Problems 10

Due: Friday, 19 November 2021 before 17:00 EDT

1. Consider the matrix $\mathbf{A}:=\left[\begin{array}{rrrr}-3 & -2 & 1 & -3 \\ 6 & 7 & -4 & 7 \\ 3 & 8 & -2 & 8 \\ -6 & -10 & 3 & -10\end{array}\right]$.
(i) Find an $\mathbf{L U}$-factorization of \mathbf{A}.
(ii) Using the LU-factorization, solve $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ where $\overrightarrow{\mathbf{b}}:=\left[\begin{array}{llll}3 & -5 & -7 & 7\end{array}\right]^{\top}$
2. An elementary matrix that differs from the identity matrix by interchanging a pair of consecutive rows is called an adjacent transposition. Equivalently, an adjacent transposition is a matrix of the form $\mathbf{I}+\mathbf{E}_{j, j+1}+\mathbf{E}_{j+1, j}-\mathbf{E}_{j, j}-\mathbf{E}_{j+1, j+1}$ for some row index j.
(i) Express the permutation matrix $\mathbf{P}:=\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right]$ as a product of adjacent transpositions.
(ii) Prove that every permutation matrix is a product of adjacent transpositions.
3. For all $t \in \mathbb{C}$, find a $\mathbf{P}^{\top} \mathbf{L D U}$-factorization of the matrix $\mathbf{B}:=\left[\begin{array}{cccc}3 t & -9 t+2 & 8 t+1 & 3 t^{2}-7 \\ -3 & 8 & -t-6 & -3 t+2 \\ 3 & -9 & 6 & 3 t \\ -3 & -t+9 & -t^{2}-9 & -t+11\end{array}\right]$.
