Problems 16

Due: Friday, 4 February 2022 before 17:00 EST

P16.1. Let n be a nonnegative integer. For any nonnegative integer k such that $0 \leqslant k \leqslant n$, the Bernstein polynomial is defined to be

$$
\mathrm{b}_{k, n}(t):=\binom{n}{k} t^{k}(1-t)^{n-k}
$$

(i) Show that the polynomials $\mathrm{b}_{0, n}(t), \mathrm{b}_{1, n}(t), \ldots, \mathrm{b}_{n, n}(t)$ form a basis for $\mathbb{Q}[t]_{\leqslant n}$.
(ii) Prove that $\sum_{j=0}^{n} \mathrm{~b}_{j, n}(t)=1$.

P16.2. The set of all traceless $(n \times n)$-matrices, $\mathfrak{s l}(n, \mathbb{C}):=\left\{\mathbf{A} \in \mathbb{C}^{n \times n} \mid \operatorname{tr}(\mathbf{A})=0\right\}$, is a linear subspace of $\mathbb{C}^{n \times n}$. Find a basis for $\mathfrak{s l}(n, \mathbb{C})$. What is the dimension of $\mathfrak{s l}(n, \mathbb{C})$?

P16.3. Let $T: V \rightarrow W$ be a linear map.
(i) Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be linearly independent vectors in the \mathbb{K}-vector space V. When T is injective, prove that the vectors $T\left[\boldsymbol{v}_{1}\right], T\left[\boldsymbol{v}_{2}\right], \ldots, T\left[\boldsymbol{v}_{n}\right]$ are linearly independent in the \mathbb{K}-vector space W.
(ii) Consider vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ that span the \mathbb{K}-vector space V. When the map T is surjective, prove that the vectors $T\left[\boldsymbol{v}_{1}\right], T\left[\boldsymbol{v}_{2}\right], \ldots, T\left[\boldsymbol{v}_{n}\right]$ span the \mathbb{K}-vector space W.
(iii) Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{n}$ be a basis for the \mathbb{K}-vector space V. When the map T is bijective, prove that the vectors $T\left[\boldsymbol{v}_{1}\right], T\left[\boldsymbol{v}_{2}\right], \ldots, T\left[\boldsymbol{v}_{n}\right]$ are basis for the \mathbb{K}-vector space W.

