Problems 14

Due: Friday, 21 January 2022 before 17:00 EST
P14.1. (i) Determine if the set $\mathbb{T}:=\mathbb{R} \cup\{\infty\}$, with addition and scalar multiplication defined by

$$
\boldsymbol{v} \oplus \boldsymbol{w}:=\min (\boldsymbol{v}, \boldsymbol{w}) \quad c \otimes \boldsymbol{v}:=c+\boldsymbol{v}
$$

for all $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{T}$ and all $c \in \mathbb{R}$, is a real vector space. If it is not, then list all of the defining axioms that fail to hold.
(ii) Determine if the set $\mathbb{P}:=\{x \in \mathbb{R} \mid x>0\}$, with addition and scalar multiplication defined by

$$
\boldsymbol{v} \boxplus \boldsymbol{w}:=\boldsymbol{v} \boldsymbol{w} \quad c \boxtimes \boldsymbol{v}:=\boldsymbol{v}^{c}
$$

for all $\boldsymbol{v}, \boldsymbol{w} \in \mathbb{P}$ and all $c \in \mathbb{R}$, is a real vector space. If it is not, then list all of the defining axioms that fail to hold.

P14.2. Give an example of a nonempty subset U in \mathbb{R}^{2} such that U is closed under scalar multiplication, but U is not a linear subspace of \mathbb{R}^{2}.

P14.3. Let V be a \mathbb{K}-vector space. Prove that the intersection of any set of linear subspaces in V is also a linear subspace.

