Problems 20 Due: Friday, 11 March 2022 before 17:00 EST

P20.1. Let *V* be the \mathbb{C} -vector space of trigonometric polynomials having degree at most 1. Consider the linear operator $J: V \to V$ defined, for all functions f in V, by $(J[f])(x) \coloneqq \int_0^{\pi} f(x-t) dt$. Show that J is diagonalizable and find an eigenbasis.

P20.2. Consider the linear operator $T: \mathbb{Q}[x]_{\leq 2} \to \mathbb{Q}[x]_{\leq 2}$ defined, for all polynomials f in $\mathbb{Q}[x]_{\leq 2}$, by $T[f] \coloneqq (2f(0) - 4f(1)) 1 - (f(-1) + f(1)) x + (f(-1) - 2f(0) + 6f(1)) x^2$.

Determine whether *T* is diagonalizable.

P20.3. Find all scalars k such that the matrix $\mathbf{A} := \begin{bmatrix} 1 & -k & 2k \\ 1 & -k & 2k \\ 1 & -k & 2k \end{bmatrix}$ is diagonalizable.

