Problem Set \#14

Due: Thursday, 19 January 2012

1. (a) Find $\int \sin (\theta) \cos (\theta) d \theta$.
(b) You probably solved part (a) by making the substitution $u=\sin (\theta)$ or $v=\cos (\theta)$ (If not, go back and do it that way). Now find $\int \sin (\theta) \cos (\theta) d \theta$ by making the other substitution.
(c) There is another way of finding this integral which involves the identities:

$$
\sin (2 \theta)=2 \sin (\theta) \cos (\theta), \quad \cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta) .
$$

Find $\int \sin (\theta) \cos (\theta) d \theta$ using one of these identities and the subsitution $w=2 \theta$.
(d) You should now have three different expressions for the indefinite integral $\int \sin (\theta) \cos (\theta) d \theta$. Are they really different? Are they all correct? Explain.
2. (a) Prove that if g is integrable on $[a, b]$, then $\int_{a}^{b} g(x) d x=\int_{a}^{b} g(a+b-x) d x$.
(b) Let f be an integrable odd function, i.e. $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Show algebraically that $\int_{-a}^{a} f(x) d x=0$ for all real numbers a. Explain this fact geometrically.
3. Find $\int z e^{z} \cos (z) d z$. Check your answer by differentiation.

