Problems 16 Due: Friday, 4 February 2022 before 17:00 EST

P16.1. Let *n* be a nonnegative integer. For any nonnegative integer *k* such that $0 \le k \le n$, the *Bernstein polynomial* is defined to be

$$\mathbf{b}_{k,n}(t) \coloneqq \binom{n}{k} t^k (1-t)^{n-k}$$

- (i) Show that the polynomials $b_{0,n}(t), b_{1,n}(t), \dots, b_{n,n}(t)$ form a basis for $\mathbb{Q}[t]_{\leq n}$.
- (ii) Prove that $\sum_{j=0}^{n} \mathbf{b}_{j,n}(t) = 1$.
- **P16.2.** The set of all traceless $(n \times n)$ -matrices, $\mathfrak{sl}(n, \mathbb{C}) \coloneqq {\mathbf{A} \in \mathbb{C}^{n \times n} | \operatorname{tr}(\mathbf{A}) = 0}$, is a linear subspace of $\mathbb{C}^{n \times n}$. Find a basis for $\mathfrak{sl}(n, \mathbb{C})$. What is the dimension of $\mathfrak{sl}(n, \mathbb{C})$?
- **P16.3.** Let $T: V \rightarrow W$ be a linear map.
 - (i) Let $v_1, v_2, ..., v_n$ be linearly independent vectors in the K-vector space V. When T is injective, prove that the vectors $T[v_1], T[v_2], ..., T[v_n]$ are linearly independent in the K-vector space W.
 - (ii) Consider vectors $v_1, v_2, ..., v_n$ that span the K-vector space V. When the map T is surjective, prove that the vectors $T[v_1], T[v_2], ..., T[v_n]$ span the K-vector space W.
 - (iii) Let $v_1, v_2, ..., v_n$ be a basis for the K-vector space V. When the map T is bijective, prove that the vectors $T[v_1], T[v_2], ..., T[v_n]$ are basis for the K-vector space W.

