Problems 24

Due: Friday, 8 April 2022 before 17:00 EST

P24.1. Let V be a finite-dimensional complex inner product space and let $T: V \rightarrow V$ be a linear operator.
(i) Show that T is normal if and only if the linear operators $\frac{1}{2}\left(T+T^{\star}\right)$ and $\frac{1}{2}\left(T-T^{\star}\right)$ commute.
(ii) Show that T is normal if and only if $\|T[\boldsymbol{v}]\|=\left\|T^{\star}[\boldsymbol{v}]\right\|$ for all vectors \boldsymbol{v} in V.

P24.2. (i) Let $T: V \rightarrow V$ be a self-adjoint operator on a finite-dimensional inner product space. Assuming that 3 and 5 are the only eigenvalues of T, prove that $T^{2}-8 T+15 \mathrm{id}_{V}=0$.
(ii) Exhibit real (3×3)-matrix \mathbf{A} such that 3 and 5 are its only eigenvalues, but $\mathbf{A}^{2}-8 \mathbf{A}+15 \mathbf{I} \neq \mathbf{0}$.

P24.3. Let V be a finite-dimensional complex inner product space and let $T: V \rightarrow V$ be a linear operator satisfying $T^{\star}=-T$.
(i) Show that all eigenvalues of T are purely imaginary (in other words, the real part equals zero).
(ii) Show that the linear operators $\mathrm{id}_{V}+T$ and $\mathrm{id}_{V}-T$ are invertible.
(iii) Show that $\left(\mathrm{id}_{V}-T\right)\left(\mathrm{id}_{V}+T\right)^{-1}$ is an isometry.

