Problem Set \#13
 Due: Thursday, 12 January 2012

1. Suppose that h is a continuous function, f and g are differentiable functions, and

$$
F(x):=\int_{f(x)}^{g(x)} h(t) d t
$$

Prove that $F^{\prime}(x)=h(g(x)) \cdot g^{\prime}(x)-h(f(x)) \cdot f^{\prime}(x)$.
2. A function f is periodic with period a, if $f(x)=f(x+a)$ for all x.
(a) If f is continuous and periodic with period a, then show that

$$
\int_{0}^{a} f(t) d t=\int_{b}^{b+a} f(t) d t \quad \text { for all } b \in \mathbb{R}
$$

(b) Find a function g such that g is not periodic, but g^{\prime} is.
(c) Suppose that f^{\prime} is continuous and periodic with period a. Prove that f is periodic with period a if and only if $f(a)=f(0)$.
3. Compute the following integral: $\int_{0}^{1}\left(\sqrt{2-x^{2}}-\sqrt{2 x-x^{2}}\right) d x$.

Hint. Interpret the definite integral as the area bounded by appropriate curves.

