Problems 23

Due: Friday, 1 April 2022 before 17:00 EST

P23.1. Consider

$$
\mathbf{A}:=\left[\begin{array}{rrrr}
0 & 1 & 1 & 0 \\
1 & -1 & 1 & -1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right] \quad \text { and } \quad \boldsymbol{b}:=\left[\begin{array}{r}
5 \\
3 \\
-1 \\
1
\end{array}\right]
$$

Show that a least-squares solution to $\mathbf{A} \overrightarrow{\mathbf{x}}=\overrightarrow{\mathbf{b}}$ is not unique and solve the normal equations to find all of the least-squares solutions.

P23.2. The population of Canada, as determined by the Canadian census, was as follows:

year	2001	2006	2011	2016	2021
population (in millions)	30.0	31.6	33.5	35.2	37.0

Let t denote the time measured in years from 2001.
(i) Suppose that population of Canada (measure in millions) is modeled by the linear function $p_{\ell}(t)=m t+b$. Find the least-squares estimates for the parameters m and b.
(ii) Suppose that the population of Canada (measure in millions) is modeled by the exponential function $p_{e}(t)=c e^{\lambda t}$. Linearize the model and use the least-squares method to estimate the parameters c and λ.

P23.3. Fix a nonnegative integer n. Consider the finite set

$$
X:=\left\{0, \frac{2 \pi}{n}, \frac{4 \pi}{n}, \ldots, \frac{2 \pi(n-1)}{n}\right\}=\left\{\left.\frac{2 \pi \ell}{n} \in \mathbb{R} \right\rvert\, 0 \leqslant \ell \leqslant n-1\right\}
$$

of n real numbers corresponding the left endpoints of equally spaced intervals between 0 and 2π. Let $V:=\mathbb{C}^{X}$ the complex inner product space, consisting of all functions from the finite set X to \mathbb{C} equipped with the inner product

$$
\langle f, g\rangle:=\sum_{x \in X} f(x) \overline{g(x)}=\sum_{\ell=0}^{n-1} f\left(\frac{2 \pi \ell}{n}\right) \overline{g\left(\frac{2 \pi \ell}{n}\right)} .
$$

(i) For all integers j satisfying $0 \leqslant j \leqslant n-1$, show that the functions $w_{j}(x):=\exp (-j x \mathrm{i})$ are pairwise orthogonal and compute $\left\|w_{j}(x)\right\|$.
(ii) For all integers k satisfying $0 \leqslant k \leqslant n-1$, consider the indicator function

$$
h_{k}(x):=\left\{\begin{array}{ll}
1 & \text { if } x=\frac{2 \pi k}{n} \\
0 & \text { if } x \neq \frac{2 \pi k}{n}
\end{array} .\right.
$$

Which function in the linear subspace $W:=\operatorname{Span}\left(w_{0}(x), w_{1}(x), \ldots, w_{n-1}(x)\right) \subset V$ is the best approximation the function $h_{k}(x)$?
(iii) For all integers k satisfying $0 \leqslant k \leqslant n-1$, calculate the norm of the different between $h_{k}(x)$ and its best approximate.

