Problems 12

Due: Friday, 3 December 2021 before 17:00 EDT

1. Show that the determinant of the skew-symmetric matrix

$$
\left[\begin{array}{rrrr}
0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & -f & 0
\end{array}\right]
$$

is the square of a polynomial in its entries.
2. Fix a positive integer n. Consider four $(n \times n)$-matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} where \mathbf{D} is invertible.
(i) Show that $\operatorname{det}\left(\left[\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{B} & \mathbf{D}\end{array}\right]\right)=\operatorname{det}(\mathbf{A}) \operatorname{det}(\mathbf{D}) . \quad \quad \operatorname{Hint}:\left[\begin{array}{ll}\mathbf{A} & \mathbf{0} \\ \mathbf{B} & \mathbf{D}\end{array}\right]=\left[\begin{array}{ll}\mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}\end{array}\right]\left[\begin{array}{cc}\mathbf{A} & \mathbf{0} \\ \mathbf{D}^{-1} \mathbf{B} & \mathbf{I}\end{array}\right]$
(ii) Find matrices \mathbf{X} and \mathbf{Y} which produce factorization

$$
\left[\begin{array}{ll}
\mathbf{A} & \mathbf{C} \\
\mathbf{B} & \mathbf{D}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{I} & \mathbf{X} \\
\mathbf{0} & \mathbf{I}
\end{array}\right]\left[\begin{array}{cc}
\mathbf{Y} & \mathbf{0} \\
\mathbf{B} & \mathbf{D}
\end{array}\right] .
$$

(iii) Show that $\operatorname{det}\left(\left[\begin{array}{ll}\mathbf{A} & \mathbf{C} \\ \mathbf{B} & \mathbf{D}\end{array}\right]\right)=\operatorname{det}\left(\mathbf{A}-\mathbf{C D}^{-1} \mathbf{B}\right) \operatorname{det}(\mathbf{D})$.
(iv) When $\mathbf{B D}=\mathbf{D B}$, prove that $\operatorname{det}\left(\left[\begin{array}{ll}\mathbf{A} & \mathbf{C} \\ \mathbf{B} & \mathbf{D}\end{array}\right]\right)=\operatorname{det}(\mathbf{A D}-\mathbf{C B})$.
(v) When $\mathbf{B} \mathbf{D} \neq \mathbf{D B}$, provide an example such that $\operatorname{det}\left(\left[\begin{array}{ll}\mathbf{A} & \mathbf{C} \\ \mathbf{B} & \mathbf{D}\end{array}\right]\right) \neq \operatorname{det}(\mathbf{A D}-\mathbf{C B})$.
3. (i) Compute the determinants of the following matrices:

$$
\left[\begin{array}{ll}
6 & 3 \\
3 & 6
\end{array}\right] \quad\left[\begin{array}{lll}
6 & 3 & 0 \\
3 & 6 & 3 \\
0 & 3 & 6
\end{array}\right] \quad\left[\begin{array}{llll}
6 & 3 & 0 & 0 \\
3 & 6 & 3 & 0 \\
0 & 3 & 6 & 3 \\
0 & 0 & 3 & 6
\end{array}\right] .
$$

(ii) For any nonnegative integer n, guess the determinant of the $(n \times n)$-matrix below using the results from part (i). Confirm your guess by using properties of determinants and induction.

$$
\mathbf{K}_{n}:=\left[\begin{array}{cccccc}
6 & 3 & 0 & \cdots & 0 & 0 \\
3 & 6 & 3 & \cdots & 0 & 0 \\
0 & 3 & 6 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 6 & 3 \\
0 & 0 & 0 & \cdots & 3 & 6
\end{array}\right] .
$$

