Problems 20

Due: Friday, 11 March 2022 before 17:00 EST
P20.1. Let V be the \mathbb{C}-vector space of trigonometric polynomials having degree at most 1 . Consider the linear operator $J: V \rightarrow V$ defined, for all functions f in V, by $(J[f])(x):=\int_{0}^{\pi} f(x-t) d t$. Show that J is diagonalizable and find an eigenbasis.

P20.2. Consider the linear operator $T: \mathbb{Q}[x]_{\leqslant 2} \rightarrow \mathbb{Q}[x]_{\leqslant 2}$ defined, for all polynomials f in $\mathbb{Q}[x]_{\leqslant 2}$, by

$$
T[f]:=(2 f(0)-4 f(1)) 1-(f(-1)+f(1)) x+(f(-1)-2 f(0)+6 f(1)) x^{2} .
$$

Determine whether T is diagonalizable.

P20.3. Find all scalars k such that the matrix $\mathbf{A}:=\left[\begin{array}{ccc}1 & -k & 2 k \\ 1 & -k & 2 k \\ 1 & -k & 2 k\end{array}\right]$ is diagonalizable.

