Problems 18

Due: Friday, 18 February 2022 before 17:00 EST

P18.1. Consider the three complex (2×2)-matrices

$$
\mathbf{X}:=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad \mathbf{H}:=\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right], \quad \text { and } \quad \mathbf{Y}:=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]
$$

Problem $\mathbf{C} 16.2$ shows that $\mathcal{B}:=(\mathbf{X}, \mathbf{H}, \mathbf{Y})$ is a basis for the linear subspace $\mathfrak{s l}(2, \mathbb{C})$ of traceless complex (2×2)-matrices. For a fixed complex (2×2)-matrix \mathbf{A}, let $\operatorname{ad}_{\mathbf{A}}: \mathfrak{s l}(2, \mathbb{C}) \rightarrow \mathbb{C}^{2 \times 2}$ be the map defined, for all matrices \mathbf{B} in $\mathfrak{s l}(2, \mathbb{C})$, by $\operatorname{ad}_{\mathbf{A}}(\mathbf{B}):=\mathbf{A B}-\mathbf{B} \mathbf{A}$.
(i) Show that $\mathrm{ad}_{\mathbf{A}}$ is linear.
(ii) Show that the image of $\mathrm{ad}_{\mathbf{A}}$ is contained in $\mathfrak{s l}(2, \mathbb{C})$.
(iii) Determine the matrices $\left(\operatorname{ad}_{\mathbf{X}}\right)_{\mathcal{B}}^{\mathcal{B}},\left(\operatorname{ad}_{\mathbf{H}}\right)_{\mathcal{B}}^{\mathcal{B}}$, and $\left(\operatorname{ad}_{\mathbf{Y}}\right)_{\mathcal{B}}^{\mathcal{B}}$.

P18.2. Let $J: \mathbb{R}[t]_{\leqslant 2} \rightarrow \mathbb{R}[t]_{\leqslant 2}$ be the linear operator defined, for all polynomials f in $\mathbb{R}[t]_{\leqslant 2}$ by

$$
J[f]:=\frac{1}{2} \int_{-1}^{1}\left(3+6 s t-15 s^{2} t^{2}\right) f(s) d s
$$

(i) Let $\mathcal{M}:=\left(1, t, t^{2}\right)$ denote the monomial basis of $\mathbb{R}[t]_{\leqslant 2}$. Compute the matrix $(J)_{\mathcal{M}}^{\mathcal{M}}$.
(ii) Find bases for $\operatorname{Ker}(J)$ and $\operatorname{Im}(J)$.
(iii) Show that J^{-1} exists and find an expression for $J^{-1}\left[a+b t+c t^{2}\right]$.
(iv) Find f such that $J[f]=(1+t)^{2}$.
(v) Find g such that $J^{2}[g]=t^{2}$.

P18.3. Consider two square matrices \mathbf{A} and \mathbf{B} that are similar.
(i) Prove by induction that, for all nonnegative integers m, the matrices \mathbf{A}^{m} and \mathbf{B}^{m} are similar.
(ii) For any polynomial f, show that $f(\mathbf{A})$ and $f(\mathbf{B})$ are similar.

