Problems 22

Due: Friday, 25 March 2022 before 17:00 EST

P22.1. Fix $n:=2$. Consider the \mathbb{R}-vector space $V:=\mathbb{R}[t]_{\leqslant n}$ with the inner product defined, for all polynomials f and g in $\mathbb{R}[t]_{\leqslant n}$, by

$$
\langle f, g\rangle:=\int_{0}^{\infty} f(x) g(x) e^{-x} d x
$$

(i) Apply the orthonormalization algorithm to the monomial basis $\left(1, t, t^{2}, \ldots, t^{n}\right)$ to produce the orthonormal basis $\left(L_{0}, L_{1}, \ldots, L_{n}\right)$ of the inner product space V.
(ii) For any $0 \leqslant k \leqslant n$, consider the linear operator $D_{k}: V \rightarrow V$ defined, for all polynomials f in V, by $D_{k}[f]:=t f^{\prime \prime}(t)+(1-t) f^{\prime}(t)+k f(t)$. Show that $\operatorname{Span}\left(L_{k}\right)=\operatorname{Ker}\left(D_{k}\right)$.

P22.2. Using the properties of a projection operator, determine all of its eigenvalues and describe the corresponding eigenspaces.

P22.3. Equipe the coordinate space \mathbb{R}^{5} with the weighted (or non-standard) inner product defined, for all vectors $\boldsymbol{u}:=\left[\begin{array}{lllll}u_{1} & u_{2} & u_{3} & u_{4} & u_{5}\end{array}\right]^{\top}$ and $\boldsymbol{v}:=\left[\begin{array}{lllll}v_{1} & v_{2} & v_{3} & v_{4} & v_{5}\end{array}\right]^{\top}$, by

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle:=\frac{1}{60}\left(u_{1} v_{1}+15 u_{2} v_{2}+20 u_{3} v_{3}+12 u_{4} v_{4}+12 u_{5} v_{5}\right)
$$

(i) Verify that the three vectors $\boldsymbol{w}_{1}:=\left[\begin{array}{lllll}8 & -4 & -1 & -7 & -7\end{array}\right]^{\top}, \boldsymbol{w}_{2}:=\left[\begin{array}{lllll}6 & -2 & 0 & 1+\sqrt{5} & 1-\sqrt{5}\end{array}\right]^{\top}$, and $\boldsymbol{w}_{3}:=\left[\begin{array}{lllll}5 & 1 & -1 & 0 & 0\end{array}\right]^{\top}$ are pairwise orthogonal.
(ii) Calculate the norms of the vectors $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$, and \boldsymbol{w}_{3}.
(iii) Compute the orthogonal projection of the vector $\boldsymbol{z}:=\left[\begin{array}{lllll}11 & 3 & -4 & -9 & -9\end{array}\right]^{\top}$ onto the linear subspace $W:=\operatorname{Span}\left(\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}\right)$.

