Problems 24

Due: Friday, 8 April 2022 before 17:00 EST

- **P24.1.** Let *V* be a finite-dimensional complex inner product space and let $T: V \to V$ be a linear operator.
 - (i) Show that T is normal if and only if the linear operators $\frac{1}{2}(T+T^*)$ and $\frac{1}{2}(T-T^*)$ commute.
 - (ii) Show that T is normal if and only if $||T[v]|| = ||T^{\star}[v]||$ for all vectors v in V.
- **P24.2.** (i) Let $T: V \to V$ be a self-adjoint operator on a finite-dimensional inner product space. Assuming that 3 and 5 are the only eigenvalues of *T*, prove that $T^2 8T + 15$ id_V = 0.
 - (ii) Exhibit real (3×3) -matrix **A** such that 3 and 5 are its only eigenvalues, but $\mathbf{A}^2 8\mathbf{A} + 15\mathbf{I} \neq \mathbf{0}$.
- **P24.3.** Let *V* be a finite-dimensional complex inner product space and let $T: V \to V$ be a linear operator satisfying $T^* = -T$.
 - (i) Show that all eigenvalues of T are purely imaginary (in other words, the real part equals zero).
 - (ii) Show that the linear operators $id_V + T$ and $id_V T$ are invertible.
 - (iii) Show that $(id_V T)(id_V + T)^{-1}$ is an isometry.

