## Problems 17

## Due: Friday, 11 February 2022 before 17:00 EST

P17.1. Let $U, V, W$ be three $\mathbb{K}$-vector spaces such that both $U$ and $V$ have finite dimension. Consider the linear maps $S: U \rightarrow V$ and $T: V \rightarrow W$.
(i) Demonstrate that $\operatorname{dim}(\operatorname{Ker}(T S)) \leqslant \operatorname{dim}(\operatorname{Ker}(S))+\operatorname{dim}(\operatorname{Ker}(T))$.
(ii) Demonstrate that $\operatorname{dim}(\operatorname{Im}(T S)) \leqslant \min \{\operatorname{dim}(\operatorname{Im}(S)), \operatorname{dim}(\operatorname{Im}(T))\}$.

P17.2. Let $V$ be a finite-dimensional vector space. Consider two linear operators $T: V \rightarrow V$ and $S: V \rightarrow V$.
(i) Show that the product $S T$ is invertible if and only if both $S$ and $T$ are invertible.
(ii) Prove that $S T=\mathrm{id}_{V}$ if and only if $T S=\mathrm{id}_{V}$.
(iii) Give an example showing that parts (i)-(ii) are false over an infinite-dimensional vector space.

P17.3. Let $n$ be a positive integer and let $\mathrm{T}_{n}$ denote the $\mathbb{R}$-vector space of trigonometric polynomials having the functions $(1, \cos (x), \sin (x), \ldots, \cos (n x), \sin (n x))$ is an ordered basis. For a fixed nonnegative real number $a$, consider the linear map $D: \mathrm{T}_{n} \rightarrow \mathrm{~T}_{n}$ defined, for all $f$ in $\mathrm{T}_{n}$, by $D[f]=f^{\prime \prime}+a^{2} f$. For which scalars $a$ is the linear operator $D$ invertible?

