Problems 19 Due: Friday, 4 March 2022 before 17:00 EST

P19.1. Let $\mathbb{Q}^{2\times 2}$ denote the \mathbb{Q} -vector space of rational (2×2) -matrices and consider the linear operator $T: \mathbb{Q}^{2\times 2} \to \mathbb{Q}^{2\times 2}$ defined, for all (2×2) -matrices **A**, by $T(\mathbf{A}) := \mathbf{A}^{\mathsf{T}}$.

- (i) Show that ± 1 are the only eigenvalues of *T*.
- (ii) Describe the eigenvectors corresponding to each eigenvalue of T.
- (iii) Find an ordered basis \mathcal{C} such that $(T)^{\mathcal{C}}_{\mathcal{C}}$ is a diagonal matrix.
- **P19.2.** Let $D: \mathbb{R}[t]_{\leq 2} \to \mathbb{R}[t]_{\leq 2}$ be defined by $D[f] := \frac{1}{2}t(t-1)f''(t) + tf'(t) + f(t) + t^2f'(0)$ where f' and f'' are the first and second derivatives of the polynomial f respectively.
 - (i) Let $\mathcal{M} := (1, t, t^2)$ denote the monomial basis of $\mathbb{R}[t]_{\leq 2}$. Compute the matrix $(D)_{\mathcal{M}}^{\mathcal{M}}$.
 - (ii) Find the eigenvalues of *D*. What is the algebraic multiplicity of each eigenvalue?
 - (iii) For each eigenvalue, determine linear subspace spanned by all its eigenvectors. What is the dimension of each of these linear subspace?
- **P19.3.** The union of the zero vector and the set of all eigenvectors with an eigenvalue λ is called the λ -eigenspace. The dimension of the λ -eigenspace, or equivalently the maximum number of linearly independent eigenvectors with eigenvalue λ , is the eigenvalue's geometric multiplicity.
 - (i) Let **A** and **B** be similar matrices. Prove that the geometric multiplicities of the eigenvalues of **A** and **B** are the same.
 - (ii) Are the following matrices similar?

$\mathbf{A}\coloneqq$	[1	-4	-2]	$\mathbf{B} \coloneqq \begin{bmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	0]
$\mathbf{A} \coloneqq$	0	1	0	$\mathbf{B} \coloneqq \begin{bmatrix} 0 & 1 \end{bmatrix}$	1
	0	4	3	$\begin{bmatrix} 0 & 0 \end{bmatrix}$	1

