Problem Set #22
MATH 110 : 2015–16
Due: Friday, 18 March 2016

1. The population of Canada, as determined by the Canadian census, was as follows:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>population (in millions)</td>
<td>27.3</td>
<td>28.8</td>
<td>30.0</td>
<td>31.6</td>
<td>33.5</td>
</tr>
</tbody>
</table>

Let \(t \) denote the time measured in years from 1991.
(a) Suppose that population (measure in millions) is modeled by the linear function \(p(t) = a + bt \). Find the least-squares estimates for the parameters \(a \) and \(b \).
(b) Suppose that the population (measure in millions) is modeled by the exponential function \(p(t) = ce^{\lambda t} \). Linearize the model and use the least-squares method to estimate the parameters \(c \) and \(\lambda \).

2. Fix \(n \in \mathbb{N} \) and let \(\mathcal{X} := \{ 2\pi\ell/n : 0 \leq \ell \leq n-1 \} \). Let \(V := \mathbb{C}^\mathcal{X} \) the complex inner product space, consisting of all functions from \(\mathcal{X} \) to \(\mathbb{C} \) with the inner product

\[
\langle f, g \rangle := \sum_{x \in \mathcal{X}} f(x)\overline{g(x)} = \sum_{\ell=0}^{n-1} f(2\pi\ell/n)\overline{g(2\pi\ell/n)}.
\]

(a) For all \(j \in \mathbb{Z} \) with \(0 \leq j \leq n-1 \), show that the functions \(w_j(x) := e^{-j2\pi i x} \) are pairwise orthogonal and compute \(\|w_j\| \).
(b) For all \(k \in \mathbb{Z} \) with \(0 \leq k \leq n-1 \), consider the function

\[
h_k(x) := \begin{cases}
1 & \text{if } x = \frac{2\pi k}{n} \\
0 & \text{if } x \neq \frac{2\pi k}{n}
\end{cases}.
\]

Which function in the linear subspace \(W := \text{Span}(w_0(x), w_1(x), \ldots, w_{n-1}(x)) \subset V \) best approximates the function \(h_k(x) \)?
(c) For all \(k \in \mathbb{Z} \) with \(0 \leq k \leq n-1 \), calculate \(\|\text{proj}_W(h_k) - h_k\| \).

3. Let \(V \) be a finite-dimensional complex inner product space. Show that the adjoint operator on \(\text{End}(V) \) has the following four properties.
(conjugate-linear) For all \(S, T \in \text{End}(V) \) and for all \(c, d \in \mathbb{C} \), we have

\((cS + dT)^* = \overline{c}S^* + \overline{d}T^* \).

(involutive) For all \(T \in \text{End}(V) \), we have \((T^*)^* = T \).

(identity) For the identity operator \(I \in \text{End}(V) \), we have \(I^* = I \).

(multiplicative) For all \(S, T \in \text{End}(V) \), we have \((ST)^* = T^*S^* \).