Problem Set \#15

Due: Thursday, 26 January 2012

1. Let $f^{\prime \prime}$ be continuous such that $\int_{0}^{\pi}\left[f(x)+f^{\prime \prime}(x)\right] \sin (x) d x=2$. If $f(\pi)=1$, then find $f(0)$.
2. The following integral was used by David Bailey, Peter Borwein and Simon Plouffe [On the rapid computation of various polylogarithmic constants, Math. Comp. 66 (1997), 903-913] as a starting point in their determination of the ten billionth hexadecimal digit of the number π (it's 9). Evaluate the integral

$$
\int_{0}^{1} \frac{16(y-1)}{\left(y^{2}-2 y+2\right)\left(y^{2}-2\right)} d y
$$

Hint. Use partial fractions of the form $\frac{A y+B}{(y-1)^{2}+1}$ and $\frac{C y+D}{y^{2}-2}$.
3. One of the most important functions in analysis is the gamma function,

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t \quad \text { for all } x>0
$$

(a) Use integration by parts to establish that $\Gamma(x+1)=x \Gamma(x)$.
(b) Find $\Gamma(1)$ and $\Gamma(2)$.
(c) For positive integers n, find a simple expression for $\Gamma(n)$.

