1 & -1 & 2
\end{array}\right] .
$$

(i) Demonstrate, via direct computation, that $\mathbf{P}^{3}+2 \mathbf{P}^{2}+2 \mathbf{P}-3 \mathbf{I}=\mathbf{0}$.
(ii) Calculate $\mathbf{Q}:=\frac{1}{3}\left(\mathbf{P}^{2}+2 \mathbf{P}+2 \mathbf{I}\right)$ and verify that $\mathbf{Q}=\mathbf{P}^{-1}$.
(iii) Explain how \mathbf{Q} in part (ii) can be obtained from the equation in part (i).
2. Fix two positive integers m and n.
(i) Let \mathbf{M} be an invertible $(m \times m)$-matrix, let \mathbf{N} be an invertible $(n \times n)$-matrix, let \mathbf{P} be an $(m \times n)$ matrix, and let \mathbf{Q} be an $(n \times m)$-matrix. Verify the Woodbury matrix identity:

$$
(\mathbf{M}+\mathbf{P N Q})^{-1}=\mathbf{M}^{-1}-\mathbf{M}^{-1} \mathbf{P}\left(\mathbf{N}^{-1}+\mathbf{Q} \mathbf{M}^{-1} \mathbf{P}\right)^{-1} \mathbf{Q} \mathbf{M}^{-1}
$$

(ii) Let \mathbf{A} be an invertible $(m \times m)$-matrix, let \mathbf{B} be an $(n \times m)$-matrix, let \mathbf{C} be an $(m \times n)$-matrix, and let \mathbf{D} be an $(n \times n)$-matrix. Assuming that the Schur complement $\mathbf{S}:=\mathbf{D}-\mathbf{B A}^{-1} \mathbf{C}$ is invertible, establish the blockwise inversion formula:

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{C} \\
\mathbf{B} & \mathbf{D}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
\mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{C S}^{-1} \mathbf{B} \mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{C S}^{-1} \\
-\mathbf{S}^{-1} \mathbf{B} \mathbf{A}^{-1} & \mathbf{S}^{-1}
\end{array}\right]
$$

3. Express $\mathbf{U}:=\left[\begin{array}{rrr}-1 & 1 & -3 \\ -3 & -2 & -1 \\ -3 & 0 & 3\end{array}\right]$ as a product of elementary matrices.
