Problems 11

Due: Friday, 26 November 2021 before 17:00 EDT

1. Find bases for the row space, the column space, and the kernel of

$$
\mathbf{M}:=\left[\begin{array}{rrrrrr}
3 & 1 & -2 & 3 & 2 & -2 \\
-5 & -1 & 6 & -1 & -2 & -8 \\
-1 & 1 & 6 & 7 & 0 & -8 \\
-2 & 1 & 8 & 8 & -2 & 1
\end{array}\right]
$$

2. Consider $\mathbf{A}:=\left[\begin{array}{llllll}1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0\end{array}\right]$. Find all subsets of columns of \mathbf{A} that form a basis of its columns space.
3. Consider the matrix $\mathbf{B}:=\left[\begin{array}{rrr}-3 & -2 & 4 \\ 1 & 3 & -3 \\ -2 & -3 & 4\end{array}\right]$.
(i) Show that the columns of the matrix \mathbf{B} form a basis for \mathbb{Q}^{3}.
(ii) Calculate the matrix $\mathbf{C}:=\left[\begin{array}{ll}\left(\overrightarrow{\mathbf{e}}_{1}\right)_{\mathbf{B}} & \left.\left(\overrightarrow{\mathbf{e}}_{2}\right)_{\mathbf{B}} \quad\left(\overrightarrow{\mathbf{e}}_{3}\right)_{\mathbf{B}}\right] \text { where }\left(\overrightarrow{\mathbf{e}}_{j}\right)_{\mathbf{B}} \text { denotes the coordinate vector of }\end{array}\right.$ $\overrightarrow{\mathbf{e}}_{j} \in \mathbb{Q}^{3}$ relative to the columns of \mathbf{B}.
(iii) What is the relationship between \mathbf{B} and \mathbf{C} ?
