Problems 15 Due: Friday, 28 January 2022 before 17:00 EST

P15.1. Consider functions $g_1, g_2, ..., g_n$ in the \mathbb{R} -vector space $C^{n-1}(\mathbb{R})$ of all real-valued functions on the real line whose (n-1)-st derivative exists and are continuous. The determinant of the $(n \times n)$ -matrix

$g_1(x)$	$g_2(x)$	•••	$g_n(x)$
$g_1'(x)$	$g_2'(x)$	•••	$g'_n(x)$
$g_{1}''(x)$	$g_2''(x)$	•••	$g_n''(x)$
	:	۰.	
$g_{1}^{(n-1)}(x)$	$g_2^{(n-1)}(x)$		$g_n^{(n-1)}(x)$

is called the *Wronskian*. When the Wronskian is nonzero at some point $x \in \mathbb{R}$, show that the functions g_1, g_2, \ldots, g_n are linearly independent.

P15.2. Let *n* be a nonnegative integer and let $a_0, a_1, ..., a_n$ denote n+1 distinct real numbers. The *Lagrange polynomials* are defined, for all $0 \le j \le n$, by

$$\mathbf{L}_{j}(t) \coloneqq \frac{(t-a_{0})(t-a_{1})\cdots(t-a_{j-1})(t-a_{j+1})(t-a_{j+2})\cdots(t-a_{n})}{(a_{j}-a_{0})(a_{j}-a_{1})\cdots(a_{j}-a_{j-1})(a_{j}-a_{j+1})(a_{j}-a_{j+2})\cdots(a_{j}-a_{n})} = \prod_{\substack{k=0\\k\neq j}}^{n} \frac{t-a_{k}}{a_{j}-a_{k}}.$$

- (i) Compute the Lagrange polynomials when n = 3, $a_0 = 3$, $a_1 = 2$, $a_2 = 1$, and $a_3 = 0$.
- (ii) Prove that the polynomials L_0, L_1, \ldots, L_n form a basis for the \mathbb{R} -vector space $\mathbb{R}[t]_{\leq n}$.
- (iii) Establish the Lagrange interpolation formula: for all $f(t) \in \mathbb{R}[t]_{\leq n}$, we have

$$f(t) = \sum_{j=0}^{n} f(a_j) \operatorname{L}_j(t) = f(a_0) \operatorname{L}_0(t) + f(a_1) \operatorname{L}_1(t) + \dots + f(a_n) \operatorname{L}_n(t).$$

P15.3. For any square matrix **A** with entries in the field \mathbb{K} of scalars, prove that there exists a nonzero polynomial p in $\mathbb{K}[t]$ such that $p(\mathbf{A}) = 0$.

