Problems 23 Due: Friday, 1 April 2022 before 17:00 EST

P23.1. Consider

$$\mathbf{A} \coloneqq \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \quad \text{and} \quad \mathbf{b} \coloneqq \begin{bmatrix} 5 \\ 3 \\ -1 \\ 1 \end{bmatrix}.$$

Show that a least-squares solution to $A\vec{x} = \vec{b}$ is not unique and solve the normal equations to find all of the least-squares solutions.

P23.2. The population of Canada, as determined by the Canadian census, was as follows:

year	2001	2006	2011	2016	2021
population (in millions)	30.0	31.6	33.5	35.2	37.0

Let *t* denote the time measured in years from 2001.

- (i) Suppose that population of Canada (measure in millions) is modeled by the linear function $p_{\ell}(t) = mt + b$. Find the least-squares estimates for the parameters *m* and *b*.
- (ii) Suppose that the population of Canada (measure in millions) is modeled by the exponential function $p_e(t) = c e^{\lambda t}$. Linearize the model and use the least-squares method to estimate the parameters *c* and λ .

P23.3. Fix a nonnegative integer n. Consider the finite set

$$\mathfrak{X} \coloneqq \left\{ 0, \frac{2\pi}{n}, \frac{4\pi}{n}, \dots, \frac{2\pi(n-1)}{n} \right\} = \left\{ \frac{2\pi\ell}{n} \in \mathbb{R} \mid 0 \leqslant \ell \leqslant n-1 \right\}$$

of *n* real numbers corresponding the left endpoints of equally spaced intervals between 0 and 2π . Let $V := \mathbb{C}^{\mathcal{X}}$ the complex inner product space, consisting of all functions from the finite set \mathcal{X} to \mathbb{C} equipped with the inner product

$$\langle f,g \rangle \coloneqq \sum_{x \in \mathcal{X}} f(x) \overline{g(x)} = \sum_{\ell=0}^{n-1} f\left(\frac{2\pi\ell}{n}\right) \overline{g\left(\frac{2\pi\ell}{n}\right)}$$

- (i) For all integers *j* satisfying $0 \le j \le n-1$, show that the functions $w_j(x) := \exp(-jxi)$ are pairwise orthogonal and compute $||w_j(x)||$.
- (ii) For all integers k satisfying $0 \le k \le n-1$, consider the indicator function

$$h_k(x) := \begin{cases} 1 & \text{if } x = \frac{2\pi k}{n} \\ 0 & \text{if } x \neq \frac{2\pi k}{n} \end{cases}.$$

Which function in the linear subspace $W := \text{Span}(w_0(x), w_1(x), \dots, w_{n-1}(x)) \subset V$ is the best approximation the function $h_k(x)$?

(iii) For all integers k satisfying $0 \le k \le n-1$, calculate the norm of the different between $h_k(x)$ and its best approximate.

