Problems 15

Due: Friday, 28 January 2022 before 17:00 EST

P15.1. Consider functions $g_{1}, g_{2}, \ldots, g_{n}$ in the \mathbb{R}-vector space $C^{n-1}(\mathbb{R})$ of all real-valued functions on the real line whose $(n-1)$-st derivative exists and are continuous. The determinant of the $(n \times n)$-matrix

$$
\left[\begin{array}{cccc}
g_{1}(x) & g_{2}(x) & \cdots & g_{n}(x) \\
g_{1}^{\prime}(x) & g_{2}^{\prime}(x) & \cdots & g_{n}^{\prime}(x) \\
g_{1}^{\prime \prime}(x) & g_{2}^{\prime \prime}(x) & \cdots & g_{n}^{\prime \prime}(x) \\
\vdots & \vdots & \ddots & \vdots \\
g_{1}^{(n-1)}(x) & g_{2}^{(n-1)}(x) & \cdots & g_{n}^{(n-1)}(x)
\end{array}\right]
$$

is called the Wronskian. When the Wronskian is nonzero at some point $x \in \mathbb{R}$, show that the functions $g_{1}, g_{2}, \ldots, g_{n}$ are linearly independent.

P15.2. Let n be a nonnegative integer and let $a_{0}, a_{1}, \ldots, a_{n}$ denote $n+1$ distinct real numbers. The Lagrange polynomials are defined, for all $0 \leqslant j \leqslant n$, by
$\mathrm{L}_{j}(t):=\frac{\left(t-a_{0}\right)\left(t-a_{1}\right) \cdots\left(t-a_{j-1}\right)\left(t-a_{j+1}\right)\left(t-a_{j+2}\right) \cdots\left(t-a_{n}\right)}{\left(a_{j}-a_{0}\right)\left(a_{j}-a_{1}\right) \cdots\left(a_{j}-a_{j-1}\right)\left(a_{j}-a_{j+1}\right)\left(a_{j}-a_{j+2}\right) \cdots\left(a_{j}-a_{n}\right)}=\prod_{\substack{k=0 \\ k \neq j}}^{n} \frac{t-a_{k}}{a_{j}-a_{k}}$.
(i) Compute the Lagrange polynomials when $n=3, a_{0}=3, a_{1}=2, a_{2}=1$, and $a_{3}=0$.
(ii) Prove that the polynomials $\mathrm{L}_{0}, \mathrm{~L}_{1}, \ldots, \mathrm{~L}_{n}$ form a basis for the \mathbb{R}-vector space $\mathbb{R}[t]_{\leqslant n}$.
(iii) Establish the Lagrange interpolation formula: for all $f(t) \in \mathbb{R}[t]_{\leqslant n}$, we have

$$
f(t)=\sum_{j=0}^{n} f\left(a_{j}\right) \mathrm{L}_{j}(t)=f\left(a_{0}\right) \mathrm{L}_{0}(t)+f\left(a_{1}\right) \mathrm{L}_{1}(t)+\cdots+f\left(a_{n}\right) \mathrm{L}_{n}(t)
$$

P15.3. For any square matrix \mathbf{A} with entries in the field \mathbb{K} of scalars, prove that there exists a nonzero polynomial p in $\mathbb{K}[t]$ such that $p(\mathbf{A})=0$.

