1. The \(\mathbb{R} \)-vector space of trigonometric polynomials of degree at most \(n \) has the canonical ordered basis \((1, \cos(x), \sin(x), \ldots, \cos(nx), \sin(nx)) \). For a fixed nonnegative real number \(a \in \mathbb{R} \), consider the linear operator \(T \) on the space of trigonometric polynomials of degree at most \(n \) defined by
\[
T[f] := \frac{d^2 f}{dx^2} + a^2 f
\]
for any trigonometric polynomial \(f \). For which \(a \) is the endomorphism \(T \) invertible?

2. Consider the following three complex \((2 \times 2)\)-matrices
\[
X := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad H := \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad Y := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}.
\]
Problem \#15.3 shows that \(\mathcal{B} := (X, H, Y) \) is an ordered basis for \(\mathfrak{sl}(2) \), the subspace of traceless complex \((2 \times 2)\)-matrices. For a fixed matrix \(A \in \mathbb{C}^{2 \times 2} \), let \(\text{ad}_A : \mathfrak{sl}(2) \to \mathbb{C}^{2 \times 2} \) be the function defined by \(\text{ad}_A(B) = AB - BA \).

(a) Show that \(\text{ad}_A \) is a linear map.

(b) Show that the image of \(\text{ad}_A \) is contained in \(\mathfrak{sl}(2) \).

(c) Determine the matrices \((\text{ad}_X)_B^B, (\text{ad}_H)_B^B \) and \((\text{ad}_Y)_B^B \).

3. Let \(V = \mathbb{Q}^{n \times n} \) be the \(\mathbb{Q} \)-vector space of \((n \times n)\)-matrices and consider the linear operator \(T \in \text{End}(V) \) defined by \(T(A) := A^T \).

(a) Show that \(\pm 1 \) are the only eigenvalues of \(T \).

(b) Describe the eigenvectors corresponding to each eigenvalue of \(T \).

(c) Find an ordered basis \(\mathcal{C} \) for \(\mathbb{Q}^{2 \times 2} \) such that \((T)_C^C \) is a diagonal matrix with respect to this basis.