Problems 17

Due: Friday, 11 February 2022 before 17:00 EST

- **P17.1.** Let U, V, W be three \mathbb{K} -vector spaces such that both U and V have finite dimension. Consider the linear maps $S: U \to V$ and $T: V \to W$.
 - (i) Demonstrate that $\dim(\operatorname{Ker}(TS)) \leq \dim(\operatorname{Ker}(S)) + \dim(\operatorname{Ker}(T))$.
 - (ii) Demonstrate that $\dim(\operatorname{Im}(TS)) \leq \min\{\dim(\operatorname{Im}(S)), \dim(\operatorname{Im}(T))\}$.
- **P17.2.** Let *V* be a finite-dimensional vector space. Consider two linear operators $T: V \to V$ and $S: V \to V$.
 - (i) Show that the product ST is invertible if and only if both S and T are invertible.
 - (ii) Prove that $ST = id_V$ if and only if $TS = id_V$.
 - (iii) Give an example showing that parts (i)–(ii) are false over an infinite-dimensional vector space.
- **P17.3.** Let *n* be a positive integer and let T_n denote the \mathbb{R} -vector space of trigonometric polynomials having the functions $(1, \cos(x), \sin(x), \dots, \cos(nx), \sin(nx))$ is an ordered basis. For a fixed nonnegative real number *a*, consider the linear map $D: T_n \to T_n$ defined, for all *f* in T_n , by $D[f] = f'' + a^2 f$. For which scalars *a* is the linear operator *D* invertible?

