Problems 11

Due: Friday, 26 November 2021 before 17:00 EDT

1. Find bases for the row space, the column space, and the kernel of

$\mathbf{M}\coloneqq$	3	1	-2	3	2	-2	
	-5	-1	6	-1	-2	-8	
	-1	1	6	7	0	-8	•
	$\lfloor -2 \rfloor$	1	8	8	-2	1	

2. Consider $\mathbf{A} \coloneqq \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$. Find *all* subsets of columns of **A** that form a basis of its columns space.

3. Consider the matrix
$$\mathbf{B} \coloneqq \begin{bmatrix} -3 & -2 & 4 \\ 1 & 3 & -3 \\ -2 & -3 & 4 \end{bmatrix}$$
.

- (i) Show that the columns of the matrix **B** form a basis for \mathbb{Q}^3 .
- (ii) Calculate the matrix $\mathbf{C} \coloneqq [(\vec{\mathbf{e}}_1)_{\mathbf{B}} \ (\vec{\mathbf{e}}_2)_{\mathbf{B}} \ (\vec{\mathbf{e}}_3)_{\mathbf{B}}]$ where $(\vec{\mathbf{e}}_j)_{\mathbf{B}}$ denotes the coordinate vector of $\vec{\mathbf{e}}_j \in \mathbb{Q}^3$ relative to the columns of **B**.
- (iii) What is the relationship between **B** and **C**?

