## Problems 21

Due: Friday, 18 March 2022 before 17:00 EST
P21.1. For any two vectors $\boldsymbol{v}$ and $\boldsymbol{w}$ in a complex inner product space, prove the following:
(polarization identity)

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\frac{1}{4}\left(\|\boldsymbol{v}+\boldsymbol{w}\|^{2}-\|\boldsymbol{v}-\boldsymbol{w}\|^{2}+\mathrm{i}\|\boldsymbol{v}+\mathrm{i} \boldsymbol{w}\|^{2}-\mathrm{i}\|\boldsymbol{v}-\mathrm{i} \boldsymbol{w}\|^{2}\right),
$$

(parallelogram identity) $2\left(\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}\right)=\|\boldsymbol{v}+\boldsymbol{w}\|^{2}+\|\boldsymbol{v}-\boldsymbol{w}\|^{2}$.

P21.2. Let $n$ be a positive integer. Consider the maximum norm defined, for any vector $\boldsymbol{v}$ in $\mathbb{C}^{n}$, by

$$
\|\boldsymbol{v}\|_{\infty}:=\max \left(\left|v_{1}\right|,\left|v_{2}\right|, \ldots,\left|v_{n}\right|\right) .
$$

(i) Show that this norm satisfies the following four properties:
(homogeneity) For any scalar $c$ in $\mathbb{C}$ and any vector $\boldsymbol{v}$ in $\mathbb{C}^{n}$, we have $\|c \boldsymbol{v}\|_{\infty}=|c|\|\boldsymbol{v}\|_{\infty}$.
(nonnegativity) For any vector $\boldsymbol{v}$ in $\mathbb{C}^{n}$, we have $\|\boldsymbol{v}\|_{\infty} \geqslant 0$.
(positivity) We have $\|\boldsymbol{v}\|_{\infty}=0$ if and only if $\boldsymbol{v}=\mathbf{0}$.
(subadditivity) For all vectors $\boldsymbol{v}$ and $\boldsymbol{w}$ in $\mathbb{C}^{n}$, we have $\|\boldsymbol{v}+\boldsymbol{w}\|_{\infty} \leqslant\|\boldsymbol{v}\|_{\infty}+\|\boldsymbol{w}\|_{\infty}$.
(ii) When $n \geqslant 2$, prove that this norm does not satisfy the parallelogram identity.

P21.3. For any two vectors $\boldsymbol{v}$ and $\boldsymbol{w}$ in a complex inner product space, prove that

$$
\|\boldsymbol{v}+\boldsymbol{w}\|\|\boldsymbol{v}-\boldsymbol{w}\| \leqslant\|\boldsymbol{v}\|^{2}+\|\boldsymbol{w}\|^{2}
$$

When does equality hold?

